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Abstract. We consider a two-level quanlum mechanical system driven by an analylic 
time-dependent Hamiltonian of 1he form H ( r r ) .  In the adiabatic limit, E << I ,  the transition 
probability P(+. -) from one energy level (labelled by -)  at time I = -m Io the other 
(labelled by +) at time r=+m is known to behave as Pi+,-)= 
erp(--u.,e-') exp(cJ( l+O(c)) .  Using a simple iterative procedure generating Hamil- 
tonians Ha = H, H , ,  . . . , H,v+, , we compute the fu l l  asymptotic expansion of the lransition 
probability 

,v 
I ~ ~ ( + , - ) = - U ~ , E ~ ' + U ~ +  1 a , r ' + O ( ~ " " )  V N s O  

/ - "  

1. Introduction 

The adiabatic theorem of quantum mechanics has a long history since it had already 
been established by Born and Fock in 1928 [l]. This theorem describes the asymptotic 
regime of the slow evolution ofa  quantum mechanical system. Consider the Schrodinger 
equation (with h = 1)  

(1.1) 
d$  i - ( T )  = H ( & r ) $ ( T ) .  
d r  

The parameter 1 /& is the characteristic time-scale o f the  system. In terms of the rescaled 
time I = er the equation reads 

The adiabatic limit corresponds to the singular limit E + 0 which describes an infinitely 
slow evolution. In this limit, i f  H(t)  has an  energy level e ( r )  isolated for all !€[lo, I , ] ,  
then a system in the eigenstate corresponding to e ( / , , )  at I,] evolves to an  eigenstate 
corresponding to e( I , )  at I , .  In  particular, a transition to an eigenstate with an energy 
different from ~ ( 1 , )  is forbidden. 

The natural task which comes next is to estimate this transition probability when 
E is small but finite. I t  has been shown under a very general hypothesis that the 
transition probability tends to zero as E' [2]. This gives a bound to the leading term 
of the asymptotic behaviour. 
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When the Hamiltonian is C"-smooth and  d" /d t"H( t ) l ,= , , ,=O for all n one  can 
write an  asymptotic expansion in powers of E for the transition probability at time f , .  
This result was first obtained by Lenard [3] for matrices and has been generalized in 
a different way by Garrido [4], Nenciu [ 5 ]  and Joye and Pfister [6] using the iterative 
scheme of section 2. An important feature of this asymptotic expansion is that the first 
N terms ( N  3 2) vanish if d"/dt" H(f)[ ,=, ,  = 0 for all n s N, showing that in such a 
case the transition probability at time f l  is of order O ( E ~ + ' ) .  An interesting case occurs 
if d " / d f "  H( f ) l ,= , ,=d" /d t "  H(t) l ,= , ,  = O  for all n, since the transition probability at 
time t ,  is smaller than O ( E ~ )  for all N. 

This result can be improved if the Hamiltonian H(r) depends analytically on time 
in a region including the real axis. The analyticity assumption and  the above conditions 
on the derivatives of H(  1)  at 1,) and I ,  are compatible if we choose t o=  -m and t ,  =+a. 
It can be shown that they a re  realized provided H( t )  is analytic in a strip including 
the real axis and  H ( t )  has well-defined limits H ( + )  and H(-) when !++a and 
f +  -a. Under the weak hypothesis that the limit of Irl""(H(f) - H ( + ) )  is zero when 
f + *m for some a > 0, it has been shown by Joye and Pfister [7] that the transition 
probability at time t ,  = +a is bounded by e-"', S > 0. Similar results have been derived 
recently in a different way by  Nenciu [SI. All these results hold for very general 
Hamiltonians. We should also mention the paper by Jaksic and Segert [9] on the same 
subject; however, their results are weaker. This behaviour was expected to be true for 
a long time. In the case of an  analytic 2 x 2 matrix, real symmetric on the real axis, 
Dykhne [ IO]  proposed in 1962 a formula for the exponentially small leading term of 
the transition probability a t  I ,  =+a. A proof of this formula was given in 1977 by 
Hwang and  Pechukas [ 1 I]. In  the general case of an  analytic 2 x 2 matrix, Hermitian 
on the real axis, the Dykhne formula must be completed by a prefactor of geometrical 
nature as observed independently by Berry [ 121 and Joye et al [ 131. A detailed analysis 
as well as a geometrical interpretation of the Dykhne formula is given in [13]. Finally 
we would like to mention two recent works by Hagedorn on related topics [I41 and 
[15]. In [I41 the author gives an  asymptotic expansion in E of the wavefunction in the 
presence of a real eigenvalue-crossing point. I n  the second paper the transition 
probability is computed in the  limit E +O for a system having an  avoided crossing with 
a gap of order &, In  this scaling limit the end result is given by the Landau-Zener 
formula. Notice that there is no geometric factor in this case. 

In this paper we derive a generalization of the Dykhne formula which allows us 
to write an asymptotic expansion in  powers of E at any order for the logarithm of the 
transition probability a t  1 ,  = +W. The main point of the proof is to combine the iterative 
scheme of [ 6 ]  in order to get corrections u p  to order and to use the method of 
[ I 3 1  to estimate the higher-order terms. The idea to apply the iterative scheme of 
Garrido to derive an asymptotic expansion of the Berry phase was already used by 
Berry [16]. This procedure has been further emphasized in a recent work by Berry 
[I71 where it is called superadiabatic renormalization. In  these two references the 
nature of the asymptotic expansion is studied and the results should apply to our  
expansion (1.12). With the intent of stating our  results in a precise way, let us describe 
what kinds of two-level system are considered. They can be  characterized by four 
conditions. 

( I )  Analyticity. There exists a closed strip S, = ( z  = f + is E Cl Is1 S a }  such that the 
Hamiltonian H (  I), f E R is a 2 x 2 Hermitian traceless matrix which has an analytic 
extension on some domain containing S,.  
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Remark The important properties of S. which we use are that it is a connected, simply 
connected set containing R and coincides with a strip when I f 1  is large enough. It is 
convenient to suppose that S, is closed. 

(11) Behaviour a t  infinity. There exist 2 x 2 non-degenerate Hermitian matrices H(+)  
and H ( - )  such that 

lim sup /jH(t+is)-H(-t)llItl '+" = O  
,+*m ISl<', 

for some positive (I, 

( I l l )  Separation of the spectrum. For each t e R  the spectrum of H ( t )  consists of two 
separated eigenvalues e'( 1 )  and e-( f )  such that e'( t )  - e-( t )  6, S > 0. 

The condition on the trace can always be satisfied by an energy shift. A convenient 
way of looking at such systems is to write them as spin systems in a time-dependent 
magnetic field 

__ 
the functions B, being analytic in Sa, B,( i )= B,(z) and for some positive (I 

By the Cauchy formula we have for any a'< a and integer n > 1 

Remark. By choosing the constant a slightly smaller we may suppose that (1.5) is true 
with a ' s  a. 

The eigenvalues on the real axis are 

e*(t)=ifJ;;(iT 

where 

p ( t )  = B ~ ( t ) + B ~ ( t ) + B ~ ( t )  (1.7) 
is strictly positive. By convention we choose in (1.6) the branch of the square root 
which is positive on the positive real axis. The corresponding eigenprojections are 

B ( t ) . s  
P*( I )  = $ 1  *- m' 

The eigenvalues and eigenprojections on Sa are defined by the analytic continuations 
of (1.6) and (1.8). They are multivalued and singular at the eigenvalue crossings which 
coincide with the zeros of the analytic continuation p ( z )  of p ( 1 )  in S,. Notice that 
p ( z )  is single valued in Sa. We suppose furthermore: 

(IV) Eigenvalue crossings. The set X of zeros of p ( z )  in S. consists of 2n interior 
points z,, i,, . . . , z., Z, and each zero is simple. By convention Im zk > 0, k = I , .  . . , n. 
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Let I/IF be the solution of the Schrodinger equation (1.2) satisfying the boundary 

I - - _  lim IIP-(f)&(t)ll= 1 (1.9) 

condition 

which is equivalent, since & is normalized, to the condition 

lim IIP+( t ) & (  t) l /  = 0. ' (1.10) 
,+-cc 

The problem which is solved in this paper is the following: to find a n  asymptotic 
expansion in powers of E for the logarithm of the transition probability 

W+, -)= lim llp+(t)I/IF(t)l12 (1.11) 
,-+U, 

at time f = +W. We show in section 2 that for any integer N 3 0 there exists E * (  N) 
such that 

N 

I n p ( + , - ) = - a _ , ~ - ' +  1 a x ~ h + + ( ~ N + ' )  (1.12) 
I = o  

provided O S  E S E * (  N ) .  The term a-, is positive and both terms a-, and can be 
interpreted geometrically. They are given explicitly in (2.35) and (2.37). When we put 
N=O in (1.12) we recover the generalized Dykhne formula found by Berry [I21 and 
Joye e f  a /  [13]. The result (1.12) is proved in all cases for which we can prove the 
generalized Dykhne formula as in [13]. This means that another additional condition 
(condition V) is needed. This condition is analysed thoroughly in [13] and is recalled 
below in its geometrical version for the sake of completeness. 

For each Hamiltonian H ( z ) =  B ( z )  . s on S, we can associate a distance d, on Sa,  
where p(z)  = B:( z )+  B i ( z ) +  B: ( z ) .  Let y be some rectifiable curve in S,. The p-lengfh 
of y is 

and the p-disfance d,(z,, z 2 )  between two points z ,  and z2 of S, is given by the infimum 
of lyl,, where y is a rectifiable curve in S, from z, to z 2 .  Having a distance d,, we can 
introduce the concept of a p-geodesic which is a curve f H y(  f )  which is locally shortest 
for the p-length: if z ,  = y ( f , )  and z 2 =  y ( f 2 )  and I f ,  - t21 is small enough, then the curve 
between z ,  and z2 which has the minimal p-length is given by y ( l ) ,  f E [ f , ,  f J .  The 
supplementary condition is: 

(V)  Exisfence of an infinite geodesic. There exist an eigenvalue crossing, say z , ,  and 
a geodesic f - y (  f ) ,  f E R in S., passing through z, such that limv-*m Re y ( f )  = fa 
and /Im y ( f ) l < a  for large enough It(. 

In the Dykhne formula, the exponential rate of the transition probability is komputed 
using one particular complex eigenvalue crossing (see (2.35)). In [13] we show that 
whenever condition V holds, the relevant eigenvalue crossing which is used in the 
Dykhne formula is the z ,  of condition V. We emphasize that z, is not necessarily the 
closest eigenvalue crossing to the real axis in  the Euclidean distance, it is the closest 
eigenvalue crossing to the real axis in the p-distance. There is no known proof of the 
Dykhne formula without condition V, which is a condition of global character. There 
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is another formulation of it in terms of Stokes lines and anybody who is familiar with 
W K B  analysis will recognize that our condition is typical in such a context. We refer 
to [131 for more details and examples. We finish this section with one remark. The 
introduction of the p-distance and  the p-geometry is one new important result of [131. 
It allows, in particular, the eigenvalue crossing which governs the transition probability 
P(+, -1 to be distinguished. 

2. Asymptotic expansion of 9( +, -)  

Let us now outline the strategy which is used for the proof of (1.12) and show how 
one computes the coefficients U*. The technical details are treated in the next section. 
We assume that z ,  is the closest zero of p ( z )  to the real axis in the p-distance and that 

the roles of the projections P+ and  P- are exchanged, then Tis  the relevant eigenvalue 
crossing.) The main result of this section is formula (2.34). 

We first introduce a sequence of Hamiltonians Ho = H, H, , . . . as in the papers of 
Garrido [4] and Nenciu [5]; however, our construction is different and simpler. 

Let 

COndiiiOii v is fiiifiiied. <ifUie \yani io probahiiiiy P(-, t) where 

B ( z ) n B ' ( z )  
& ( z ) = i ( P + ' ( z ) P + ( z ) + P - ' ( z ) P - ( z ) )  = - 'S (2.1) 

P(Z) 

where ' denotes here and henceforth in this paper d /dz  and B A  B' is the vector product 
of B and B'. We define 

ff((2, E ) =  H(Z)-E&(Z)E B,(z ,  E ) .  S. (2.2) 

The 2 x 2 matrix H,(z, E )  is meromorphic in So, all its poles, if any, are of first order 
and at  points of X. It is still traceless since for any projection Q(z) we have 

Q ( z ) Q ' ( z ) Q ( z )  = o  (2.3) 
and it satisfies condition 11 with the same H ( i ) ,  as well as condition 111 with S/2  
:.."*-"A ^C * :>-A - :" --.., 2 ~ Î ..I I. /"*" I--..." 1 1  L.., I 1 -* - L^ C _ _ ^ _ I  
,,,>LG'lLy U1 v, p,ruv,ur;u c 1> >,,,a,, "1u"g" \JGS lFlllllln L.L "GtUW,.  L C L  I "C >",,,C ,,A<" 

small positive number (whose definite value is fixed in the proof of lemma 2.3), and 
let D(z,,, r )  = {zJJr,-z) < r }  be the disc of cent7e z, and radius r. We define R by the 
closed set 

and  choose r so small that for any two points zk and z, of X the discs 
D(z, ,  r )  are disjoint, each disc D ( z , ,  r )  c S, and does not intersect the real axis. 

and 
~ ~ 

The eigenvalues of H,(z, E )  at z t R  are where 

PI(Z, E ) = B ~ , , ( ~ , E ) + B : . ~ ( Z .  E ) f B : , , ( Z , E )  (2.5) 

is analytic and single valued in R. We define e f ( 4  E)=*!- for all f ~ l W  and 
then e:(z, E )  by analyticcontinuation. The corresponding eigenprojections are PF(z, E ) .  

Lemma 2.1. If E is small enough, then H , ( z ,  E )  is analytic on R. There are no eigenvalue 
crossings of H, i n  0. The variation (in the positive sense) of the argument of p,(z, E )  

around the boundary of any disc D(z,, r ) ,  Z"E X, is Zw. 
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The last property mentioned in lemma 2.1 implies that under analytic continuation 
around a simple loop in Cl encircling exactly one disc D(zo ,  r), zo E X, the eigenvalues 
of H,(z, E )  are exchanged. Let 

(2.6) 

H * ( z , E ) = H ( z ) - - E K ~ ( z , E ) .  (2.7) 

K,-,(z, E )  = i(PlL,(z, E)P;-,(z, E )  + P ;!,(z, E)P;-,(z, E ) )  

K , ( z ,  E )  = i(PT'(z, &)P:(z ,  E ) +  P;'(z,  E ) P ; ( z ,  E ) ) .  

We define 

By recurrence we introduce as above 

and 

H , ( Z , E ) = H ( ~ ) - E K ~ - ~ ( Z , & ) .  (2.9) 

Lemma 2.2. For any qz=O there exists a positive E * ( q )  and an integrable function 
& ( r )  suchthat f o r a n y z = t + i s E R a n d a n y E , O s ~ s E * ( q )  

llK,(t+is, &)I1 cPq(t) 

and 

lIK,,(f+is, ~ ) - K ~ - , ( f + i s ,  E ) / I  s E q p q ( f )  

where K-, = 0 by convention. 
Moreover lemma 2.1 is valid for H4 if O s  E s E * ( q ) .  

We want to prove (1.12). For this purpose we work with Hq, q =  N+1, and we 
decompose & ( f )  in a basis of analytic eigenvectors of H,,(f, E ) ,  p:(f, E )  and pp6(f, E ) .  

We choose the phase of ppP(t, E )  so that lim,+-mp;(f, &)=pV(-m),  where pp"(-m) 
are fixed eigenvectors of H(-m), and 

Here ( I )  is the usual Hermitian scalar product of C2. Condition (2.10) is equivalent to 
(see e.g. [4]) 

U=*, (2.11) 
d 

- p ; ( t , ~ ) = - i K ~ ( t , ~ ) p ; r ( f ~ )  
dt  

Let 

A ; ( f ,  E )  = e;(t', E )  d f '  U = *  (2.12) j(: 
and let & ( t )  be decomposed as 

We rewrite the differential equation 

(2.14) 



Asympfofics of adiabatic transifion probabilities 759 

as 

Taking the scalar product of this expression with qp;' we get 

and this implies in particular that the coefficients c,( 1, E )  have well-defined limits 
c;(*m, E )  when f + +m, although $,(f)  does not have limits. The boundary condition 
(1.9) which is satisfied by $? is equivalent to 

c;(-m, E )  = 1 and c:(-m, E ) = O  (2.19) 
and the transition probabiiity Si+, - j  is given by 

9(+, -) = lc;(+oo, El12  (2.20) 
since HJf) tends to H ( + )  when f+m by lemma 2.2. 

We now use the analyticity assumption in an essential way. On the simply connected 
domain S, the solution $?(f )  has a single-valued analyticextension $?(z) which satisfies 
the equation 

i&(z) = H ( z ) $ , ( z ) .  (2.21) 
The eigenvalues e t ( f ,  E ) ,  eigenvectors q ; ' ( f , E )  as well as the coefficients cT(1, E )  in 
(2.13) have also analytic extensions on Cl ,  but these extensions are multivalued (see 
the proof of lemma 2.3). This fact is at the basis of the analysis of 9(+, -) made by 
Landau and Lifshitz [IS]. Let z, be the eigenvalue crossing of H which is the closest 
to the real axis in the p-distance. Let I ,  s f 2  be two points of the real axis and y a path 
in Cl going from f ,  to f2 and such that the path composed of y and then the portion 
of the real axis from f z  to f ,  is a simple closed path encircling z ,  but no other eigenvalue 
crossing of H (see figure 1). At f 1  we have 

(2.22) $ , ( t l ) =  1 c t ( t , ,  E )  exp(-i&-'A;r(fl,E))cpT(fl, E ) .  "=* 

~ 

Figure I .  The path y in n. 
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Each object on the right-hand side has an analytic extension along the path y. Coming 
back to the real axis a t  f, we get 

$'r(f2)= ?;(12, E )  exp(-iE-'Lr(f2, E))$Y(tZ, E )  (2.23) 

where means that (2.23) is the analytic extension of (2.22) along y. This expression 
can be compared with 

A Joye and Ch-Ed Pjsfer 

c,-* - 

+s(fd= 1 e:([,, E )  exp(-iE-'h:(t2, ~))(p:(t~, e )  (2.24) 

defined earlier and which coincides with the analytic extension of (2.22) along the real 
axis from I ,  to f 2 .  By lemma 2.1, which is valid for H, ,  

I ,  c * 

e ; ( t 2 ,  E )  = ;:(t2, E )  e:(t2, E)=P;(fZ.E) (2.25) 

since the eigenvalues of H,(r) are given by +im, p,(r)= 
B:,,(z, E ) +  B;,,(z, E )  + B$(z, E) .  The fact that 9; is an eigenvector of H ,  is not affected 
by the analytic extension and therefore we can write 

$:(t,, E)Eexp(-i84.+(E))rp;(G. E )  (2.26) 

and 

$ ; ( t , ,  E ) = ~ x ~ ( - ~ B : . ~ ( E ) ) ~ ~ ( L , ,  E) .  (2.27) 

In general 82' is a complex number and depends on f , ,  f ,  and y. However, if we 
choose another path in 0 in the same homotopy class as y, then (2.23) is not changed 
and, in particular, 0:' in (2.26) and (2.27) is not modified. Since for any f ,  and f, on 
the real axis (pg(t2, E )  is the analytic continuation of 9 r ( f l ,  E )  along the real axis and 
since 1]9;(t, & ) ] I  = 1 for all f E R ,  the imaginary parf  of 8 2 7  is independent of the choice 
of I ,  or f 2 .  Comparing (2.23) and (2.24) using (2.26) and (2.27) we get the fundamental 
relations 

c ; ( f 2 ,  E )  =exp(-iE-'i:(t2, &)+iaC'A;(f,, E ) )  exp(-iO;,+)t:(f,, E )  (2.28) 

and 

c:(t,, b)=exp(-ie A,,(12, e)+iE-'A:(t2, E ) )  exp(-iO:.-)?;(fz, E ) .  (2.29) 

As for 8:' the imaginary parf  of XT does not depend on the choice of f ,  and f ,  and 
remains unchanged if we choose another path in 0 in the same homotopy class as y. 
This allows the following expressions to be given for these quantities. Let 7 be any 
simple closed path in 0 based at 0 (or any other point of the real axis) which encircles 
only the eigenvalue crossing z, of H and which is oriented clockwise. Then, for any 
f ,  E R, 

_ I -_  

R and any path y from f ,  to f2 as above, we have 

Im i:(f,, E )  = Im e ; ( z ,  E )  dz (2.30) 

where I, e ,  is the integral over r )  of the analytic continuation of e; along 7. Similarly 
we can show that 

I, 

(2.31) 
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where here we must choose TJ so that B:,,(z, E ) +  B&(z, e )  # 0 on 7. To determine 
Im S i . '  we use the relation 

Im e;.-= -Im e;.'. (2.32) 

From (2.29) we have 

9(+, -)=lc:(+m, & ) I 2  

=exp(2&-' Im e;(z ,  E )  dz exp(2 Im O;-(E))lF;(+m, & ) I 2 .  (2.33) 

We refer the reader to [I31 for more details on this first part of the analysis and in 
particular for a proof of (2.31) and we come to the hard part of the analysis. It amounts 
to control the behaviour of ~S;(+OO, & ) I 2  as a function of E. This problem has been 
solved by Hwang and Pechukas [ l l ] .  Using their method we have: 

Lemma 2.3. If conditions I-V hold and if $ s ( z )  satisfies the boundary condition (1.9) 
(or (2.19)), then 

) 

1 q + C o ,  &) I=  I+O(&")  

provided E is small enough. 

This lemma is proved in the next section. From it we get the main result of this paper. 

Main result 

From (2.34) it is easy to write the asymptotic expansion (1.12) by writing such an 
expansion for e:(., E )  and e:.-(&) using the explicit formula (2.31). This creates no 
difficulty since all expressions to be expanded are analytic in z and E for z E R and 
I E ~  small enough and uniformly bounded in z, z E R. Let us finish this section by giving 
the first two terms a- ,  and un of (1.12). We have 

a-,  = -2 Im e - ( z )  dz (2.35) 

where I, e -  is the integral over n of the analytic continuation of the eigenvalue e -  of 
H along 7. It is shown in [13] that 

I? 

where d,(z,, W) is the p-distance to the real axis of the closest eigenvalue crossing of 
U +.. +L- n"ir i" +h& A:rto..m Er,.- n-rt l lrhDt;~n thnnr., \ I / p  how- thrt ehn firet I ,  I" ,us ,=a, a*,> 111 ...,a Y..,IYI.UC. .I"... p*.'Y.YY'.U.. L..*"1, VI.. ..".U I..". -..U .I,>, 

term in the expansion of e;(z, E )  in E is e-(z) and that there is no term proportional 
to E.  Therefore an is given by 

(2.37) 
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3. Proofs of lemmas 

We prove by recurrence on q the following statements: 
(i) for any integer n B O  and any integer q a 0  there exist constants D,,,, and ~ * ( 9 )  

(independent of n) such that for all Z E R ,  all E $  4 9 )  and k =  1 ,2 ,3 ,  B,,,(z, E )  are 
analytic on Cl, 

A Joye and Ch-Ed Pjisrer 

IBq,k(z, &)Is 0 q . o  

and 

( l+IRe zl)'+-lBg'(z, E) IS Dq," 

where a is the constant appearing in condition 11, Bo,k = B,, k = 1 ,2 ,3 ,  and BF; = 
d"/dz" B,,k; 

(ii) there exists 8 > 0 such that 

(iii) the variation of the argument of pq around the boundary of any disc D(zk ,  r) 

(iv) for any q a 1 and any n 3 0 there exists a constant F,,.. such that for k = I ,  2 , 3  
(in the positive sense) is equal to 271 for any E s 4 9 ) ;  

and for any 9 B 1 there exists a constant G,, such that 

The validity of these four statements ensures the validity of lemmas 2.1 and 2.2. 
Estimates (1.4) and (1.5) together with the remark following (1.5) imply that (i) is 

true for q = 0 with E * ( O )  =CO. Clearly there exists 8 > 0 such that 

so that (ii) is also verified. Since pa has exactly one zero and no pole inside any disc 
D ( z k ,  r) (iii) follows, and finally (iv) is an immediate consequence of ( i )  and 

B,-, A B ; _ ,  
P4-1 

B , , = B + &  

when q = 1. Let us suppose that the four statements are true for q = N - 1 and let us 
prove them for q = N. It is immediate that (i) is true for q = N and by (3 . l ) ,  (3.2) and 
(i) the affirmation (ii)  is also correct. Affirmation (iii) is a standard consequence of 
the argument principle. Indeed 

lpu(z, E ) - ~ ( Z ) ] S E  xconstant (3.3) 
uniformly in z E R and E s E * ( q  - I ) .  Let y be the boundary of one disc (positively 
oriented). If E is small enough we have for all z E y 

(3.4) 

Let G(z ,  E )  = pq(z,  E ) / p ( z ) .  This is a meromorphic function on some open set contain- 
ing the disc and which has no zero and no pole on y.  The index of the image of y by 
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G with respect to z = 0 is zero since the image curve is contained in a disc of centre 
z =  1 and radius smaller than 1. Thus 

This proves (iii). Finally we have 

and (iv) follows easily from the induction hypothesis. 
It remains to prove lemma 2.3. Let K =  {z = f + is, 1sI s a,  f > f - }  with I -  such that 

Ken. L e t f l n + = ( z = f + i s , I s I ~ a , f > t t } w i t h ~ 2 t c f l a n d  f ' > f - . O n R - w e d e f i n e  
Aq(z, E )  as the analytic continuation on R- of the function 

1,: (e;( ' ' ,  E)-e:(f',E))df'. (3.7) 

Let us recall that by our  convention e;( f ,  E )  = e"( t ) ,  U = +, -. Condition V implies 
the existence of a path in Se, r - y ( r ) ,  parametrized by reR,  with the following 
properties: 

( a )  y ( r )  is contained in the upper half-plane: 

lim I m y ( r ) = s * , s * < a  lim Re y (  r )  = -t a? 
r-*m ,+*m 

( b )  the open region between the real axis and y contains the eigenvalue crossing 
z , ,  but no other eigenvalue crossing of H ;  

( c )  r e  Im Ao(y(r))  is a non-decreasing function of r, where A" is defined by 
analytic continuation along y.  

This is the main content of theorem 2.2 of [13]. Actually we can require that the 
path y has the property: 

( d )  there exist r ,  and r 2 > r ,  such that on (-m, r , ]  the function lmA,,(y(r))  is 
constant, on [ r , ,  r2] its derivative with respect to r is strictly positive and on [ r z ,  a?) 
the function is again constant. 

We can now fix the radius r of the small discs around the eigenvalue crossings of 
H .  We choose r so small that the (Euclidian) distance from any eigenvalue crossing 
to y is larger than 21, so that y is entirely in II. The main step in the proof of lemma 
2.3 is to show that there exists a path y,, in fl such that for all sufficiently small E 

properties ( a )  and ( b )  are true and property ( c )  is true with Aq instead of Ao. Indeed, 
if we have such a path we proceed as follows. We make an  analytic continuation of 
the coefficients c ; ( f ,  E )  and  c:( 1, E )  in R-. We get functions c;(z,  E )  and c:(z, E )  which 
are solutions of the differential equation 

+, +.+ + cq = a ,  cq + a l . -  exp(-ia-'A,)cJ 

c ; ' =  a;,'exp(iE-'A,)c:+a;.-c; 
(3.8) 

where in (3.8) a;'= a:'(., E )  is the analytic continuation of a:?(f, E )  in K. From 
(2.17) it is not completely obvious that a:? has an  analytic continuation. However, 
we can see that this is the case by remarking that the function K ,  has a single-valued 
analytic extension on fl (see (2.8)). Let 

L$(z, E ) = - ~ K ~ ( Z , E ) U ~ ( Z , E )  (3.9) 
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lim Uq(/ ,  E )  = I 
I - - _  

(3.10) 

This matrix is invertible on 0- since its determinant is one ( K ,  is traceless) and it is 
unitary on the real axis. From (2.11) we have 

'?:(/, & ) =  uq(l, E)Vp" ( -m)  U = + , -  (3.11) 
so that we can write 

aT'(t, E )  =i ( (  U,((, ~)- ' )*q' ' ( -m)l(K, , ( f ,  E )  - K q - , ( / ,  &))UJt ,  E ) ( P ' ( - c o ) ) .  (3.12) 
This expression manifestly has an analytic continuation on K. Then we make an 
analytic continuation of e,, A, and a;.' along yu and then in fYi since by property ( a )  
"/U starts in R- and ends in CL+. Of course (3.8) still holds. From lemma 2.2 and the 
definition o i  U,  we have in il- or in 12' 

lim c;(t+is,&)= lim c , ( f ,~)=c; ' (*-m,&)  U = + ,  -_ (3.13) 
,e*- ,-+m 

Therefore by property ( b )  the quantity ?;(+CO, E )  is in fact given by c;(+m, E )  as 
defined above. Thus it is sufficient to study c ; ( y q ( r ) ,  E )  along y,, for large values of 
r.Letyq(r)=d/dryq(r).Alongy,, wehavebywritingc,(r, ~ ) = c z ( y , , ( r ) ,  &),a;'(r, E ) -  

a?'(u,,(r), &)  and AJr, &)=Aq(yq( r ) ,  E )  

dr'+,,(r')a;,+(r', E)c:(r',&)+ dr'yq(r')a:,-(r', E )  

x exp(-i&CIAq(r', &))c;(r', E )  (3.14) 

and 

c;(r, E ) =  1 + J  ' dr'+q(r')a:+(r', E )  exp(i&-'Aq(r', E))c: (r ' ,  E )  
-m 

dr'yq(r')a;,-(r', e)c;(r', E ) .  (3.15) 
+ 1:- 

Let X(r, E )  be the coiumn vector whose components are 

X:(r ,  &)=exp(i&-'A,,(r, &))c:(r, E )  X;( r, E )  = c;(r, E ) .  (3.16) 

We can rewrite (3.14) and (3.15) as 

Xq(r ,  & ) = ( ~ ) + ~ ~ ~ d r ' + ~ ( r ' ) A ~ ( r ,  r', E ) % ( r ' ,  E )  (3.17) 

where the matrix Aq(r,  r', E )  is 
a; .+(rt ,  E )  e ~ , - ' l ~ , , l , , ~ ) - ~ , , ~ , ' , ~ l )  a;.-(r', E )  e ~ ~ ~ ~ l ~ , , l , . ~ ~ - ~ " ~ ~ ' . ~ l l  ). (3.18) ( a;,+(r', E )  a; , - ( r ' ,  E )  

By lemma 2.2 and property (c) there exists a constant C such that for any r a  r' 

~ ~ ~ d r ' l + ~ ( r ' ) l l l A ~ ( r ,  r', E)I ISE~C (3.19) 

and therefore 
lim c;(r, & ) = ~ + O ( E ' ) .  (3.20) 

r - i -  
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We now show that a path y,, in Cl with properties ( a ) ,  ( b )  and (c)  always exists 
for all E sufficiently small. Using property ( d )  of y we choose for r t [ r, , r2]  yq( r) = y(r). 
This is possible if E is small enough, since 

(3.21) 
d 

-A,,(r, E)=(e;(Y(rj ,  &)-t-;(y(r), E)!yq(r). d r  

Let i < r a n d  

and let us consider the analytic continuation of A,) on r , .  If is small enough the 
function A,, restricted on I', is injective. Let ?, be the image of r, by Po. Since the 
image of the path r e  (-CO, r , ]  - y(r )  by A, is horizontal> there exists '1 > 0 such that 
the strip e, ,  

6 , = ( z I R e z ~ R e A , ( y ( r , ) ) ,  ~ l m z - l m A o ( y ( r , ) j ~ s q ]  (3.23) 

is contained in f , .  We denote by i:, ĝ; the two horizontal lines 

i;  = {z/lm z = Im Ao(y(r,))* q, Re 2 3  Re A<,(y(r,))) (3.24) 

and by G , ,  g: and g;  the images of these sets by A;'. We choose F small enough 
such that for all z E G, c r, we have 

IA,(Z, EI-AJZIIS:. (3.25) 

The path y, in G, is defined as the level line in G, of Im AJz, E ) ,  Im Au(z, E )  = 
Im A i ( y ( r , ) ,  E ) .  Notice that 

(3.26) 

and therefore by (3.25) it is impossible that U, intersects g: and g; .  We parametrize 
this level line by r e  (-a! r ! l .  In a similar way we define y q ( r ) :  r 3  r 2 .  This proves the 
existence of the path y,, with properties (a) ,  ( b )  and ( c )  and therefore the proof of 
lemma 2.3 is complete. 

'1 I A, ( r ( r l  1, E )  - A d  Y (  rl )!I s 4 
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