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We present an elementary proof that the quantum adiabatic approximation is
correct up to exponentially small errors for Hamiltonians that depend analytically on
the time variable. Our proof uses optimal truncation of a straightforward asymptotic
expansion. We estimate the terms of the expansion with standard Cauchy estimates.
 2002 Elsevier Science (USA)

1. INTRODUCTION

The adiabatic theorem of quantum mechanics describes the asymp-
totic behavior of solutions to the time-dependent Schrödinger equation
when the Hamiltonian depends slowly on the time variable. By rescaling
the time variable by a factor of ε, which measures the slowness of the
Hamiltonian’s variation, the problem is usually restated in the follow-
ing way. Let �H�t��t∈� be a smooth family of self-adjoint operators that
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satisfies the following gap condition: Assume H�t� possesses a smooth
nondegenerate eigenvalue E�t� for all times. Then the solution to

i ε
∂ψ

∂t
= H�t�ψ� for small ε > 0� (1.1)

with initial condition ψ�t0� in the eigenspace associated with E�t0�, will
evolve to a state ψ�t� that belongs to the eigenspace associated with E�t�,
up to an O�ε� error as ε → 0. The square of the norm of the orthogonal
projection of ψ�t� onto the complement of the instantaneous eigenspace
defines the nonadiabatic transition probability. According to the adiabatic
theorem, it is of order ε2.

The statement that solutions to (1.1) follow the instantaneous eigenspaces
of the Hamiltonian was made as early as 1928 by Born and Fock in [4] for
discrete, nondegenerate Hamiltonians and was generalized over the years
by several authors. A few milestones in the history of the adiabatic theorem
were the following: Kato [16] proved the theorem for Hamiltonians with a
nondegenerate eigenvalue separated from the rest of the spectrum, without
any assumption on the nature of the rest of the spectrum. In [21], Nenciu
showed that the adiabatic theorem holds for bounded Hamiltonians if one
replaces the isolated eigenvalue E�t� with an isolated component of the
spectrum σ�t� and the instantaneous eigenspace associated with E�t� with
the instantaneous spectral subspace associated with σ�t�. This result was
further generalized to unbounded Hamiltonians by Avron et al. in [2].

At the same time that the adiabatic theorem was qualitatively generalized
to handle more situations, it was quantitatively improved to compute tran-
sition probabilities more accurately. For discrete Hamiltonians Lenard [18]
and Garrido [7] developed techniques that provide asymptotic expressions
for certain solutions to (1.1), with O�ε∞� error estimates. These techniques
have been generalized by Nenciu and Rasche [22, 23, 25] to fit the general
setting described above. Typical results say that if all the time derivatives
of the Hamiltonian at both the initial and the final times are zero, then the
transition probability is O�ε∞�. When these derivatives are nonzero, there
exists a smooth ε–dependent subspace, close to the instantaneous spectral
subspace, to which certain solutions belong, up to O�ε∞� errors. A scatter-
ing theory analog was proved in [2], where the derivatives were assumed to
vanish as t → ±∞.

When the Hamiltonian is an analytic function of time, one expects
the transition probability to be exponentially small in the scattering
context mentioned above. This is suggested by nonrigorous analyses
of (2 × 2)-matrix Hamiltonians, certain explicitly solvable models (see
[5, 17, 28]), and the success of the Landau–Zener formula. It was proved
to be true in a general setting only recently by Joye and Pfister in [13].
Earlier works proved it for matrix Hamiltonians [6, 9, 12] or for discrete
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Hamiltonians with special time dependence [10]. These papers solve (1.1)
for complex values of the time variable along carefully chosen paths in the
complex plane. Subsequent works on the exponential accuracy of the adi-
abatic approximation have been performed by Nenciu [24], who proved
the existence of “superadiabatic evolution operators,” i.e., exponentially
accurate approximations of the evolution generated by (1.1). Superadia-
batic evolutions were first introduced and studied in the physics literature
by Berry [3] and Berry and Lim [19]. Joye and Pfister ([11, 14]) used
superadiabatic evolutions to set up a reduction theory and to prove the
Landau–Zener formula. The method of proof consisted in deriving and
achieving sufficient control on asymptotic expansions of the evolution
operator so that optimal truncation would yield exponential accuracy.
Exponential accuracy of the adiabatic theorem was also tackled using
powerful pseudo-differential operator techniques by Sjöstrand [27] and
Martinez [20], who studied the exponential decay rate of the transition
probability as a function of the parameters of the problem using this
method. Further details and results on other aspects of the adiabatic the-
orem can be found in the references quoted in the recent reviews [1]
and [15].

In the present paper we provide an elementary proof of the exponential
accuracy of the adiabatic theorem, in the spirit of the results concerning
superadiabatic evolutions for Hamiltonians that have a nondegenerate iso-
lated eigenvalue. Our result is not new, nor is it the most general, but our
proof uses only simple techniques of elementary analysis. Our approach
is to use a straightforward asymptotic expansion [8] for the solution to
(1.1). We estimate the individual terms in the expansion by using Cauchy
estimates. From this, it follows that when the expansion is truncated after
an optimal number of terms, the resulting approximation is exponentially
accurate.

1.1. The Main Results

We assume two hypotheses. The first one states that the (possibly
unbounded) Hamiltonian is analytic in an appropriate sense in a neighbor-
hood of the real axis.

H1. Let �H�t��t∈� be a family of self-adjoint operators in a separa-
ble Hilbert space � with common dense domain D ⊂ � . We assume that
�H�t��t∈� admits an extension to the set Sδ0

= �t ∈ � � 
Im t
 < δ0� which
forms an analytic family of type A.

The second hypothesis asserts the existence of a nondegenerate eigen-
value in the spectrum of H�t� for all times.
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H2. For t ∈ �, let E�t� be a simple eigenvalue of H�t� that remains a
distance d�t� > d0 > 0 away from the rest of the spectrum of H�t�.

We let ��x�� denote the greatest integer less than or equal to x and
let φ⊥�t� denote the projection of any vector φ�t� onto the orthogonal
complement of the instantaneous eigenspace associated with E�t�.

Our main result is the following:

Theorem 1.1. Assume Hypotheses H1 and H2. Then, for all t ∈ �, there
exists a sequence �ψn�t��n∈� of vectors in � that is determined by an explicit
recurrence relation. For each N ∈ �, we construct

�N�t� ε� = e
−i

∫ t
t0

E�s�ds/ε �ψ0�t� + εψ1�t� + · · · + εNψN�t� + εN+1ψ⊥
N+1�t���

For any t0 and t in an arbitrary compact interval of �, there exist positive
G, C�g�, and ��g� (given in (5.9)) such that, for all g ∈ �0�G�, the vector
�∗�t� ε� = ���g/ε���t� ε� satisfies

�ψ�t� ε� − �∗�t� ε�� ≤ C�g� e−��g�/ε�

for all ε ≤ 1. Here ψ�t� ε� is the exact solution to the Schrödinger equation
(1.1) with initial condition ψ�t0� ε� = �∗�t0� ε�.

Remarks. (1) By keeping track of how ��g� depends on the minimum
gap d0, we recover the expected behavior ��g� � d0 as d0 → ∞. See [14]
and [20].

(2) The theorem implies that the range of the projector

�∗�t� ε�� ��∗�t� ε�
/��∗�t� ε��2 is a smooth subspace that solutions follow,
up to O�e−��g�/ε� errors.

(3) At the cost of some more technicalities, it is possible to get
the same result when the analyticity and gap hypotheses hold only in a
neighborhood of some bounded interval of the real axis or when t and t0
tend to minus and plus infinity, respectively.

The rest of the paper is devoted to the proof of Theorem 1.1.

2. ADIABATIC EXPANSION IN POWERS OF ε

In this section we develop the expansion in powers of ε for certain solu-
tions to the evolution determined by

i ε
∂ψ

∂t
= H�t�ψ� (2.1)

We assume Hypotheses H1 and H2 so that the resolvent of H�t� and the
isolated eigenvalue E�t� of multiplicity 1 are C∞ in t ∈ �. Without loss of
generality, we assume that the initial time is t0 = 0.
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We prove that ψ�t� ε� has an expansion of the form

ψ�t� ε� = e−i
∫ t

0 E�s�ds/ε �ψ0�t� + εψ1�t� + ε2 ψ2�t� + · · ·�� (2.2)

We choose ��t� to be a smooth normalized eigenvector of H�t� corre-
sponding to E�t�, and we assume its phase has been chosen so that

���t���′�t� � = 0 (2.3)

for each t. The existence of such an eigenvector follows, e.g., from
Problem 15 in Chapter 12 of [26].

We substitute the expression (2.2) into (2.1) and equate the terms on the
two sides of the resulting equation that are formally of the same orders in ε.

Order 0. The terms of order zero require

�H�t� − E�t��ψ0�t� = 0�

This equation forces us to take

ψ0�t� = f0�t���t�� (2.4)

for some yet-to-be-determined function f0�t�.
Order 1. The terms of order ε require

i
∂ψ0

∂t
= �H�t� − E�t��ψ1�t��

From (2.4) this implies that

i
∂f0

∂t
�t���t� + i f0�t�

∂�

∂t
�t� = �H�t� − E�t��ψ1�t��

We solve this equation by separately examining those components of this
equation that are multiples of ��t� and those that are perpendicular to
��t�. Using (2.3), we thus obtain two conditions,

i
∂f0

∂t
�t� = 0 (2.5)

and

i f0�t�
∂�

∂t
�t� = �H�t� − E�t��ψ1�t�� (2.6)

Equation (2.5) requires that f0 be constant, and without loss of generality
we choose it to be

f0�t� = 1� (2.7)
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Equation (2.6) then forces us to choose

ψ1�t� = f1�t���t� + ψ⊥
1 �t�� (2.8)

where f1 is yet to be determined, and

ψ⊥
1 �t� = i �H�t� − E�t��−1

r �′�t�� (2.9)

In this expression we have used �H�t� − E�t��−1
r to denote the reduced

resolvent operator of H�t� on the orthogonal complement of the span
of ��t�.
Order n ≥ 2. We assume inductively that we have solved the equations

of order j ≤ n − 1 to obtain

ψj�t� = fj�t���t� + ψ⊥
j �t�� (2.10)

Here, the scalar function fj has been determined for j ≤ n − 2, and the
vector-valued function ψ⊥

j has been determined for j ≤ n − 1.
Equating terms of order n requires

i
∂ψn−1

∂t
= �H�t� − E�t��ψn�t��

From (2.10) this implies that

i
∂fn−1

∂t
�t���t� + i fn−1�t�

∂�

∂t
�t� + i

∂ψ⊥
n−1

∂t
�t� = �H�t� − E�t��ψn�t��

Using (2.3), we examine separately the components of this equation that
are multiples of ��t� and those that are perpendicular to ��t� to obtain
two conditions,

i
∂fn−1

∂t
�t� + i

〈
��t�� ∂ψ⊥

n−1

∂t
�t�

〉
= 0 (2.11)

and

i fn−1�t�
∂�

∂t
�t� + i P⊥�t�

∂ψ⊥
n−1

∂t
�t� = �H�t� − E�t��ψn�t�� (2.12)

where P⊥�t� = I − 
��t�� ���t�
.
Equation (2.11) is solved simply by integration. It determines fn−1 up to

a constant of integration that we take to be zero,

fn−1�t� = −
∫ t

0

〈
��s�� ∂ψ⊥

n−1

∂t
�s�

〉
ds �n ≥ 2�� (2.13)

Equation (2.12) determines ψ⊥
n to be

ψ⊥
n �t� = i �H�t� − E�t��−1

r

(
fn−1�t��′�t� + P⊥�t�

∂ψ⊥
n−1

∂t
�t�

)
� (2.14)

We have thus determined fn−1 and ψ⊥
n , and the induction can proceed.
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By using Lemma 2.1 of [8], we now easily prove that

�N�t� ε� = e−i
∫ t

0 E�s�ds/ε �ψ0�t� + εψ1�t� + ε2 ψ2�t�
+ · · · + εN ψN�t� + εN+1 ψ⊥

N+1� (2.15)

agrees with an exact solution of (2.1) up to an error that is bounded by
ANεN+1 for some AN , as long as t is kept in a fixed compact interval.

Lemma 2.1 of [8] states that if χ�t� ε� approximatively solves (2.1) in the
sense that

i ε
∂χ

∂t
�t� ε� − H�t�χ�t� ε� = ζ�t� ε�� (2.16)

where ζ�t� ε� is nonzero but small, then there exists an exact solution ψ�t� ε�
to (2.1), such that

�ψ�t� ε� − χ�t� ε�� ≤
∫ t

0
�ζ�s� ε��ds/ε� (2.17)

We compute the error when (2.15) is substituted into (2.1),

ζN�t� ε� = i ε
∂�N

∂t
�t� ε� − H�t��N�t� ε�

= i εN+2e−i
∫ t

0 E�s�ds/ε
∂ψ⊥

N+1

∂t
�t�� (2.18)

Then �N�t� ε� agrees with an exact solution of (2.1) up to an error whose
norm is bounded by ANεN+1, where

AN ≤
∫ t

0

∥∥∥∥∂ψ⊥
N+1

∂t
�s�

∥∥∥∥ds� (2.19)

Remarks. (1) For future reference, we note that an integration by parts
in (2.13) yields an alternative expression for fn�t�. Since ψ⊥

n−1�s� is orthog-
onal to ��s� for each s, the boundary terms vanish and

fn−1�t� =
∫ t

0
��′�s�� ψ⊥

n−1�s� �ds� (2.20)

(2) So far we have used only the smoothness of H�t�, rather than
analyticity. If �dn/dtn��H�t� − i�−1 = 0 for all n ≥ 1, then ψ0�t� = ��t�
and ψn�t� ≡ 0 for n ≥ 1. This implies that the transition probability is
O�ε∞� for initial and final times where the derivatives of the Hamiltonian
vanish.
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3. CAUCHY ESTIMATES

To prove exponential estimates by using optimal truncation of (2.2), we
estimate the dependence on N of the quantity AN in (2.19). In this section
we prove a simple lemma that we use to estimate this dependence.

Lemma 3.1. Define B�0� = 1 and B�k� = kk for integers k ≥ 1. Suppose
g is an analytic vector-valued function on the strip Sδ = �t � 
Im t
 < δ�. If g
satisfies

�g�t�� ≤ CB�k� �δ − 
Im t
�−k�

for some k ≥ 0, then g′ satisfies

�g′�t�� ≤ CB�k + 1� �δ − 
Im t
�−k−1�

for all t ∈ Sδ.

Proof. Let us first consider the case k ≥ 1. By Cauchy’s formula, we can
write

g′�t� = 1
2πi

∫
�

g�s�
�t − s�2 ds� (3.1)

where � is the circular contour with center t and radius 1
k+1�δ − 
Im t
�.

For s on �, we have �δ − 
Im s
� ≥ k
k+1�δ − 
Im t
�. Thus,

�g�s�� ≤ Ckk�δ − 
Im s
�−k

≤ Ckk

[
k

k + 1
�δ − 
Im t
�

]−k

�

So, by putting the norm inside the integral in (3.1), we have

�g′�t�� ≤ 1
2π

2π
k + 1

�δ − 
Im t
�C kk

[
k

k + 1
�δ − 
Im t
�

]−k

×
[

1
k + 1

�δ − 
Im t
�
]−2

= C �k + 1�k+1 �δ − 
Im t
�−k−1�

For k = 0 we use the same argument with the radius of � replaced with
α�δ − 
Im t
� for any α < 1. This yields the bound

�g′�t�� ≤ C α−1�δ − 
Im t
�−1�

The lemma follows because α < 1 is arbitrary.
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4. PRELIMINARY ESTIMATES

In this section we derive preliminary estimates for derivatives of the
resolvent operator and the eigenvector ��t�.

We know that H�t� is a self-adjoint analytic family in Sδ0
. We arbitrarily

choose δ ∈ �0� δ0�. Taking δ0 small enough, we can assume that for each
t ∈ Sδ0

the analytic function E�t� is a distance d�t� > d > 0 from the rest
of the spectrum of H�t�, where d ≥ d0/2. We can further assume that for
t ∈ Sδ0

,

��z + E�t� − H�t��−1� ≤ C1� (4.1)

whenever 
z
 = d/2.
The reduced resolvent �H�t� − E�t��−1

r can be written as

�H�t� − E�t��−1
r = 1

2πi

∫

z
=d/2

�H�t� − E�t� − z�−1 dz

z
�

From this representation, we see that

��H�t� − E�t��−1
r � ≤ C1� (4.2)

for t ∈ Sδ0
.

Similarly, the spectral projection associated with the eigenvalue E�t� is
given by

P�t� = −1
2πi

∫

z
=d/2

�H�t� − E�t� − z�−1 dz�

From this representation, we see that there exists a C2 such that both P�t�
and P⊥�t� = I − P�t� satisfy

�P�t�� ≤ C2 (4.3)

and

�P⊥�t�� ≤ C2� (4.4)

for t ∈ Sδ0
.

Assumption (4.1) also implies estimates on the derivatives of the vector
��t� of Section 2. To prove these estimates, we note that Problem 15 in
Chapter 12 of [26] and Eq. (4.1) imply the existence of an analytic vector-
valued function ��t� that never vanishes in Sδ0

, which is bounded and
analytic in Sδ0

, normalized for real t ∈ Sδ0
, and satisfies (2.3) for real t ∈ Sδ0

.
We choose a C3 such that

���t�� ≤ C3� (4.5)

for t ∈ Sδ0
.
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Since δ < δ0� �′�t� is bounded and analytic in Sδ, so there exists a C4
such that

��′�t�� ≤ C4� (4.6)

for t ∈ Sδ.

Remark. It is not difficult to see by means of the second resolvent
identity that C1 � 1/d0, whereas the other constants are uniform d0.

5. THE MAIN ESTIMATES

In this section we prove estimates for fn�t� and ψ⊥
n �t� that lead to

exponential results in an optimal truncation strategy. The idea is to use an
induction based on the formulas (2.13) and (2.14) with technical help from
Sections 3 and 4. Let us introduce the set Sδ�T = �t ∈ Sδ � 
t
 ≤ T�, for any
T > 0.

Lemma 5.1. Assume the hypotheses of Section 4 and the notation of Sec-
tions 2 and 3. Define C5 = C1�C3 C4 T + C2�. Then, for t ∈ Sδ�T and n ≥ 1,
we have


fn�t�
 ≤ T C1 C3 C4 Cn−1
5 B�n� �δ − 
Im t
�−n (5.1)

and

�ψ⊥
n �t�� ≤ C1 C4 Cn−1

5 B�n − 1� �δ − 
Im t
�−n+1� (5.2)

Proof. We prove this by induction on n.
To get the induction started, we estimate ψ⊥

1 and f1�t�. The function ψ⊥
1

is given by (2.9). By (4.2) and (4.6), we have

�ψ⊥
1 �t�� ≤ C1 C4� (5.3)

By Lemma 3.1, this implies
∥∥∥∥∂ψ⊥

1

∂t
�t�

∥∥∥∥ ≤ C1 C4 B�1� �δ − 
Im t
�−1�

Using this and integrating along a straight contour in (2.13), we see that


f1�t�
 ≤ T C1 C3 C4 B�1� �δ − 
Im t
�−1� (5.4)

Note that we have used the estimate �δ − 
Im s
�−1 ≤ �δ − 
Im t
�−1, as s
goes from 0 to t along the straight contour.
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For the induction step, suppose for some N ≥ 2 that the lemma’s
conclusion is true for all n < N . Lemma 3.1 then implies∥∥∥∥∂ψ⊥

N−1

∂t
�t�

∥∥∥∥ ≤ C1 C4 CN−2
5 B�N − 1� �δ − 
Im t
�−N+1� (5.5)

From this, the estimate on fN−1, and (2.14), we can easily see that

�ψ⊥
N�t��≤C1C4C

N−2
5 �C1C3C4T +C1C2�B�N−1��δ−
Imt
�−N+1�

This is (5.2). It and (2.13) imply (5.1) for n = N .

We now obtain an exponential bound on the error in the adiabatic
theorem by combining Lemma 5.1 and the formula (2.19). From the
estimates above and the estimate

�N + 1�N+1 ≤ NN �N�1 + 1/N�N+1� ≤ 2�2e�N NN� (5.6)

we see that �N�t� agrees with an exact solution up to an error that is
bounded by

AN εN+1 ≤ C6 �C7 N ε�N� (5.7)

where C6 = 2 C1 C4/δ and C7 = 2 eC5/δ. By choosing N = ��g/ε��, with
g < 1/C7, we obtain

C6 �C7 N ε�N ≤ C6 �C7 g���g/ε�� ≤ C6 e
 ln�C7g�
 e− g 
 ln�C7g�
/ε� (5.8)

This yields Theorem 1.1 with

G = 1/C7� ��g� = g
 ln�C7g�
� and C�g� = C6e

 ln�C7g�
� (5.9)

Remarks. (1) By further assuming that the Hamiltonian tends
sufficiently rapidly to limiting values at plus and minus infinity, it is
possible to replace the factor of T in Lemma 5.1 with some constant that
is uniform in t0 and t. This allows us to prove the exponential decay of the
transition probability between times −∞ and +∞.

(2) According to the remark below (4.6), we see that C7 � 1/d0.
Therefore, by choosing g = G/2 = 1/�2C7�, we obtain ��g� � d0.
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6. M. Fedoriuk, “Méthodes Asymptotiques pour les Equations Différentielles Ordinaires
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