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Abstract. We describe recent work in which we propose an alternative to the
usual time independent Born-Oppenheimer approximation that is specifically
designed to describe molecules with Hydrogen bonds. In our approach, the
masses of the Hydrogen nuclei are scaled differently from those of the heavier
nuclei, and we employ a specialized form for the electron energy level surface.
Consequently, anharmonic effects play a role in the leading order calculations
of vibrational levels for symmetric molecules. For non-symmetrical molecules,
the different vibrational modes appear at different orders of approximation.

1 Introduction

The standard time-independent Born-Oppenheimer (BO for short) approxima-
tion [1] takes advantage of the large masses of the nuclei relative to the mass of
the electrons. With mass unit given by the mass of the electrons, the masses of
the nuclei are of order e, with e small. It allows one to compute the low-lying
vibrational states of the nuclear motion from knowledge of the ground state elec-
tron energy surface near its minimum, under the following two assumptions: the
ground state is isolated from the other energy surfaces near its minimum and the
minimum is non-degenerate. To leading order, as is well known, the vibrational
energy levels are those of a harmonic oscillator (HO for short) associated with
the non-degenerate minimum, see [3] for a recent review and references.

Despite its many successes, this approximation may fail to give accurate
results when applied to molecules that contain hydrogen bonds. The binding
energy of such bonds is typically very small, and the mass of the Hydrogen
nucleus is an order of magnitude smaller than that of other nuclei such as Carbon.
Moreover, the experimental vibrational spectra of some tri-atomic molecules with
hydrogen bonds, such as F-H-F~ and F-H-CIl~, display significant deviations
from the approximate harmonic spectrum, see [2].



2 Vibrational Levels Associated with Hydrogen Bonds

In [4, 6], we revisit the BO approximation in order to propose an alternative
taking into account the specificities of simple molecules that contain hydrogen
bonds. Our approach differs from the standard BO approximation in the follow-
ing way. First, we scale the masses of the Hydrogen nuclei as e 3 while keeping
the heavier nuclei scale as e . Note that for € ~ 0.082 corresponding to the mass
of the Carbon nucleus, the mass of the Hydrogen nucleus is approximately equal
to 1.015¢~3 times that of the electrons. Second, we model the electron energy
surface in a special way that depends on €. This takes into account the smallness
of some coefficients of the harmonic potential associated with the hydrogen bond.
The case of symmetric linear tri-atomic molecules in which bending is ignored
is dealt with in [4], whereas [6] is devoted to asymmetric tri-atomic molecules in
which rotations are included. Note that the local behaviour of the ground state
energy surface around a minimum is enough to describe the low energy vibra-
tional levels because the corresponding wave packets are strongly localized close
to this minimum, as ¢ — 0. We describe these two model cases in an informal
way below.

In order to keep things simple, we only discuss here the scalar Hamiltonians
obtained by reducing the molecular Hamiltonian to kinetic energy plus smooth
potential given by the ground state energy surface, Fgg. Extensions of these
results to the full molecular Hamiltonians are provided in [4, 6].

2 The symmetric case

We consider here a tri-atomic molecule of the form A-H-A, where the A’s are
nuclei of masses e % and H is a Hydrogen nucleus of mass ¢ 2. The nuclei are
constrained to move on a fixed axis. The reduced scalar Hamiltonian reads

64 63
Hg(e) = —§AW — 5Az + Egs(e, W, Z) (1)

where the Jacobi coordinates (W, Z) € R? give the distance between the two
nuclei A and the location of the H nucleus w.r.t. the center of mass of the
two A’s, see Fig. 1. Some inessential factors coming from reduced masses are
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Figure 1. Coordinate system for A-H-A

simplified by a trivial rescaling of the variable Z. At equilibrium, we assume the
molecule is symmetrical so that the minimum of the ground state energy surface
lies at (W, 0), with Wy > 0. Numerics on the ion F-H-F~ suggest the expansion

Egs(ﬁ,W, Z) =Fy+ al(W — W())2 + (a2€ — a3(W — Wo))Z2 + a4Z4 —+ ..
= E1(€7 I/Va Z) +O((W - WO)O[Z2B)3 O‘aﬁ S N7 Oé"i'ﬁ > 37 (2)

where the € dependence only enters in the coefficient of Z?2, which is much smaller
than the other coefficients. Note that symmetry implies an expansion in Z2 and



G. A. Hagedorn and A. Joye 3

Ei(e, W, Z) is bounded below in case the following condition holds:
ai,as,as >0, and either a§ < 4aiay, or ag =4ajaq and ay > 0. (3)

Keeping only the leading term Ej in the expansion defines the approximation
Hy(e) = —%AW - %Az + E1(e, W, Z). By rescaling the variables according to
w = (W — Wo)/e, z = Z/e'/?, Hy(e) is equivalent to Ey + €2Hyp, where the
e-independent, anharmonic, normal form Hamiltonian reads

1 1
Hnp = —§Aw — §Az + a1w2 + (a2 - a3w)22 + a4z4. (4)

It is proven in [4] that under condition (3) the spectrum of Hyp is discrete and
that it is related to the spectrum of Hg(e), o(Hg(€)), in the following sense:

For any eigenvalue 5](\2; of Hyp, there exists Eg(€) in o(Hg(e)) such that
Es(e) = By + 2€9) + O(%), as ¢ — 0. (5)

Such results hold for more mass scales and other e-dependent potentials, see [5].

3 The non-symmetric case

Here a tri-atomic molecule of the form A-H-B is considered, in a full three
dimensional setting. Again, we start from the reduced scalar Hamiltonian in
Jacobi coordinates. They are defined as in Fig. 2: X is the vector from the heavy
nucleus A to the Hydrogen nucleus H whereas Y links the center of mass of AH
to the other heavy nucleus B. We express Y by means of spherical coordinates
with respect to the center of mass frame of reference as Y = (Y, 0, ¢). For X,
we use a moving frame with third axis 2’ parallel to Y and first axis parallel to
Y A z, z being the third axis of the fixed frame. Using cylindical coordinates in
the moving frame, we get X = (R,v,X). In these variables, the ground state
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Figure 2. Coordinate system for A-H-B

energy surface does not depend on the angles, but the kinetic energy becomes
messy. Taking mass scales as above, the scalar Hamiltonian reads

e et

Hs() = =5 0™ ™ 20

AY + EGS(EaXa R7 Y)7 (6)
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where 11;(e) are reduced masses that are regular in e. The molecule is assumed
to be linear, i.e. at equilibrium, X and Y are colinear, so that Req = 0.

The behaviour of the ground state close to the equilibrium point (X, 0, Yp)
is modelled after comparisons with numerics on a typical case, here F-H-CIl~,
and taking into account the symmetries. We consider

Ecs(e, X, R)Y) = Vi(X)+eVa(X,R,Y), with (7)
Vi(X) = ao+ax(X — Xo)*+ -
Va(X,R,Y) = boaoR?+b101(X — Xo)(Y = Yp) + booa(Y — Yp)> + - -
The decomposition (7) reflects the fact that the molecule behaves like a com-

pound AH interacting weakly with B, depending on the “proton affinities” of A
and B. Also, the quadratic term in (X — Xp) in V5 is incorporated in V.

Making explicit the kinetic energy, expanding Hg(e) in powers of €!/* and
taking into account the scales of the quantum fluctuations leads to
e (9% 190 1 02
Hs(e) = ao—g—|5m+ oopt 22 bo,2,0 R
se) = a—5- <aR2 TRoR TR 872) + €020
e 02 ¢t 02
- X —X0)2 — — = +ebpoa(Y —Yp)2 +--- (8
o oxz T2 T X0 =g gye oo (Y = X0 (8)

where the remaining terms can be safely neglected. This leading term is the sum
of a one dimension HO describing the A-H streching modes, a two dimensional
HO corresponding to degenerate bending modes and a one dimensional HO as-
sociated with the AH-B streching modes. The corresponding eigenvalues appear
at different orders in € and are given by

EP0 = SV amfmlm+ 172, EG(e) = 2\ g /m(na + 1),
EM(e) = &2 /2bopa/pa(ng +1/2). ©)

It is shown in [6] that these HO approximate Hg(e) in the sense that:
For any choice of eigenvalue (9), there exists Es(€) in o(Hg(€)) such that

Es(e) = ag + EYV(€) + E52 () + EI () + O(e), as ¢ —0.  (10)
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