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Abstract: We propose an alternative to the usual time–independent Born–Oppenheimer
approximation that is specifically designed to describe molecules with symmetrical
Hydrogen bonds. In our approach, the masses of the Hydrogen nuclei are scaled diffe-
rently from those of the heavier nuclei, and we employ a specialized form for the electron
energy level surface. Consequently, anharmonic effects play a role in the leading order
calculations of vibrational levels.

Although we develop a general theory, our analysis is motivated by an examination
of symmetric bihalide ions, such as F H F− or Cl HCl−. We describe our approach for
the F H F− ion in detail.

1. Introduction

In standard Born–Oppenheimer approximations, the masses of the electrons are held
fixed, and the masses of the nuclei are all assumed to be proportional to ε−4. Approximate
solutions to the molecular Schrödinger equation are then sought as expansions in powers
of ε. For the time–independent problem, the electron energy level surface is also assumed
to behave asymptotically like a quadratic function of the nuclear variables near a local
minimum.

In this paper and in a future one [4], we propose an alternative approximation for
molecules that contain Hydrogen atoms as well as some heavier atoms, such as Carbon,
Nitrogen, or Oxygen. Our motivation is to develop an approach that is specifically tailored
to describe the phenomenon of Hydrogen bonding.

In this paper, we examine the specific case of systems with symmetric Hydrogen
bonds, such as F H F−. In [4], we plan to study non–symmetric cases, where the structure
of the typical electron energy surface is very different. The mathematical analysis of that
situation is consequently completely different.

� Partially Supported by National Science Foundation Grants DMS–0303586 and DMS–0600944.
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The model we present here differs from the usual Born–Oppenhimer model in two
ways:

1. We scale the masses of the Hydrogen nuclei as ε−3 instead of ε−4. This is physically
appropriate. If the mass of an electron is 1, and we define ε−4 to be the mass of a
C12 nucleus, then ε = 0.0821, and the mass of a H1 nucleus is 1.015 ε−3.

2. We do not assume that the electron energy level is well approximated by an
ε–independent quadratic function near a local minimum. Instead, we allow it to
depend on ε and to take a particular form that we specify below. The particular
form we have chosen is motivated by a detailed examination of the lowest electronic
potential energy surfaces for F H F− and Cl HCl−.

Although symmetric bihalide ions are quite special, our approach is flexible enough
to describe more general phenomena. For example, the lowest electron energy surface
for F H F− has a single minimum with the Hydrogen nucleus mid–way between the two
Fluorines. Our model can handle situations with single or double wells in the coordinates
for a Hydrogen nucleus that participates in Hydrogen bonding. We hope that the ideas in
this paper and [4] might provide some insight into some properties of Hydrogen bonded
systems.

Our model leads to a different expansion from the usual Born–Oppenheimer approxi-
mation. For Hydrogen nuclei not involved in Hydrogen bonding, the vibrational energies
are of order ε3/2, while the vibrational energies for the other nuclei and the Hydrogen
nuclei involved in the symmetric Hydrogen bonding are of order ε2. Furthermore, anhar-
monic effects must be taken into account for a Hydrogen nucleus involved in Hydrogen
bonding at their leading order, ε2. In the standard Born–Oppenheimer model, all vibra-
tional energies appear in a harmonic approximation at order ε2. Anharmonic corrections
enter at order ε4.

We present our ideas only in the simplest possible situation. In that situation, there
are only 3 nuclei, and they are constrained to move along a fixed line. We plan to study
more general possibilities, such as bending of the molecule, in the future.

The paper is organized as follows: In Sect. 2, we present the formal expansion. In
Sect. 3 we state our rigorous results as Theorems 3.7 and 3.8. The proofs of some
technical results are presented in Sect. 4.

2. Description of the Model

We study a triatomic system with two identical heavy nuclei A and B, and one light
(Hydrogen) nucleus C . We begin by describing the Hamiltonian for this system in
Jacobi coordinates. We let xA and xB be the positions of the heavy nuclei, and let xC
be the position of the light nucleus C . We let their masses be m A = m B and mC . We

let R = m AxA + m B xB + mC xC

m A + m B + mC
denote the center of mass of all three nuclei, and let

xAB = xA + xB

2
denote the center of mass of the heavy nuclei. We let W = xB − xA be

the vector from nucleus A to nucleus B and let Z = xC − xAB be the vector from the
center of mass of A and B to C . We assume the electronic Hamiltonian he only depends
on the vectors between the nuclei, and we set m AB = m A +m B and M = m A +m B +mC .
In the original variables, the Hamiltonian has the form

− 1

2 m A
�xA − 1

2 m B
�xB − 1

2 mC
�xC + he(xB − xA, xC − xA, xC − xB).
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In these Jacobi coordinates, it has the form

− 1

2 M
�R − m AB

2 m A m B
�W − M

2 m AB mC
�Z + he(W, Z + W/2, Z − W/2).

Since we are interested in bound states, we discard the kinetic energy of the center
of mass. We take the electron mass to be 1, and the masses of the heavy nuclei to be
m A = m B = ε−4µ, for some fixed µ. The mass of the light nucleus is mC = ε−3ν, for
some fixed ν. The electronic Hamiltonian he then becomes he(W, Z +W/2, Z −W/2) ≡
h(W, Z), so that the Hamiltonian of interest is

− ε4

µ
�W − ε3

2 ν

(
1 +

ε ν

2µ

)
�Z + h(W, Z).

This computation is exact and valid in any dimension.

To simplify the exposition, we drop the term
ε ν

2µ
in the factor that multiplies �Z .

It gives rise to uninteresting, regular perturbation corrections. Also, for simplicity, we
assume µ = 2 and ν = 1. This can always be accomplished by trivial rescalings of W
and Z .

To describe our ideas in the simplest situation, we restrict W and Z to one dimension.
Thus, we are not allowing rotations or bending of the molecule. Furthermore, we intro-
duce ε dependence of the electronic Hamiltonian to model the pecularities of symmetric
Hydrogen bonds that we describe below.

These considerations lead us to study the Hamiltonian

H1(ε) = − ε4

2

∂2

∂W 2 − ε3

2

∂2

∂Z2 + h(ε, W, Z). (2.1)

The electron Hamiltonian h(ε, W, Z) is an operator in the electronic Hilbert space
that depends parametrically on (ε, W, Z) and includes the nuclear repulsion terms. For
convenience, we assume that h(ε, W, Z) is a real symmetric operator.

We now describe the specific ε dependence of h(ε, W, Z) that we assume. Although
the electron Hamiltonian does not depend on nuclear masses, the parameter ε is dimen-
sionless, and thus may play more than one role. The dependence of h on ε we allow
is motivated by the smallness of a particular Taylor series coefficient we observed in
numerical computations for the ground state electron energy level for the real system
F H F−. We allow only the ground state eigenvalue to depend on ε. Otherwise, our
electron Hamiltonian is ε–independent. With the physical value of ε inserted in our
Hamiltonian, we obtain the true physical Hamiltonian.

From numerical computations of E(W, Z) for F H F−, we observed that the Z2

coefficient in the Taylor expansion about the minimum (W0, 0) of the ground state
potential energy surface had a small numerial value, on the order of the value of ε = ε0,
where ε0 was defined by setting ε−4

0 equal to the nuclear mass of the C12 isotope of
Carbon.

The value of ε0 is roughly 0.0821. We define a2 so that the true Z2 Taylor series term
is a2 ε0 Z2. We then obtain h(ε, W, Z) by adding (ε − ε0) a2 Z2 to the ground state
eigenvalue E(W, Z). We make no other alterations to the electron Hamiltonian. When
ε = ε0, our h(ε, W, Z) equals the true physical electron Hamiltonian h(ε0, W, Z).
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Thus, we assume the ground state electron level has the specific form

E1(ε, W, Z) = E0 + a1 (W − W0)
2

+

(
a2 ε − a3 (W − W0)

)
Z2 + a4 Z4 + · · · , (2.2)

with a j = O(1). As we shall see, the leading order behavior of the energy and the wave
functions for the molecule are determined from the terms written explicitly in (2.2).
The terms not explicitly displayed are of orders (W − W0)

α Z2β , where α and β are
non-negative integers that satisfy α + β ≥ 3. They play no role to leading order, but
contribute to higher order corrections.

We assume a1, a3, and a4 are positive, but that a2 can be positive, zero, or negative.
When a2 is negative, E1(ε, W, Z) has a closely spaced double well near (W0, 0) instead
of a single local minimum.

To ensure that the leading part of E1(ε, W, Z),

Ẽ1(ε, W, Z) = E0 + a1 (W − W0)
2 +

(
a2 ε − a3 (W − W0)

)
Z2 + a4 Z4,

is bounded below, we assume that either

a2
3 < 4 a1 a4, (2.3)

or

a2
3 = 4 a1 a4 and a2 ≥ 0. (2.4)

These conditions are equivalent to the property Ẽ1(ε, W, Z) ≥ − C for some C , since
we can write

Ẽ1(ε, W, Z) = a1

(
(W − W0) − a3

2a1
Z2
)2

+

(
a4 − a2

3

4a1

)
Z4 + a2 ε Z2.

By rescaling with w = (W − W0)/ε and z = Z/ε1/2, we see that the Hamiltonian

− ε4

2

∂2

∂W 2 − ε3

2

∂2

∂Z2 + Ẽ1(ε, W, Z)

is unitarily equivalent to ε2 times the ε–independent Normal Form Hamiltonian

HNF = − 1

2

∂2

∂w2 − 1

2

∂2

∂z2 + ENF(w, z), (2.5)

where

ENF(w, z) = a1 w
2 +

(
a2 − a3w

)
z2 + a4 z4. (2.6)

Remark. Although we do not use it, further scaling shows that HNF is essentially a
three–parameter model, since the change of variables w = α s, z = α t , yields

HNF � α−2
(

− 1

2

∂2

∂s2 − 1

2

∂2

∂t2 + α1 s2 + α2 t2 − α3 s t2 + t4
)
,
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with

α = a−1/6
4 , α1 = a1

a2/3
4

, α2 = a2

a2/3
4

, and α3 = a3

a5/6
4

.

Under conditions (2.3) or (2.4), HNF is essentially self-adjoint on C∞
0 (R

2) and has
purely discrete spectrum. This last property is easy to verify under condition (2.3), or
condition (2.4) with a2 > 0, because ENF(w, z) tends to infinity as ‖ (w, z) ‖ → ∞.
When (2.4) is satisfied with a2 = 0, the result is more subtle because ENF(w, z) attains
its minimum value of zero along a parabola in (w, z). In that case we prove that the
spectrum is discrete in Proposition 3.1.

Explicit Computations for F H F−. The expression (2.2) is clearly special. Our com-
putations for F H F− that motivate this expression have roughly the following values,
where distances are measured in Angstroms and energies are measured in Hartrees:

W0 = 2.287,

E0 = −200.215,

a1 = 0.26,

a2 = 1.22 ( if ε = 0.0821 ),

a3 = 1.29,

a4 = 1.62.

These results came from fitting the output from Gaussian 2003 using second order
Moller–Plesset theory with the aug–cc–pvtz basis set. We observed that the process
of fitting the data was numerically quite unstable, and that condition (2.3) was barely
satisfied by these a j .

The experimentally observed values [11] for the excitation energies to the first
symmetric stretching vibrational mode and the first asymmetric vibrational mode of
F H F− are 583.05 cm−1 and 1331.15 cm−1, respectively. With the values of a j above,
the leading order calculation from our model predicts 600 cm−1 and 1399 cm−1. By lea-
ding order, we mean E0 + ε2 E2 in the expansion we present below. These values depend
sensitively on precisely how we fit the potential energy surface, which itself depends
sensitively on the electron structure calculations. By comparison, Gaussian 2003 with
the aug-cc-pvdz basis set predicts harmonic frequencies of 608 cm−1 and 1117 cm−1.
We could not obtain frequencies for the aug-cc-pvtz basis set from Gaussian because of
our computer limitations.

For some very recent numerical results for vibrational frequencies of F H F− that
appeared as we were finishing this paper, see [2].

We now mimic the technique of [3] to obtain an expansion for the solution to the
eigenvalue problem for (2.1). We could have used the technique of [5], but that would
have led to more complicated formulas.

For convenience, we replace the variable W by W − W0, so that henceforth, W0 = 0.
The technique of [3] uses the method of multiple scales. Instead of searching

directly for an eigenvector �(ε, W, Z) for (2.1), we first search for an eigenvector
ψ(ε, W, Z , w, z) for an operator that acts in more variables. When we have determi-
ned ψ , we obtain � by setting

�(ε, W, Z) = ψ(ε, W, Z , W/ε, Z/ε1/2).
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Fig. 1. Contour plot of the ground state electronic potential energy surface in the Jacobi coordinates (W, Z).
It is obviously not well approximated by a quadratic. Our technique exploits the flatness of the surface in the
Z direction near the minimum

This is motivated physically by the following observation: The dependence of the elec-
trons on the nuclear coordinates occurs on the length scale of (W, Z), while the semi-
classical quantum fluctuations of the nuclei occur on the length scale of (w, z). To
leading order in ε, these effects behave independently.

The equation for ψ is formally

H2(ε) ψ(ε, W, Z , w, z) = E(ε) ψ(ε, W, Z , w, z), (2.7)

where

H2(ε) = − ε4

2

∂2

∂W 2 − ε3 ∂2

∂W ∂w
− ε2

2

∂2

∂w2 − ε3

2

∂2

∂Z2

− ε5/2 ∂2

∂Z ∂z
− ε2

2

∂2

∂z2

+ [ h(ε, W, Z) − E(ε, W, Z) ] + E(ε, ε w, ε1/2z)

+
∞∑

m=6

εm/2
(

Tm/2(W, Z) − Tm/2(ε w, ε
1/2z)

)
. (2.8)
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The functions Tm/2 in this expression will be chosen later. Different choices yield
equally valid expansions for �(ε, W, Z), although they alter the expressions for
ψ(ε, W, Z , w, z) by converting (W, Z) dependence into (w, z) dependence.

In (2.8), we expand both E(ε, εw, ε1/2z) and Tm/2(εw, ε
1/2z) in Taylor series in

powers of ε1/2. We then make the Ansatz that (2.7) has formal solutions of the form

ψ(ε,W, Z , w, z) = ψ0(W, Z , w, z) + ε1/2 ψ1/2(W, Z , w, z)

+ ε1 ψ1(W, Z , w, z) + · · · , (2.9)

with

E(ε) = E0 + ε1/2 E1/2 + ε1 E1 + · · · . (2.10)

We substitute these expressions into (2.7) and solve the resulting equation order by order
in powers of ε1/2.
Note. The description in this section is purely formal. In particular, it does not take into
account the cutoffs that are necessary for rigorous results. The mathematical details are
dealt with in the next section.
Order 0. The order ε0 terms require

[ h(ε, W, Z)− E(ε, W, Z) ] ψ0 + E0 ψ0 = E0 ψ0.

We solve this by choosing

E0 = E0,

and

ψ0(W, Z , w, z) = f0(W, Z , w, z) 
(W, Z),

where 
(W, Z , · ) is a normalized ground state eigenvector of h(ε, W, Z). Under our
assumptions, we can choose
(W, Z , · ) to be real, smooth in (W, Z), and independent
of ε. This choice satisfies

〈
(W, Z , · ), ∇W,Z
(W, Z , · ) 〉Hel = 0, (2.11)

where the inner product is in the electronic Hilbert space. We assume that f0(W, Z , w, z)
is not identically zero.

Order 1/2. The order ε1/2 terms require

[ h(ε, W, Z) − E(ε, W, Z) ] ψ1/2 + E0 ψ1/2 = E0 ψ1/2 + E1/2 ψ0.

The components of this equation in the 
(W, Z) direction in the electronic Hilbert
space require

E1/2 = 0.

The components of the equation orthogonal to
(W, Z) in the electronic Hilbert space
require

[ h(ε, W, Z) − E(ε, W, Z) ] ψ1/2 = 0,
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so

ψ1/2(W, Z , w, z) = f1/2(W, Z , w, z) 
(W, Z).

Orders 1 and 3/2. By similar calculations, the order ε1 and ε3/2 terms yield

E1 = E3/2 = 0,

ψ1(W, Z , w, z) = f1(W, Z , w, z) 
(W, Z), and

ψ3/2(W, Z , w, z) = f3/2(W, Z , w, z) 
(W, Z).

Order 2. The order ε2 terms that are multiples of 
(W, Z) in the electronic Hilbert
space require

− 1

2

∂2 f0

∂w2 (W, Z , w, z) − 1

2

∂2 f0

∂z2 (W, Z , w, z) + ENF(w, z) f0(W, Z , w, z)

= E2 f0(W, Z , w, z), (2.12)

where ENF(w, z) is given by (2.6).
Because of the form of ENF(w, z), (2.12) does not separate into two ODE’s. We do

not know E2 or f0 exactly, although accurate numerical approximations can be found
easily. These eigenvalues and eigenfunctions describe the coupled anharmonic vibra-
tional motion of all three nuclei in the molecule. As we commented earlier, hypotheses
(2.3) or (2.4) guarantee that the eigenvalues E2 are discrete and bounded below, with
normalized bound states f0(W, Z , w, z) in (w, z) for any (W, Z).

Later in the expansion, we choose the operator T3 so that f0 has no (W, Z) depen-
dence. With this in mind, Eq. (2.12) determines E2 and a normalized function f0(w, z)
(up to a phase) for any given vibrational level.

The terms of order 2 that are orthogonal to 
(W, Z) require

[ h(ε, W, Z) − E(ε, W, Z) ] ψ2 = 0.

Thus,

ψ2 = f2(W, Z , w, z) 
(W, Z).

We split the scalar functions fα(W, Z , w, z) with α > 0 into two contributions:

fα(W, Z , w, z) = f ‖
α (W, Z , w, z) + f ⊥

α (W, Z , w, z),

where for each fixed W and Z , f ‖
α (W, Z , ·, · ) is a multiple of f0(·, · ), and

f ⊥
α (W, Z , ·, · ) perpendicular to f0(·, · ) in L2(R2, dw dz). Furthermore, we choose

the operators T3+m/2 later in the expansion so that f ‖
α (W, Z , ·, · ) has no (W, Z) depen-

dence. We will not precisely normalize our approximate eigenfunctions, so we henceforth
assume f ‖

α (W, Z , w, z) = 0 for all α > 0.
Order m/2 with m > 4. We equate the terms of order m/2 and then separately exa-
mine the projections of the resulting equation into the
(W, Z) direction in the electron
Hilbert space and into the direction perpendicular to 
(W, Z).

From the terms in the
(W, Z) direction, we obtain the value of Em/2 and an expres-
sion for f(m−4)/2(W, Z , w, z) = f ⊥

(m−4)/2(W, Z , w, z). When m = 6 we choose T3

so that f0 can be chosen independent of (W, Z). When m > 6, we choose Tm/2, so that

f ‖
(m−6)/2 can be taken to be zero.
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The terms orthogonal to 
(W, Z) in the electronic Hilbert space give rise to an
equation for [ h(ε, W, Z) − E(ε, W, Z) ] ψm/2. This equation has a solution of the
form

ψm/2(W, Z , w, z) =
(

f ‖
m/2(W, Z , w, z) + f ⊥

m/2(W, Z , w, z)
)

(W, Z)

+ψ⊥
m/2(W, Z , w, z),

where ψ⊥
m/2 is obtained by applying the reduced resolvent operator [ h(ε, W, Z) −

E(ε, W, Z) ]−1
r to the right hand side of the equation.

In the next section, we prove that this procedure yields a quasimode whose approxi-
mate eigenvalue and eigenvector each have asymptotic expansions to all orders in ε1/2.

3. Mathematical Considerations

In this section we present a mathematically rigorous version of the expansion of Sect. 2.
This involves inserting cutoffs and proving that many technical conditions are satisfied
at each order of the expansion.

Proposition 3.1. Assume (2.3) or (2.4).

Then, the spectrum of HN F = − 1

2

∂2

∂w2 − 1

2

∂2

∂z2 + EN F (w, z) is purely discrete.

This proposition is an easy consequence of the following general criterion [12] that
guarantees that the spectrum of −� + V is discrete for certain polynomials V . This
criterion finds its roots in earlier work on hypoelliptic operators. (See e.g., [9].)

Proposition 3.2. ([12], Thm 1.3). Let V (x) ≥ 0 be a non-negative polynomial in
x ∈ R

n. Define

m∗
V (x) = 1 +

∑
α∈Nn

|DαV (x)|,

where Dα = ∂
α1
x1 ∂

α2
x2 · · · ∂αn

xn , and the sum is finite. Let H = −� + V be self-
adjoint on a domain in L2(Rn). Then the resolvent of H is compact if and only if
lim|x |→∞ m∗

V (x) = ∞.

Proof of Prop. 3.1. One easily checks that lim|x |→∞ m∗
EN F

(x) = ∞, so Prop. 3.1 is
an immediate consequence of Prop. 3.2. 
�

In the usual Born–Oppenheimer approximation, the semiclassical expansion for the
nuclei is based on Harmonic oscillator eigenfunctions. They have many well-known
properties. Our expansion relies on the analogous properties for eigenfunctions of HN F .
The following proposition establishes some of the properties we need in an even more
general setting.

Proposition 3.3. Let V be a non-negative polynomial, such that H = −� + V has
purely discrete spectrum. Let ϕ(x) be an eigenvector of H, i.e., an L2(Rn) solution of
Hϕ = Eϕ, where E > 0. Then, ϕ ∈ C∞(Rn) and ∇ϕ ∈ L2(Rn). Moreover, for any
a > 0,

ϕ ∈ D(ea〈x〉), ∇ϕ ∈ D(ea〈x〉), and �ϕ ∈ D(ea〈x〉),
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where 〈x〉 =
√√√√1 +

n∑
j=1

x2
j , and D(ea〈x〉) denotes the domain of multiplication by

ea〈x〉.
Proof. Since V ∈ C∞, elliptic regularity arguments (see e.g., [8], Thm. 7.4.1) show that
all eigenfunctions are C∞.

We first show that the ∇ϕ is L2. Since V ≥ 0, the quadratic form defined by

h(ϕ, ψ) = 〈∇ϕ, ∇ψ 〉 + 〈√
V ϕ,

√
V ψ 〉

on Q(h) = Q(−�) ∩ Q(V ), is closed and positive. Here Q(A) means the quadratic
form domain of the operator A. Since D(H) ⊂ Q(h), any eigenvector of H belongs to

Q(−�) = {ϕ ∈ L2(Rn) : ‖ ∇ϕ ‖ < ∞}.
Thus, ∇ϕ ∈ L2.

Next, we prove ϕ ∈ D(ea〈x〉), for any a > 0 by a Combes–Thomas argument, as
presented in Theorem XII.39 of [15]. We describe the details for completeness. Let
α ∈ R, and let v denote x j for any j ∈ {1, · · · , n}. We consider the unitary group
W (α) = eiαv for α ∈ R, and compute

H(α) = W (α) (−� + V ) W (α)−1 = H + i α ∂v + α2.

The operator i∂v is H -bounded, with arbitrary small relative bound, since V ≥ 0. Thus
{H(α)} extends a self-adjoint, entire analytic family of type A, defined on D(H). We
note that since H(0) = H has purely discrete spectrum, its resolvent, R0(λ) is compact,
for any λ ∈ ρ(H) ≡ C \ σ(H). Hence, Rα(λ) = (H(α) − λ)−1 is compact for any
α ∈ R, and hence, for all α ∈ C, if λ ∈ ρ(H(α)). It is jointly analytic in α and λ.
The eigenvalues of H(α) are thus analytic in α, except at crossing points, where they
may have algebraic singularities. Since for α real, W (α) is unitary, the eigenvalues are
actually independent of α, and σ(H(α)) = σ(H), for any α.

Let P be the finite rank spectral projector corresponding to an eigenvalue E of HN F .
Then, for α ∈ R, P(α) = W (α)PW (α)−1 is the spectral projector corresponding to
the eigenvalue E of H(α). By Riesz’s formula and the properties of the resolvent, P(α)
extends to an entire analytic function that satisfies

W (α0)P(α)W (α0)
−1 = P(α0 + α)

for any α0 ∈ R.
By O’Connor’s Lemma (Sect. XIII.11 of [15]), this yields information about the

eigenvectors. If ϕ = Pϕ, the vector ϕα = W (α)ϕ, defined for α ∈ R has an analytic
extension to the whole complex plane, and is an analytic vector for the operator v.
Therefore, ϕ ∈ D(ea|v|), for any a > 0. By taking all possible x j ’s for v, and noting

that D(ea〈x〉) = D(ea(
∑

j |x j |)), we see that ϕ ∈ D(ea〈x〉).
From this, it follows that �ϕ ∈ D(ea〈x〉) for any a > 0 as well, since for any δ > 0,∫

Rn
e2a〈x〉 |�ϕ(x)|2 dx

=
∫

Rn
e2a〈x〉 | (V (x)− E) ϕ(x) |2 dx

≤ ‖ (V − E)2 e−δ〈·〉 ‖∞ ‖ e(a+δ/2)〈·〉 ϕ(·) ‖2

< ∞.
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Finally, Lemma 3.4 below shows that ∇ϕ ∈ D(ea〈x〉). To apply this lemma in our
situation, we let p(x) = ea〈x〉 and note that for any a > 0,

(∇ea〈x〉)/ea〈x〉 = a∇〈x〉 = ax/〈x〉
is uniformly bounded. 
�

Lemma 3.4 requires some notation. Letting p(x) be a positive weight function, we
introduce the space

F2
w =

{
f : ‖ f ‖2

F2
w

=
∫

Rn

(
| f (x)|2 + |� f (x)|2

)
p(x) dx < ∞

}
.

We write ‖ f ‖2
w = ∫

Rn | f (x)|2 p(x) dx , for any f ∈ L2(Rn, p(x)dx), and ‖ f ‖2 =∫
Rn | f (x)|2 dx when the weight is one.

Lemma 3.4. Let p ∈ C1 be positive, and assume that there exists a constant C < ∞,
such that |(∇ p(x))/p(x)| ≤ 2 C for all x ∈ R

n. Then, for any f ∈ F2
w,

‖∇ f ‖w ≤ C ‖ f ‖w +
√

‖ f ‖w ‖� f ‖w + C2 ‖ f ‖2
w. (3.1)

We present the proof of this technical lemma in Sect. 4.
We now state and prove the following corollary to Proposition 3.3:

Corollary 3.5. Assume the hypotheses of Proposition 3.3. Let R(λ) be the resolvent of
H = −� + V for λ /∈ σ(H), and let PE be the finite dimensional spectral projector
of H on E . Let r(E) = (

(H − E)|(I−PE )L2
)−1

be the reduced resolvent at E . Then,
ea〈x〉 R(λ) e−a〈x〉 and ea〈x〉 r(E) e−a〈x〉 are bounded on L2(Rn).

Proof. We use the notation of the proof of Proposition 3.3. We know that Rα(λ) is
compact and analytic in α ∈ C, if λ �∈ σ(H). Hence, for any ψ1, ψ2 ∈ C∞

0 , the map
from R × ρ(H) to C given by

(a, λ) �→ 〈ψ1, eav R0(λ) e−av ψ2 〉
is uniformly bounded by C ‖ψ1‖ ‖ψ2‖ on any given compact set of R×ρ(H) for some C .
From this we infer that for any a > 0, ea〈x〉 R(λ) e−a〈x〉 is bounded in L2(Rn), uniformly
for λ in compact sets of ρ(H). Since the reduced resolvent r(E) can be represented as

r(E) = 1

2π i

∫
CE

R0(λ)
1

λ− E dλ, (3.2)

where CE is a loop in the resolvent set encircling only E , the boundedness of ea〈x〉
r(E) e−a〈x〉 follows. 
�

To show that the terms of our formal expansion all belong to L2, we use the following
generalization of Proposition 3.3. We present its proof in Sect. 4.

Proposition 3.6. Assume the hypotheses of Proposition 3.3 and let ϕ be an L2 solution
of (−� + V − E) ϕ = 0. Then, for any a > 0, and any multi-index α ∈ N

n, Dαϕ ∈
D(ea〈x〉), where Dα = ∂

α1
x1 ∂

α2
x2 · · · ∂αn

xn .
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Remark. Exponential decay of eigenfunctions is a well known and well studied
property for Schrödinger operators. (See e.g., the review [6].) However, we were unable
to find any references dealing with the exponential decay of all successive derivatives
of eigenfunctions in our framework.

We now prove that our formal expansion leads to rigorous quasimodes for the
Hamiltonian H1(ε) given by (2.1). Theorem 3.7 summarizes this result for the leading
order, while Theorem 3.8 handles the arbitrary order results.

Theorem 3.7. Let h(ε, W, Z) be defined as in Sect. 2 with W shifted so that W0 = 0.
We assume h(ε, W, Z) on Hel is C2 in the strong resolvent sense for (W, Z) near the
origin. We assume its non-degenerate ground state is given by

E1(ε, W, Z) = E0 + a1 W 2 +

(
a2 ε − a3 W

)
Z2 + a4 Z4 + S(ε, W, Z)

≡ E0 + Ẽ(ε, W, Z) + S(ε, W, Z), (3.3)

under hypothesis (2.3) or (2.4), and we denote the corresponding normalized eigenstate
by 
(W, Z). Suppose the remainder term S is uniformly bounded below by some r >
−∞ and that |S| satisfies a bound of the form

| S(ε, W, Z) | ≤ C
∑
α+β≥3

| Wα Z2β | (3.4)

for (W, Z) in a neighborhood of the origin. Here C is independent of ε, the sum is finite,
and α and β are non-negative integers. Let f0(w, z) be a normalized non-degenerate
eigenvector of HN F , i.e.,

(−∂2
w/2 − ∂2

z /2 + EN F (w, z)) f0 = E2 f0,

with

EN F (w, z) = a1 w
2 +

(
a2 − a3w

)
z2 + a4 z4.

Then, for small enough ε, there exists an eigenvalue E(ε) of H1(ε) which satisfies

E(ε) = E0 + ε2 E2 + O(εξ ),

for some ξ > 2 as ε → 0.

Remarks. 1. At this level of approximation, it is not necessary to require the eigenvector

 to satisfy condition (2.11) or to require h(ε, W, Z) be real symmetric.
2. We have stated our results for the electronic ground state, but the analogous results
would be true for any non-degenerate state that had the same type of dependence on ε.

Proof. In the course of the proof, we denote all generic non-negative constants by the
same symbol c.

Our candidate for the construction of a quasimode is

�Q(ε, W, Z) = F(W/εδ1) F(Z/εδ2) f0(W/ε, Z/
√
ε) 
(W, Z), (3.5)

where F : R → [0, 1] is a smooth, even cutoff function supported on [−2, 2] which is
equal to 1 on [−1, 1]. One should expect the introduction of these cutoffs not to affect
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the expansion at any finite order because the eigenvectors of H1(ε) are localized near the
minimum of E1(ε, W, Z). Thus, the properties of the electronic Hamiltonian for large
values (W, Z) should not matter. The choice of a different cutoff for each variable is
required because these variables have different scalings in ε. We determine the precise
values of the positive exponents δ1 and δ2 in the course of the proof. We also use the
notation

F(ε,W, Z) = F(W/εδ1) F(Z/εδ2). (3.6)

We first estimate the norm of �Q :

‖�Q‖2 =
∫

R2
|F(ε,W, Z) f0(W/ε, Z/

√
ε)|2 ‖
(W, Z)‖2

Hel

=
∫

R2
| f0(W/ε, Z/

√
ε)|2 dW d Z

−
∫

R2
(1 − F2(ε,W, Z)) | f0(W/ε, Z/

√
ε)|2 dW d Z .

The first term of the last expression equals ε3/2, by scaling, since f0 is normalized. If
δ1 < 1 and δ2 < 1/2, the negative of the second term is bounded above by

∫
|W |≥εδ1
|Z |≥εδ2

| f0(W/ε, Z/
√
ε)|2 dW d Z

= ε3/2
∫

|w|≥ε1−δ1
|z|≥ε1/2−δ2

e−2a(|w|+|z|) e2a(|w|+|z|) | f0(w, z)|2 dw dz

≤ ε3/2 e−2a(1/ε(1−δ1)+1/ε(1−δ2)) ‖ea(|·|+|·|) f0‖2

= O(ε∞),

since f0 ∈ D(ea〈(W,Z)〉). Hence,

‖�Q‖ = ε3/4 (1 + O(ε∞)), where the O(ε∞) correction is non-positive. (3.7)

Next we compute

(H1(ε)− (E0 + ε2E2)) �Q(ε, W, Z)

= S(ε, W, Z) f0(w, z)|W,Z F(ε,W, Z) 
(W, Z)

−
((

ε4

2
∂2

W +
ε3

2
∂2

Z

)
F(ε,W, Z) 
(W, Z)

)
f0(w, z)|W,Z ,

− ε3 (∂w f0(w, z)|W,Z
)
∂W (F(ε,W, Z)
(W, Z))

− ε5/2 (∂z f0(w, z)|W,Z
)
∂Z (F(ε,W, Z)
(W, Z)), (3.8)

where we have introduced the shorthand f0(w, z)|W,Z = f0(W/ε, Z/
√
ε) and used

the identity

Ẽ(ε, W, Z) − ε2 EN F (W/ε, Z/
√
ε) ≡ 0.
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Also

∂W F(ε,W, Z) = 1

εδ1
F ′(W/εδ1) F(Z/εδ2),

∂ZF(ε,W, Z) = 1

εδ2
F(W/εδ1) F ′(Z/εδ2),

and, by assumption, ‖∂µW ∂νZ
(W, Z)‖Hel is continuous and of order ε0 in a neigborhood
of the origin, for µ + ν ≤ 2. Therefore,

sup
R2

‖ ∂W (F(ε,W, Z)
(W, Z)) ‖Hel ≤ c

εδ1
,

sup
R2

‖ ∂Z (F(ε,W, Z)
(W, Z)) ‖Hel ≤ c

εδ2
, (3.9)

sup
R2

‖ ∂2
W (F(ε,W, Z)
(W, Z)) ‖Hel ≤ c

ε2δ1
,

sup
R2

‖ ∂2
Z (F(ε,W, Z)
(W, Z)) ‖Hel ≤ c

ε2δ2
,

where all vectors are supported in { (W, Z) : |W | ≤ 2/εδ1, |Z | ≤ 2/εδ2}. Each of
these vectors appears in (3.8), multiplied by one of the scalar functions f0(w, z)|W,Z ,
(∂w f0(w, z)) |W,Z , or (∂z f0(w, z)) |W,Z . In turn, each of these functions belongs to
L2(R2) by Proposition 3.3, and each one has norm of order ε3/4 because of scaling, e.g.,

(∫
R2

| (∂w f0)(W/ε, Z/
√
ε) |2 dW d Z

)1/2

= ε3/4 ‖ ∂w f0 ‖L2(R2).

Therefore, the norms of the last three vectors in (3.8) are of order ε3/4 times the corres-
ponding power of ε stemming from (3.9).

We now estimate the norm of the term that arises from the error term S. From our
hypothesis on the behavior of S, we have

‖ S F f0 
 ‖2 =
∫

|W |≤2/εδ1

|Z |≤2/εδ2

| f0(W/ε, Z/
√
ε) S(W, Z)|2 dW d Z

≤ c
∑
α+β≥3

∫
|W |≤2/εδ1

|Z |≤2/εδ2

| f0(W/ε, Z/
√
ε)|2

∣∣∣WαZ2β
∣∣∣2 dW d Z

≤ c
∑
α+β≥3

ε2(αδ1+2βδ2)

∫
R2

| f0(W/ε, Z/
√
ε)|2 dW d Z

= c
∑
α+β≥3

ε2(αδ1+2βδ2) ε3/2,

where the sums are finite.
Collecting these estimates and inserting the allowed values of α and β, we obtain

‖ (H1(ε)− (E0 + ε2E2)) �Q ‖
≤ c ε3/4

(
ε3δ1 + ε2(δ1+δ2) + εδ1+4δ2 + ε6δ2 + ε4−2δ1 + ε3−2δ2 + ε3−δ1 + ε5/2−δ2

)
.
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We further note that δ1 < 1 and δ2 < 1/2 imply ε4−2δ1 � ε3−δ1 and ε3−2δ2 � ε5/2−δ2 .
This, together with (3.7), shows that for small enough ε,

‖ (H1(ε)− (E0 + ε2E2)) �Q ‖
‖�Q ‖

≤ c
(
ε3δ1 + ε2(δ1+δ2) + εδ1+4δ2 + ε6δ2 + ε3−δ1 + ε5/2−δ2

)
.

We still must show that all terms in the parenthesis above can be made asymptotically
smaller than ε2. This can be done if there exist choices of δ1 and δ2 such that all exponents
in the parenthesis above are strictly larger than 2. The inequalities to be satisfied are

0 < δ1 < 1, δ1 > 2/3, δ1 + δ2 > 1, 0 < δ2 < 1/2, δ2 > 1/3, δ1 + 4δ2 > 2.

Satisfying these is equivalent to satisfying{
2/3 < δ1 < 1

1/3 < δ2 < 1/2

which defines the set of allowed values. The best value,

ξ = max
0<δ1<1

0<δ2<1/2

min { 3δ1, 2(δ1 + δ2), δ1 + 4δ2, 6δ2, 3 − δ1, 5/2 − δ2 } > 0,

is obtained by straightforward optimization and is given by ξ = 15/7, obtained for
5/7 < δ1 < 6/7 and δ2 = 5/14. With such a choice, there exists an eigenvalue E(ε) of
H1(ε) that satisfies

E(ε) = E0 + ε2 E2(ε) + O(εξ ),

with ξ = 2 + 1/7. 
�
We now turn to the construction of a complete asymptotic expansion for the energy

level E(ε) of H1(ε), as ε → 0.

Theorem 3.8. Assume the hypotheses of Theorem 3.7 with the additional condition that
h(ε, W, Z) on Hel is C∞ in the strong resolvent sense in the variables (ε, W, Z). Then
the energy level E(ε) of H1(ε) admits a complete asymptotic expansion in powers of
ε1/2. The same conclusion is true for the corresponding quasimode eigenvector.

Proof. Our candidate for the quasimode is again the formal expansion (2.9) truncated
at order εN/2 and multiplied by the cutoff function (3.6), i.e.,

�Q(ε, W, Z) = F(ε, W, Z)
N∑

j=0

ε j/2 ψ j/2(W, Z , W/ε, Z/
√
ε).

We shall determine ψ j/2 and Tj/2 in (2.8) explicitly, but first we introduce some
notation for certain Taylor series. Expanding in powers of ε1/2, we write

Tj/2(W, Z) − Tj/2(εw, ε
1/2z)

= Tj/2(W, Z)− Tj/2(0, 0) − ε1/2∂Z Tj/2(0, 0)z + ε
(
∂W Tj/2(0, 0)w

+ ∂2
Z Tj/2(0, 0)z2/2

)
+ · · ·

≡ Tj/2(W, Z) − Tj/2(0, 0) +
∞∑

k=1

τ
(k/2)
j/2 (w, z) εk/2.
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Next, our hypotheses imply that the function S(ε,W, Z) in (3.3)

E1(ε,W, Z) = E0 + Ẽ(ε, W, Z) + S(ε, W, Z)

is C∞ in (ε,W, Z). Using (3.4), we write

E1(ε, εw, ε
1/2z) = E0 + ε2 EN F (w, z) +

∞∑
m≥6

εm/2 Sm/2(w, z).

Note. Because we have assumed E1(ε, W, Z) is even in Z , Sm/2(w, z) = 0 when m
is odd, but the notation is somewhat simpler if we include these terms.

We use this notation and substitute the formal series (2.9) and (2.10) into the eigen-
value equation (2.7), with H2 given by (2.8). For orders n/2 with n ≤ 4, we find exactly
what we obtained in Sect. 2. When n ≥ 5, we have to solve

[h(ε, W, Z)− E1(ε, W, Z)] ψn/2

+ EN F (w, z)ψ(n−4)/2+S6/2(w, z)ψ(n−6)/2+S7/2(w, z)ψ(n−7)/2 + · · · + Sn/2(w, z)ψ0

+ (Tn
2
(W, Z)− Tn

2
(0, 0))ψ0 − τ

( 1
2 )

n−1
2
(w, z)ψ0−τ (

2
2 )

n−2
2
(w, z)ψ0 − · · ·−τ (

n−6
2 )

6
2

(w, z)ψ0

+ (Tn−1
2
(W, Z)− Tn−1

2
(0, 0))ψ1/2 − τ

(1/2)
(n−2)/2(w, z)ψ1/2 − · · · − τ

( n−7
2 )

6
2

(w, z)ψ1/2

...

+ (T7
2
(W, Z)− T7

2
(0, 0))ψ n−7

2
− τ

( 1
2 )

6
2
(w, z)ψ(n−7)/2

+ (T6
2
(W, Z)− T6

2
(0, 0))ψ(n−6)/2

− 1

2
�w,zψ(n−4)/2 − ∂2

Z ,zψ(n−5)/2−∂2
W,wψ(n−6)/2− 1

2
∂2

Z ,Zψ(n−6)/2− 1

2
∂2

W,Wψ(n−8)/2

= E2 ψ(n−4)/2 + E5/2 ψ(n−5)/2 + · · · + En/2ψ0, (3.10)

with the understanding that the quantities S, T and τ that appear with indices lower than
those allowed in their definitions are equal to zero.

We solve (3.10) by induction on n. We assume that

{E j/2, ψ⊥
j/2(W, Z , w, z), Tj/2(W, Z) for j ≤ n − 1, and

f j/2(W, Z , w, z) for j ≤ n − 5

have already been determined, with f ‖
j/2(W, Z , w, z) = 0, for j ≥ 1.

We project (3.10) into the 
(W, Z) direction and the orthogonal direction in the
electronic Hilbert space to obtain two equations that must each be solved.

First, we take the scalar product of (3.10) with 
(W, Z) in the electronic Hilbert
space to obtain
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EN F (w, z) f(n−4)/2 + S6/2(w, z) f(n−6)/2 + S7/2(w, z) f(n−7)/2 + · · · + Sn/2(w, z) f0

+ (Tn
2
(W, Z)− Tn

2
(0, 0)) f0−τ (

1
2 )

n−1
2
(w, z) f0−τ (

2
2 )

n−2
2
(w, z) f0−· · · − τ

( n−6
2 )

6
2

(w, z) f0

+ (Tn−1
2
(W, Z)− Tn−1

2
(0, 0)) f1/2 − τ

(1/2)
(n−2)/2(w, z) f1/2 − · · · − τ

( n−7
2 )

6
2

(w, z) f1/2

...

+ (T7
2
(W, Z)− T7

2
(0, 0)) f n−7

2
− τ

( 1
2 )

6
2
(w, z) f(n−7)/2

+ (T6
2
(W, Z)− T6

2
(0, 0)) f(n−6)/2

− 1

2
�w,z f(n−4)/2 − 〈
(W, Z), ∂2

Z ,zψ(n−5)/2〉Hel − 〈
(W, Z), ∂2
W,wψ(n−6)/2〉Hel

− 1

2
〈
(W, Z), ∂2

Z ,Zψ(n−6)/2〉Hel − 1

2
〈
(W, Z), ∂2

W,Wψ(n−8)/2〉Hel

= E2 f(n−4)/2 + E5/2 f(n−5)/2 + · · · + En/2 f0. (3.11)

We further project (3.11) into the f0 direction and the orthogonal direction in L2(R2)

to obtain two equations that must each be solved.
We take the scalar product of (3.11) with f0 in L2(R2). Using f ‖

j/2 = 0 for j ≥ 1

and (− 1
2�w,z + EN F (w, z)) f0 = E2 f0, we obtain

En/2 = Tn
2
(W, Z)− Tn

2
(0, 0)

+
n∑

j=6

〈 f0, S j/2 f( j−6)/2 〉L2(R2) −
n−7∑
k=0

n−6−k∑
j=1

〈 f0, τ
(n−( j+k))/2)
j/2 fk/2 〉L2(R2)

−
〈

f0,

{
〈
(W, Z), ∂2

Z ,zψ(n−5)/2〉Hel + 〈
(W, Z), ∂2
W,wψ(n−6)/2〉Hel

+
1

2
〈
(W, Z), ∂2

Z ,Zψ(n−6)/2〉Hel +
1

2
〈
(W, Z), ∂2

W,Wψ(n−8)/2〉Hel

}〉
L2(R2)

.

(3.12)

We can solve this equation for En/2 if the right-hand side is independent of (W, Z). This
will be true, if we choose

Tn
2
(W, Z) = −

n∑
j=6

〈 f0, S j/2 f( j−6)/2 〉L2(R2)

+
n−7∑
k=0

n−6−k∑
j=1

〈 f0, τ
(n−( j+k))/2)
j/2 fk/2 〉L2(R2)

+

〈
f0,

{
〈
(W, Z), ∂2

Z ,zψ(n−5)/2〉Hel + 〈
(W, Z), ∂2
W,wψ(n−6)/2〉Hel

+
1

2
〈
(W, Z), ∂2

Z ,Zψ(n−6)/2〉Hel

+
1

2
〈
(W, Z), ∂2

W,Wψ(n−8)/2〉Hel

}〉
L2(R2)

.
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We then are forced to take

En/2 = − Tn
2
(0, 0).

The first non-zero Tj/2(W, Z) is

T6/2(W, Z) = 1

2
〈
(W, Z), ∂2

Z 
(W, Z) 〉Hel − 〈 f0, S3 f0 〉L2(R2). (3.13)

So,

E3 = 〈 f0, S3 f0 〉L2(R2) − 1

2
〈
(0, 0), (∂2

Z 
)(0, 0) 〉Hel .

We next equate the components on the two sides of (3.11) that are orthogonal to
f0 in L2(R2). The resulting equation can be solved by applying the reduced resolvent
rN F (E2), which is the inverse of the restriction of (− 1

2�w,z + EN F −E2) to the subspace
orthogonal to f0. We thus obtain

f(n−4)/2 = rN F (E2)

⎡
⎣ n−5∑

j=1

E(n− j)/2 f ⊥
j/2 −

n∑
j=6

(S j/2(w, z) f( j−6)/2)
⊥

+
n−7∑
k=0

n−6−k∑
j=1

(τ
(n−( j+k))/2)
j/2 (w, z) fk/2)

⊥

+
n−6∑
j=1

(T(n− j)/2(0, 0)− T(n− j)/2(W, Z)) f ⊥
j/2

+ 〈
(W, Z), ∂2
Z ,z �(n−5)/2 〉⊥Hel

+ 〈
(W, Z), ∂2
W,w �(n−6)/2 〉⊥Hel

+ 〈
(W, Z), ∂2
Z ,Z �(n−6)/2 〉⊥Hel

+ 〈
(W, Z), ∂2
W,W �(n−8)/2 〉⊥Hel

⎤
⎦ .

This solution has f(n−4)/2 = f ⊥
(n−4)/2 orthogonal to f0, as claimed in Sect. 2. The first

non-trivial f j/2, for j ≥ 1 is

f ⊥
1 (W, Z , w, z) = − rN F (E2) (S3(w, z) f0(w, z))⊥. (3.14)

Next, we equate the components of (3.10) that are orthogonal to 
(W, Z) in Hel .
We solve the resulting equation for ψ⊥

n/2by applying the reduced resolvent r(W, Z) of
h(ε, W, Z) at E1(ε,W, Z). This yields

ψ⊥
n/2 = r(W, Z)

⎡
⎣ n−5∑

j=1

E(n− j)/2 ψ
⊥
j/2 −

n∑
j=6

S j/2(w, z) ψ⊥
( j−6)/2

+
n−7∑
k=0

n−6−k∑
j=1

τ
(n−( j+k))/2)
j/2 (w, z)ψ⊥

k/2

+
n−6∑
j=1

(T(n− j)/2(0, 0)− T(n− j)/2(W, Z))ψ⊥
j/2
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+ (∂2
Z ,z ψ(n−5)/2)

⊥ + ((∂2
W,w + ∂2

Z ,Z ) ψ(n−6)/2)
⊥

+ (∂2
W,W ψ(n−8)/2)

⊥ − (
1

2
�w,z + EN F (w, z)− E2) ψ

⊥
(n−4)/2

⎤
⎦ . (3.15)

The first non-zero component ψ⊥
j/2 with j ≥ 0, is

ψ⊥
5/2(W, Z , w, z) = (∂z f0)(w, z) r(W, Z) (∂Z
)(W, Z). (3.16)

Finally, Proposition 3.10 below shows that each ψ j/2 in this expansion belongs to
D(ea(|W |/ε+|Z |/√ε)). As a result, whenever a derivative acts on the cutoff, it yields a
contribution whose L2 norm is exponentially small. This way, we can neglect such
terms. For example

(∂W F(ε, W, Z)) ψ j/2(W, Z , W/ε, Z/
√
ε)

= ε−δ1 F ′(W/εδ1) F(Z/εδ2) ψ j/2(W, Z , W/ε, Z/
√
ε).

The square of the L2 norm of this term is bounded by a constant times

ε−2δ1

∫
|W |/εδ1≥1,|Z |/εδ2 ≤2

|ψ j/2(W, Z ,W/ε, Z/
√
ε)|2e2a(|W |/ε+|Z |/√ε)e−2a(1/ε1−δ1 )

dW d Z = O(ε∞).

Thus, we have constructed the non-zero quasimode (3.5) that satisfies the eigenvalue
equation up to an arbitrary high power of ε1/2. 
�

The proof of Proposition 3.10 relies on the following lemma.

Lemma 3.9. Let V be a polynomial that is bounded below, such that the spectrum of
H = − 1

2�+V purely discrete. Let ϕ ∈ C∞(Rn) satisfy Dαϕ ∈ D(ea〈x〉), for all α ∈ Nn

and any a > 0. If R(λ) denotes the resolvent of H, then DαR(λ)ϕ ∈ D(ea〈x〉) for all
α ∈ Nn and all λ in ρ(H). The same is true for Dαr(E)ϕ, where r(E) is the reduced
resolvent at E .

Proof. We first note that elliptic regularity implies that the resolvent R(λ) maps C∞
functions to C∞ functions. Next, applied to smooth functions in L2, we have the identity

[ ∂x j , R(λ) ] = R(λ) (∂x j V ) R(λ).

We claim that the operators on the two sides of this equation have bounded extensions
to all of L2. To see this, note that DβV is relatively bounded with respect to V for any
β ∈ Nn , because V is a polynomial. Furthermore, since H ≥ V , we see that DβV is
relatively bounded with respect to H , which implies the claim. Hence, for ϕ as in the
lemma, we have

∂x j R(λ) ψ = R(λ) ∂x j ϕ + R(λ) (∂x j V ) R(λ) ϕ. (3.17)

The first term on the right-hand side of this equation belongs to D(ea〈x〉) since R(λ)maps
exponentially decaying functions to exponentially decaying functions (see Corollary
3.5). The same is true for the second term, with a possible arbitrarily small loss on the
exponential decay rate, due to the polynomial growth of ∂x j V . This provides the starting
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point for an induction on the order of the derivative that appears in the conclusion of the
lemma.

We now assume that for some α ∈ Nn , DαR(z)ϕ is a linear combination of smooth
functions of the form R(z)(Dγ1 V )R(z) · · · R(z)(Dγ j−1 V )R(z)Dγ jϕ, all of which belong
to D(ea〈x〉), for any a > 0. We assume every γ that occurs here has |γ | ≤ |α|. Then
∂x j DαR(z)ϕ is a linear combination of elements of the form

∂x j (R(z)(D
γ1 V )R(z) · · · R(z)(Dγ j−1 V )R(z)Dγ jϕ).

Applying (3.17) successively, we see that the structure is preserved. Since all Dγk V are
polynomial, Corollary 3.5 implies the result.

The statement for the reduced resolvent follows from the representation (3.2). 
�
Proposition 3.10. Assume the hypotheses of Theorem 3.8. Let ψ j/2(W, Z , w, z) be
determined by the construction above, where (W, Z) belongs to a closed neighborhood
� of the origin and (w, z) ∈ R

2. Then ψ j/2 is C∞, and the function G(w, z) =
sup(W,Z)∈� |ψ j/2(W, Z , w, z)| belongs to D(ea〈(w,z)〉).

Proof. The hypothesis on the Hamiltonian and the properties of the normal form HN F
proven above imply that 
(W, Z) and r(W, Z) are smooth, and that rN F (E2) maps
smooth functions to smooth functions. We also know that the non-degenerate eigenstate
f0 is smooth and belongs to D(ea〈(w,z)〉). The smoothness ofψ j/2(W, Z , w, z) follows
trivially in �× R

2.
Concerning the exponential decay, we observe that the (w, z) dependence of ψ j/2

stems from the successive actions of derivatives, reduced resolvents, and multiplications
by polynomials in (w, z), acting on the eigenstate f0. Lemma 3.9 applied in conjunction
with Proposition 3.6 shows that the exponential decay properties are preserved under
such operations. 
�

4. Technicalities

In this section, we present the proofs of Lemma 3.4 and Proposition 3.6.

Proof of Lemma 3.4. We first note that the hypothesis on p implies p(x) > 0 for any
x ∈ R

n , and that

e−2C|x−y| ≤ p(x)/p(y) ≤ e2C|x−y|. (4.1)

Let BR ∈ R
n be a ball of radius R > 0. We first show that f ∈ L2(BR+1) and

� f ∈ L2(BR+1) imply f ∈ H2(BR), where

H2(BR) = { f ∈ L2(BR), ∇ f ∈ L2(BR), and � f ∈ L2(BR) }.
We denote the usual H2(BR) norm by ‖ · ‖H2(BR)

. We now show the existence of a
constant K (R) > 0, which depends only on R, such that∫

BR

|∇ f |2 ≤ K (R)
∫

BR+1

(
|� f |2 + | f |2

)
. (4.2)

Note. This estimate does not hold in general if the balls over which one integrates have
the same radius.
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We set g = � f on BR+1 and g(x) = 0 if |x | > R + 1. We can then decompose
f = f1 + f2 with f1 and f2 solutions to

{
� f1 = g, f1|∂BR+3 = 0,
� f2 = 0, |x | ≤ R + 1.

Thus, f1 ∈ H2(BR+3), and there exists a constant c1(R), which depends only on R,
such that

‖ f1‖H2(BR+3)
≤ c1(R) ‖� f1‖L2(BR+3)

= c1(R) ‖� f ‖L2(BR+1)
, (4.3)

so that

‖∇ f1‖L2(BR+1)
≤ ‖ f1‖H2(BR+3)

≤ c1(R) ‖� f ‖L2(BR+1)
.

By the mean value property for harmonic functions, f2 also satisfies estimate (4.2),
for some constant K2(R) with � f2 = 0 (see e.g., Chapter 8 of [1]). Combining these
arguments, we see that for c2(R) = c1(R) + K2(R),∫

BR

|∇( f1 + f2)|2 ≤ c2(R)
∫

BR+1

(|� f1|2 + | f2|2)

≤ c2(R)
∫

BR+1

(|� f |2 + 2(| f |2 + | f1|2)).

But
∫

BR+1
| f1|2 ≤ ‖ f1‖2

H2(BR+3)
, so (4.3) implies that (4.2) holds for some constant

K (R).
Because of (4.1), we can insert the weight p into this estimate to establish the existence

of another constant K̃ (R), which depends only on R, such that
∫

BR

p |∇ f |2 ≤ K̃ (R)
∫

BR+1

p (|� f |2 + | f |2). (4.4)

In other words, p1/2 ∇ f ∈ L2
loc if f ∈ F2

w.
A second step consists in showing that p1/2 ∇ f is in L2(Rn) and satisfies (3.1). Let

χR ∈ C∞(Rn) be a truncation function such that 0 ≤ χR ≤ 1, with χR(x) = 1 if
|x | ≤ R, and χR(x) = 0 if |x | ≥ R + 1. We can take χR so that ‖∇χR‖∞ is independent
of R. Let f ∈ F2

w, and set fR = χR f . Since ∇ fR = χR∇ f + f ∇χR , we see that
‖p1/2 ∇ fR‖L2(BR)

= ‖p1/2 ∇ f ‖L2(BR)
, and

lim
R→∞ ‖p1/2 ( fR − f )‖L2(Rn) → 0,

by Lebesgue dominated convergence. By the same argument with � fR = χR� f +
f�χR + 2∇χR∇ f ,

lim
R→∞ ‖p1/2 (� f − (χR� f + f�χR))‖L2(Rn) = 0.

We have the estimate ‖p1/2 ∇χR ∇ f ‖2
L2(BR+1)

≤ c2
∫

BR+1\BR
p1/2 |∇ f |2, for some

constant c2, independent of R. We can cover the set BR+1 \ BR by a finite set of balls
{B1( j)} j=1,...,N (R), of radius 1, centered at points x j such that |x j | = R + 1/2. In each
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of these balls B1( j), we can apply (4.4) (with a constant K̃1, independent of R), to see
that

∫
BR+1\BR

p |∇ f |2 ≤ c2 K̃1

N (R)∑
j=1

∫
B2( j)

p (|� f |2 + | f |2),

where B2( j) has radius 2 instead of 1. Using ∪N (R)
j=1 B2( j) ⊂ BR+3\BR−3, and taking into

account that certain points are counted (uniformly) finitely many times in the integral,
we eventually obtain

‖p1/2 ∇χR ∇ f ‖2
L2(Rn)

≤ c3

∫
BR+1\BR

p (|� f |2 + | f |2),

where c3 is uniform in R. By the dominated convergence theorem again, this integral
goes to zero as R goes to infinity. So, we finally obtain

lim
R→∞ ‖p1/2 (� f −� fR))‖L2(Rn) = 0.

Since fR belongs to H2
c (R

n), the set of compactly supported functions in H2, we
compute

∇ · (p f̄R ∇ fR
) = p f̄R � fR + |∇ fR |2 p + f̄ R ∇ p ∇ fR .

Since fR has compact support, Stokes Theorem and our hypotheses on ∇ p show that
∫

p | fR |2 =
∣∣∣∣
∫

f̄ R � fR p +
∫

f̄ R ∇ p ∇ fR

∣∣∣∣
≤
(∫

|� fR |2 p

)1/2 (∫
| fR |2 p

)1/2

+ 2 C

(∫
| fR |2 p

)1/2 (∫
|∇ fR |2 p

)1/2

,

or, in other words,

‖∇ fR‖2
p ≤ ‖� fR‖w ‖ fR‖w + 2 C ‖∇ fR‖w ‖ fR‖w.

This estimate implies (3.1) for fR . The right hand side of that estimate has a finite limit
as R → ∞ with f in place of fR on the right-hand side. Since∫

BR

p |∇ f |2 ≤
∫

p |∇ fR |2,

we deduce that p |∇ f |2 ∈ L1(Rn) and satisfies (3.1). 
�
Proof of Proposition 3.6. We use the following Paley–Wiener theorem, Theorem IX.13
of [14]:

Let f ∈ L2(Rn). Then ea|x | f ∈ L2(Rn) for all a < a′ if and only if f̂ has an analytic
continuation to the set {p : |Im p| < a′} with the property that for each t ∈ R

n with
|t | < a′, f̂ (· + i t) ∈ L2(Rn), and for any a < a′, sup|t |≤a′ ‖ f̂ (· + i t)‖2 < ∞.

We refer to the conditions on f̂ in this theorem as “the Paley–Wiener conditions.”
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Since ea|x | ϕ ∈ L2(Rn) is equivalent to ϕ ∈ D(ea〈x〉), Proposition 3.3 shows that ϕ̂
is analytic everywhere and satisfies the Paley–Wiener conditions. The functions p �→
p j ϕ̂(p) and p �→∑

j p2
j ϕ̂(p) also satisfy these conditions.

As a preliminary remark, we note that for any fixed t ∈ R
n , there exist K (t) >

K̃ (t) > 0 and R(t) > 0, such that if p ∈ R
n satisfies

∑
j p2

j ≥ R(t), then

K̃ (t)
n∑

j=1

p2
j ≤

∣∣∣∣∣∣
n∑

j=1

(p j + i t j )
2

∣∣∣∣∣∣ ≤ K (t)
n∑

j=1

p2
j . (4.5)

So, if BR is a ball of radius R with center at the origin, −�̂ϕ satisfies

∫
Rn\BR(t)

⎛
⎝ n∑

j=1

p2
j

⎞
⎠

2

|ϕ̂(p + i t)|2 dp < ∞, (4.6)

uniformly for t in compact sets of R
n .

We now start an induction on the length |α| of the multi-indexα in Dαϕ. We first show
that p �→ p j pk ϕ̂(p) satisfies the Paley–Wiener conditions for any j, k ∈ {1, · · · , n}.
Note that we only need to prove estimates for large values of the |p j |’s. Also, note that
if
∑n

j=1 p2
j ≥ R(t) > 1, there exists a constant C(t) > 0 such that

| (p j + i t j ) (pk + i tk) | ≤ C(t)
n∑

j=0

p2
j . (4.7)

Therefore, (4.6) implies that
∫

Rn\BR(t)

| (p j + i t j ) (pk + i tk) |2 |ϕ̂(p + i t)|2 dp

≤ C2(t)
∫

Rn\BR(t)

⎛
⎝ n∑

j=1

p2
j

⎞
⎠

2

|ϕ̂(p + i t)|2 dp

< ∞,

uniformly for t in compact sets of R
n . Hence, ∂x j ∂xkϕ ∈ D(ea〈x〉) for any a > 0.

We next turn to third order derivatives. Consider the derivative of −�ϕ+(V −E)ϕ =
0. For any j ∈ { 1, · · · , n},

∂x j �ϕ = (∂x j V )ϕ + (V − E) ∂x jϕ.

Since V is a polynomial, Proposition (3.3) shows that ∂x j �ϕ ∈ D(ea〈x〉), for any a > 0.
Thus, the function p �→ p j (

∑n
j=0 p2

j ) ϕ̂(p) satisfies the Paley–Wiener conditions.

Consider now any triple of indices j, k, l. For
∑n

j=0 p2
j ≥ R(t), we have

| (p j + i t j ) (pk + i tk) (pl + i tl) | ≤ C(t) |p j + i t j |
n∑

j=0

p2
j .
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Hence, using this estimate with (4.6), we deduce that∫
Rn\BR(t)

| (p j + i t j ) (pk + i tk) (pl + i tl) |2 |ϕ̂(p + i t)|2 dp

≤ C2(t)
∫

Rn\BR(t)

|p j + i t j |2
⎛
⎝ n∑

j=1

p2
j

⎞
⎠

2

|ϕ̂(p + i t)|2 dp

< ∞,

uniformly for t in compact sets of R
n . Therefore, the Paley–Wiener Theorem asserts

that ∂x j ∂xk ∂xl ϕ ∈ D(ea〈x〉), for any a > 0.
We now proceed by assuming Dβϕ ∈ D(ea〈x〉), for any a > 0 and any β, such

that |β| ≤ m. Let α have |α| = m + 1. Let α̃ be any multi-index of length m − 1.
Differentiating the eigenvalue equation again, Leibniz’s formula yields

Dα̃�ϕ =
∑

0≤γ≤α̃
C α̃
γ

(
Dα̃−γ (V − E)

)
Dγ ϕ, (4.8)

where the C α̃
γ are multinomial coefficients. The induction hypothesis and the assumption

that V is a polynomial show that Dα̃ �ϕ ∈ L2(Rn). Therefore, p �→ pα̃ (
∑n

j=1 p2
j ) ϕ̂(p)

satisfies the Paley–Wiener conditions. In α, there are two indices, α j and αk , not neces-
sarily distinct, which are larger or equal to one, such that we can write

(p + i t)α (4.9)

= (p1 + i t1)
α1 · · · (p j + i t j )

α j −1 · · · (pk + i tk)
αk−1 · · · (pn + i tn)

αn

× (p j + i t j ) (pk + i tk).

Estimating the absolute value of the last two factors by (4.7) and using that α̃ =
(α1, · · · , α j − 1, · · · , αk − 1, · · · , αn) has length m − 1, we see that p �→ pα ϕ̂(p)
satisfies the Paley–Wiener conditions. Hence, Dαϕ ∈ D(ea〈x〉) for any a > 0. 
�
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