
October 19, 2010 0:4 WSPC - Proceedings Trim Size: 9.75in x 6.5in hagjoy12final

1

Non–Adiabatic Transitions in a Simple Born–Oppenheimer Scattering

System

George A. Hagedorn∗

Department of Mathematics and

Center for Statistical Mechanics, Mathematical Physics, and Theoretical Chemistry

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061–0123 USA

Alain Joye

Institut Fourier
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1. Introduction

We describe non–adiabatic transitions in a simple Born–Oppenheimer scattering

system. The detailed proofs are long and technical. They can be found in Ref. 4.

These transitions are difficult to study because they are exponentially small and

cannot be determined by perturbation theory.

We study scattering theory for the equation

i ε2
∂ψ

∂t
= − ε4

2

∂2ψ

∂x2
+ h(x)ψ (1)

in the Born–Oppenheimer limit ε → 0. Here we assume h(x) is a 2 × 2 matrix

that depends parametrically on x and has an analytic continuation to a sufficiently

wide strip about the real axis. We also assume h(x) approaches limits h(±∞) suffi-

ciently rapidly, as Rex→ ±∞, uniformly in the strip. We further assume that the
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eigenvalues of h(x) are never equal for real x. A typical example is

h(x) =

(
tanh(x) 1

1 − tanh(x)

)
.

To describe solutions to equation (1), we introduce 1–dimensional semiclassical

wave packets for the nuclei

ϕk(A, B, ε2, a, η, x) = π−1/4 ε−1/2 2−k/2 (k!)−1/2A
k/2
/A(k+1)/2Hk((x− a)/(|A| ε))

× exp

(
− B (x− a)2

2Aε2
+ i η (x− a)/ε2

)
.

We always impose the condition that ReAB = 1. Under this condition,

{ϕk(A, B, ε2, a, η, ·) } is an orthonormal basis of L2(R) for fixed A, B, ε, a, and

η when k = 0, 1, 2, · · · . A detailed discussion of these wave packets may be found

in Ref. 2.

For each k, there is a solution to equation (1) of the form

ψ(x, t) = eiS(t)/ε
2

ϕk(A(t), B(t), ε2, a(t), η(t), x) Φ1(x) + O(ε),

where Φ1(x) is an eigenvector of h(x) that depends smoothly on x and has phase

chosen to obey the adiabatic connection. (If h(x) is real symmetric for real x then

Φ1(x) can be chosen real for all real x.) The quantities A(t), B(t), a(t), η(t), and

S(t) are determined by the classical phase space flow with the eigenvalue E1(x)

corresponding to Φ1(x) being used as an effective potential.1 This result can be im-

proved by optimally truncating the associated perturbation expansion.3 We obtain

ψ(x, t) = eiS(t)/ε
2
N(ε)∑
n=0

εn ψn(x, t, ε) + O
(
exp

(
−Γ/ε2

))
. (2)

Here Γ > 0, and the ψn(x, t, ε) have the form

ψn(x, t, ε) =

3n+3+k∑
j=0

cj,k(t, ε)ϕj(A(t), B(t), ε2, a(t), η(t), x) Φ1(x)

+

3n+3+k∑
j=0

dj,k(t, ε)ϕj(A(t), B(t), ε2, a(t), η(t), x) Φ2(x),

where {Φ1(x), Φ2(x)} is the basis of eigenvectors for h(x).

2. Non–Adiabatic Transitions

The approximate solution (2) is concentrated near a single classical orbit with posi-

tion a(t) determined by classical mechanics with the effective potential E1(x). Our

main goal is to compute the leading order correction to this solution that obeys

the classical mechanics governed by the second electronic potential energy surface

E2(x).
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We further assume that the two levels E1(x) and E2(x) have a single avoided

crossing with a sufficiently small, but positive minimum gap between them. We

assume that this avoided crossing is associated with a crossing for some complex

value of x inside the strip of analyticity of h(x).

By inserting energy cut offs, we assume that we are studying states whose energy

lies strictly above the maxima of both electronic levels E1(·) and E2(·). Of course

we also assume that the classical energy

η(t)2

2
+ E1(a(t))

satisfies this condition. Then one can find the leading order non-adiabatic contri-

bution that is in the error term in formula (2).4

There are several surprises. First, the leading order transition probability is

strictly greater than what one would obtain by näıvely applying the Landau–Zener

formula to the Schrödinger equation

i ε2
∂φ

∂t
= h(a(t))φ. (3)

Since the nuclei are localized near a(t), and the Landau–Zener formula correctly

describes the non–adiabatic transtions for solutions to (3), one might expect this

to yield the correct leading order result for (1), but it is wrong. Second, one might

expect classical energy conservation to predict the momentum of the nuclei after

a non–adiabatic transtion has occurred. This, too, is simply the wrong leading

order result. The true average nuclear momentum after the transition is strictly

greater than this prediction. Third, for a fixed value of k, when the incoming state

is asymptotic in the remote past to

eiS(t)/ε
2

ϕk(A(t), B(t), ε2, a(t), η(t), x) Φ1(x),

then for sufficiently small ε, the leading order non–adiabatic contribution in the

remote future is asymptotic to

C1 exp(−C2/ε
2) ε−k eiS̃(t)/ε

2

ϕ0(Ã(t), B̃(t), ε2, ã(t), η̃(t), x) Φ2(x),

with C1 6= 0 and C2 > 0. Here, Ã(t), B̃(t), ã(t), η̃(t), and S̃(t) are determined by the

classical phase space flow for the potential energy E2(x). We should comment that

under our hypotheses on the energy, η(t) never changes sign. The particular η̃(t)

that arises also must have constant sign, and the sign is the same as that of η(t).

Any transitions that change direction are exponentially smaller in 1/ε2 because of

our assumption that the minimum gap between E1 and E2 is sufficiently small.

So, for a wide variety of incoming states, the leading order outgoing non–

adiabatic term is always a complex Gaussian.



October 19, 2010 0:4 WSPC - Proceedings Trim Size: 9.75in x 6.5in hagjoy12final

4

3. Comments about the Proof

We prove our main result by first studying the generalized eigenfunctions of the full

Hamiltonian. These are solutions to the equation

− ε4

2

∂2ψ

∂x2
+ h(x)ψ = E ψ.

For each E above the maxima of Ej(·), there are four independent solutions to this

equation. One is incoming from the left and associated with E1; one is incoming from

the right and associated with E1. The other two are similarly incoming from the left

and right and associated with E2. For small ε we perform a WKB analysis of these

solutions, and since we are interested in the transitions, we extend this analysis to

complex values of x so that we can integrate the full Schrödinger equation around

the crossing point of E1 and E2 in the complex plane.

We decompose our wave packets as superpositions of these generalized eigen-

functions. From the complex WKB analysis, we can compute the leading order

non–adiabatic scattering component of each generalized eigenfunction. Computing

the non–adiabatic transition wave packet then becomes an exercise in finding the

asymptotics of an integral that arises from the superposition. This is quite tedious,

but can be done quite explicitly.4

One thus gets the correct leading order transition component of the wave func-

tion. One also can understand why the näıve approach is wrong.

In the näıve approach, one computes the average momentum of the nuclei as

they go through the transition. One then uses this in the Landau–Zener calculation.

However, the higher momentum components of the wave function are much more

likely to make a transition than the slower components. To get the correct results,

one must compute the transition probability for each component and then average

over the components. This yields a higher total transition probability than what

one gets by averaging first. It also explains why the simple energy conservation

calculation yields the wrong momentum prediction. The faster parts of the wave

function are more likely to make a transition.

Finally, when using a ϕk as the incoming wave packet with k > 0, one

can see why the non–adiabatic transition component is a Gaussian if ε is suffi-

ciently small. The extra shift in momentum associated with the faster parts of

the wave function being more likely to make a transition just affects the Gaus-

sian factor in the formula for the ϕk in momentum space. (When one Fourier

transforms from position space to momentum space, ϕk(A, B, ε2, a, η, x) becomes

(−i)k e−iηa/ε2 ϕk(B, A, ε2, η, −a, p).) The Hermite polynomial factor

Hk((p−η)/(|B| ε)) does not get shifted. The momentum space wave packet is largest

near the point where the Gaussian is centered, and near this shifted point, the Her-

mite polynomial is approximately equal to its highest order term, which is a constant

times ((p− η)/(|B| ε))k. This times the shifted Gaussian is approximately another

constant times ε−k times another Gaussian.

Thus, all of the results that are surprising arise from the rapid increase of the



October 19, 2010 0:4 WSPC - Proceedings Trim Size: 9.75in x 6.5in hagjoy12final

5

transition probability as a function of the momentum when one examines the gen-

eralized wave functions.

4. Generalizations

Similar results hold for m×m matrices h(x) whose spectra display suitable avoided

crossings. Incoming states, given as superpositions of generalized eigenvectors, can

also be accommodated, provided the corresponding energy density is sharply peaked

around some value above that of the relevant electronic energy levels.4

These ideas have been further generalized in Ref. 5 to tackle the semiclassical

study of waves driven by systems of autonomous PDEs in 1 + 1 space-time dimen-

sions in a scattering regime. Consider operators of the form

R(x, iε∂/∂t, iε∂/∂x) =
∑

0≤l≤m
0≤n≤r

Aln(x) (iε∂/∂x)l (iε∂/∂t)n

where Aln(x) are d × d matrices, analytic in x in some strip, which tend rapidly

enough to limits as Rex→ ±∞, uniformly in the strip.

The main assumptions are made on the modes on the system, which are the

roots {kj(x, E)}j=1,··· ,md of the dispertion relation detR(x, E, k) = 0. We assume

they are real valued in some energy window, do not to cross as x varies in R, and

display some avoided crossing. Under these assumptions, the generalized eigenvec-

tors, ψε(x, E) ∈ Cd, solutions to R(x, E, iε∂/∂x)ψε(x, E) = 0, can be expanded in

a basis of polarization vectors associated with the different modes. Superpositions

of generalized eigenvectors yield exact solutions to the evolution equation in L2(R)

R(x, iε∂/∂t, iε∂/∂x) Ψε(x, t) = 0.

By selecting solutions which live on a specific mode in the remote past with a group

velocity that makes them go through an avoided crossing, it is possible to compute

the asymptotics as ε → 0 of the exponentially small part of the solution which

makes a transition to the closest mode, for large but finite values of x and t.
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