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EXPONENTIAL ASYMPTOTICS IN A SINGULAR LIMIT FOR
n-LEVEL SCATTERING SYSTEMS*

ALAIN JOYEf

Abstract. The singular limit ¢ — 0 of the S-matrix associated with the equation iedy(t)/dt =
H(t)y(t) is considered, where the analytic generator H(t) € M, (C) is such that its spectrum is real
and nondegenerate for all t € R. Sufficient conditions allowing us to compute asymptotic formulas
for the exponentially small off-diagonal elements of the S-matrix as ¢ — 0 are made explicit and
a wide class of generators for which these conditions are verified is defined. These generators are
obtained by means of generators whose spectrum exhibits eigenvalue crossings which are perturbed
in such a way that these crossings turn into avoided crossings. The exponentially small asymptotic
formulas which are derived are shown to be valid up to exponentially small relative error by means
of a joint application of the complex Wentzel-Kramers—Brillouin (WKB) method together with
superasymptotic renormalization. This paper concludes with the application of these results to
the study of quantum adiabatic transitions in the time-dependent Schrodinger equation and of the
semiclassical scattering properties of the multichannel stationary Schrédinger equation. The results
presented here are a generalization to n-level systems, n > 2, of results previously known for two-level
systems only.
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1. Introduction. Several problems of mathematical physics lead to the study
of the scattering properties of linear ordinary differential equations in a singular limit

(1.1) ey’ (t) = H(t)p(t), teR, &—0,

where the prime denotes the derivative with respect to t, ¥(t) € C", and H(t) €
M, (C) for all t. A system described by such an equation will be called an n-level
system. Let us mention, for example, the study of the adiabatic limit of the time-
dependent Schrodinger equation or the semiclassical limit of the one-dimensional mul-
tichannel stationary Schrodinger equation at energies above the potential barriers, to
which we will return below. When the generator H(¢) is well behaved at 400 and
—00, the scattering properties of the problem can be described by means of a matrix
naturally associated with equation (1.1), the so-called S-matrix. This matrix relates
the behavior of the solution ¢ (t) as t — —oo to that of ¥(¢) as ¢ — +00. Assuming
that the spectrum o(t) of H(t) is real and nondegenerate,

(1.2) o(t) ={e1(t) < ea(t) <---<ey(t)} € R,
the S-matrix is essentially given by the identity matrix

(1.3)
S = diag(si1(€), s22(€), ..., 8nn(€)) + O(e™), where s;;(e) =1+ 0O(e) ase — 0,
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provided H (t) is C*°; see, e.g., [F1], [F2], and [W]. Moreover, if H(t) is assumed to
be analytic, it was proven in various situations that the off-diagonal elements s;;, of
S are exponentially decreasing [FF|, [W], [F1], [F2], [JKP], [JP4]:

(1.4) sip =0 (e**@/E) YAk,

as ¢ — 0. See also [JP1], [N], [M], and [Sj] for corresponding results in infinite-
dimensional spaces. Since the physical information is often contained in these off-
diagonal elements, it is of interest to be able to give an asymptotic formula for s;
rather than a mere estimate.

For two-level systems (or systems reducible to this case (see [JP2], [J], and [MN])),
the situation is now reasonably well understood, at least under generic circumstances.
Indeed, a rigorous study of the S-matrix associated with (1.1) when n = 2 under the
hypotheses loosely stated above is provided in the recent paper [JP4]. The treatment
presented unifies, in particular, earlier results obtained for either the time-dependent
adiabatic Schrodinger equation (see, e.g., [JP3] and the references therein) or the
study of the above barrier reflexion in the semiclassical limit (see, e.g., [FF] and [O]).
Further references are provided in [JP4]. As an intermediate result, the asymptotic
formula

(1.5) Sjk = gjke_rj’“/E (1+0()), e—0,

for j # k € {1,2} with g;; € C and Rel';; > 0 is proven in [JP4]. As is well known,
to get an asymptotic formula for s, one has to consider (1.1) in the complex plane,
in particular in the vicinity of the degeneracy points of the analytic continuations of
eigenvalues eq(z) and es(z). Provided the level lines of the multivalued function

(1.6) Im/ e1(2") — e2(2")dz" = cst,
0

called Stokes lines, naturally associated with (1.1) behave properly in the complex
plane, the so-called complex Wentzel-Kramers—Brillouin (WKB) method allows to
prove (1.5). More importantly, however, it is also shown in [JP4] how to improve
(1.5) to an asymptotic formula accurate up to an exponentially small relative error:

(1.7) sjk = gip(e)e O 1+ O@7), &0,

with g7 () = gk + O(e) and I} (e) = Ly + O(e?). This is achieved by using a
complex WKB analysis jointly with the recently developed superasymptotic theory
[Be], [N], [JP2]. Note that when given a generator, the principal difficulty in justifying
formulas (1.5) and (1.7) is the verification that the corresponding Stokes lines (1.6)
display the proper behavior globally in the complex plane, which may or may not
be the case [JKP]. However, this condition is always satisfied when the complex
eigenvalue degeneracy is close to the real axis, as shown in [J]. See also [MN] and [R]
for recent related results.

For n-level systems, with n > 3, the situation is by no means as well understood.
There are some results obtained with particular generators. In [D], [CH1], [CH2], and
[BE], certain elements of the S-matrix are computed if H(t) = H*(t) depends linearly
ont, H(t) = A+tB for some particular matrices A and B. The choices of A and B are
such that all components of the solution ¥(t) can be deduced from the first one and
an exact integral representation of this first component can be obtained. The integral
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representation is analyzed by standard asymptotic techniques, and this leads to results
which are valid for any € > 0, as in the case for the classical Landau—Zener generator.
The study of the three-level problem when H(t) = H*(t) € M3(R) is tackled in the
closing section of the very interesting paper [HP]. A nonrigorous and essentially local
discussion of the behavior of the level lines of Im foz ej(Z)—ep(2)dz', j #k=1,2,3,
is provided, and it justifies in very favorable cases an asymptotic formula for some
elements of the S-matrix. See also the review [So|, where a nonrigorous study of
(1.1) is made close to a complex degeneracy point of a group of eigenvalues by means
of an exact solution to a model equation. However, no asymptotic formula for s;p,
j # k, can be found in the literature for general n-level systems, n > 3. This is due
to the fact that the direct generalization of the method used successfully for two-level
systems may lead to seemingly inextricable difficulties for n = 3. Indeed, with three
eigenvalues, one has to consider three sets of level lines Im [ e;(2') — ex(2')dz’ to deal
with (1.1) in the complex plane, and the conditions that they have to fulfill in order
for the limit ¢ — 0 to be controlled may be incompatible for a given generator; see
[F1], [F2], and [HP]. It should be mentioned, however, that there are specific examples
in which this difficult problem can be mastered. Such a result was recently obtained
in the semiclassical study [Ba] of a particular problem of resonances for which similar

considerations in the complex plane are required.
The goal of this paper is to provide some general insight into the asymptotic

computation of the S-matrix associated with n-level systems, n > 3, based on a
generalization of the techniques which proved to be successful for two-level systems.
The content of this paper is twofold. On one hand, we set up a general framework
in which asymptotic formulas for the exponentially small off-diagonal coefficients can
be proven. On the other hand, we actually prove such formulas for a wide class of
n-level systems. In the first part of the paper, we give our definition of the S-matrix
associated with equation (1.1) and make explicit the symmetries it inherits from the
symmetries of H(t) for ¢ € R (Proposition 2.1). We then turn to the determination of
the analyticity properties of the eigenvalues and eigenvectors of H(z), z € C, which are
at the root of the asymptotic formulas that we derive later (Lemma 3.1). The next step
is the formulation of sufficient conditions adapted to the scattering situation that we
consider, under which a complex WKB analysis allows us to prove a formula like (1.5)
(Proposition 4.1). The conditions stated are similar but not identical to those given
in [JKP] or [HP]. As a final step, we show how to improve the asymptotic formula
(1.5) to (1.7) by means of superasymptotic machinery (Proposition 5.2 and Lemma
5.2). We then turn to the second part of the paper, where we show that a wide class
of generators fits into our framework and satisfies our conditions. These generators
are obtained by perturbation of generators whose eigenvalues display degeneracies on
the real axis (in the spirit of [J]). We prove that for these generators, in the absence
of any symmetry of the generator H(t), at least one element per column in the S-
matrix can be asymptotically computed (Theorem 6.1). This is the main technical
section of the paper. The major advantage of this construction is that it is sufficient
to look at the behavior of the eigenvalues on the real axis to check if the conditions are
satisfied. The closing section contains an application of our general results to the study
of quantum adiabatic transitions in the time-dependent Schrédinger equation and
of the semiclassical scattering properties of the multichannel stationary Schrédinger
equation. In particular, we make explicit use of the symmetries of the S-matrix to
increase the number of its elements for which an asymptotic formula holds. In the
latter application, further specific symmetry properties of the S-matrix are derived
(Lemma 7.1).
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2. Definition and properties of the S-matrix. We consider the evolution
equation

(2.1) e (t) = H(t)y(t), teR, &—0,

where the prime denotes the derivative with respect to t, ¥(t) € C”, and H(t) €
M, (C) for all t. We make some assumptions on the generator H(¢). The first is the
usual analyticity condition in this context.

H1. There exists a strip

(2.2) So ={z€Cl||Imz| < a}, «a>0,

such that H(z) is analytic for all z € S,.
Since we are studying scattering properties, we need sufficient decay at infinity.
H2. There exist two nondegenerate matrices H(+), H(—) € M,(C) and a > 0
such that

(2.3) tlirinoo [t|* T sup ||H(t +is) — H(£)| < oo.

[s|<c

We finally give a condition which has to do with the physics behind the problem.
H3. Fort € R, the spectrum of H(t), denoted by o(t), is real and nondegenerate

(2.4) o(t) ={e1(t) <ez(t) <--- <en(t)} CR,
and there exists g > 0 such that

(25) it le6) = ex(9)] 2 0
te

As a consequence of H3, for each t € R, there exists a complete set of projectors
P;(t) = sz(t) € M,(C), j=1,2,...,n, such that

(2.6) Y Pit) =1,

@7) H(t) =3 e, (OP(0)

and there exists a basis of C™ of eigenvectors of H(t). We determine these eigenvectors
@;(t), j =1,2,...,n, uniquely (up to a constant) by requiring them to satisfy

(2.8) H(t)p;j(t) = e; ()@ (t),
(2.9) Pit)g, (1) =0, j=1

Explicitly, if ¥;(t), j = 1,2,...,n, form a complete set of differentiable eigenvectors
of H(t), the eigenvectors

32,0y

(2.10) w;i(t) =e” N ff“/)d’q/}j(t) s.t. ;(0) = 1,(0)
with
(2.11) £ (1) = (i )12 () (1)) L.on.

lb; O
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verify (2.9). The fact that this choice leads to an analytic set of eigenvectors close
to the real axis will be proven below. We expand the solution v (¢) along the basis

just constructed, thus defining the unknown coefficients ¢;(t), j = 1,2,...,n, to be
determined,
n t
—1 e;(t)dt' /e
(2.12) b(t) = 3 ety o SO e ),
j=1

The phases ot o es(tdt /e (see H3) are introduced for convenience. By inserting
(2.12) into (2.1), we get the following differential equation for the ¢;(t)’s:

n

(2.13) Gty = ajr(t)e’ D/ ee(t),
where

(2.14) Ajk(t) = /0 (ej(t’) — ek(tl))dtl

and

{3 (D125 ()7 (1))
le; (O

Here (-|-) denotes the usual scalar product in C™. Our choice (2.9) implies a;;(t) = 0.
It is also shown below that the a;i(t)’s are analytic functions in a neighborhood of
the real axis and that hypothesis H2 implies that they satisfy the estimate

(2.15) ailt) = —

(2.16) t—li:tmoo 51;% [t |aj(t)| < oo.
J

As a consequence of this last property and of the fact that the eigenvalues are real by
assumption, the following limits exist:

(2.17) lim ¢;(t) = ¢j(£o00).

t—+oo

We are now able to define the associated S-matrix, S € M, (C), by the identity

c1(—00) c1(+00)
2.18) S 02(—:00) _ ca(+00)
en(—00) cn(—;—oo)

Such a relation makes sense because of the linearity of equation (2.13). It is a well-
known result that under our general hypotheses, the S-matrix satisfies

(2.19) S=T+0().

Note that the jth column of the S-matrix is given by the solution of (2.13) at t = oo
subjected to the initial conditions cg(—o00) = 6k, k =1,2,...,n.

In general, the S-matrix defined above has no particular properties besides that
of being invertible. However, when the generator H (t) satisfies some symmetry prop-
erties, the same is true for S. Since such properties are important in applications, we
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show below that if H(t) is self-adjoint with respect to some indefinite scalar product,
then S is unitary with respect to another indefinite scalar product. Let J € M, (C)
be an invertible self-adjoint matrix. We define an indefinite metric on C™ by means
of the indefinite scalar product

(2.20) ()g = (1)

It is easy to check that the adjoint A# of a matrix A with respect to the (-,-); scalar
product is given by

(2.21) A# = g1 Ar

PROPOSITION 2.1. Let H(t) satisfy H1 and H2 and possess n distinct eigenvalues
Vvt € R. Furthermore, assume that H(t) is self-adjoint with respect to the scalar
product (+,)j,

(2.22) H(t)= H?(t)=J 'H*(t)J, VtecR,
and the eigenvectors ¢;(0) of H(0) satisfy

(2.23) (0;(0),0(0))s =pj, pje{-11}, Vi=1...,n

Then the eigenvalues of H(t) are real ¥Vt € R and the S-matriz is unitary with respect
to the scalar product (-,-)g, where R = R* = R~ is the real diagonal matriz R =

diag(p17 P2y 7pn)7
(2.24) ST =RS"R=5".

Remark. The condition (¢;(0),¢;(0)); = £1 can always be satisfied by suitable
renormalization provided (¢;(0), ¢;(0))s # 0.

The main interest of this proposition is that when the S-matrix possesses symme-
tries, some of its elements can be deduced from resulting identities without resorting
to their actual computations.

A simple proof of Proposition 2.1 that makes use of notions discussed in the next
section can be found in Appendix A. Proposition 2.1 can actually be used for the two
main applications that we deal with in section 7. Note that in specific cases, further
symmetry properties can be derived for the S-matrix; see section 7.

3. Analyticity properties. The generator H(z) is analytic in S,; hence the
solution of the linear equation (2.1) ¢(z) is analytic in S, as well. However, the
eigenvalues and eigenprojectors of H(z) may have singularities in S,. Let us recall
some basic properties, the proofs of which can be found in [K]. The eigenvalues and
eigenprojectors of a matrix analytic in a region of the complex plane have analytic
continuations in that region with possible singularities located at points zgp, called
exceptional points. In a neighborhood free of exceptional points, the eigenvalues are
given by branches of analytic functions and their multiplicities are constant. One
eigenvalue can therefore be analytically continued until it coincides at zy with one or
several other eigenvalues. The set of such points defines the set of exceptional points.
The eigenvalues may possess branching points at an exceptional zy, where they are
continuous, whereas the eigenprojectors are also multivalued but diverge as z — zg.
Hence by hypothesis H3, the n distinct eigenvalues e;(t) defined on the real axis are
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Fi1G. 1. The paths 3, 6, and no in Sa\Q2.

analytic on the real axis and possess multivalued analytic continuations in S,, with
possible branching points at the set of degeneracies €, given by

(3.1) = {z0| €j(20) = ex(20) for some k and j and some analytic continuation}.

By assumption H2, Q is finite, and by H3, QN R = () and Q = Q due to Schwarz’s
principle. Similarly, the eigenprojectors P;(t) defined on the real axis are analytic
on the real axis and possess multivalued analytic continuations in S, with possible
singularities at 2. To see more precisely what happens to these multivalued functions
when we turn around a point zy € §2, we consider the construction described in Figure
1. Let f be a multivalued analytic function in S, \Q. We denote by f(z) the analytic
continuation of the restriction of f around 0 along some path 8 € S,\Q from 0 to
z. Then we perform the analytic continuation of f(z) along a negatively oriented
loop 6 based at z around a unique point zg € €2, and we denote by f(z) the function
that we get when we come back to the starting point. (If é is positively oriented, the
construction is similar.) For later purposes, we define 79 as the negatively oriented
loop homotopic to the loop based at the origin encircling zy obtained by following
from 0 to z, 6 from z back to z, and 3 in the reverse sense from z back to the origin.
We will keep this notation in the rest of this section. It follows from the discussion
above that if we perform the analytic continuation of the set of eigenvalues {e;(2)}7_;,
along a negatively oriented loop around zq € €2, we get the set {€;(2)}}_; with

(3.2) €j(2) = eso(j)(2), J=1,...,n,
where
(3.3) oo: {1,2,....,n} = {1,2,...,n}

is a permutation that depends on 79. Similarly, and with the same notations, we get
for the analytic continuations of the projectors around z

(3.4) Pi(2) = Pyyy(2), j=1,...,n.

Let us consider now the eigenvectors ¢;(t). We define W (t) as the solution of

(35) W) = > PP OW ()

= K(@t)W(t), W(0) =1,
where t € R. It is well known [K], [Kr] that W (t) satisfies the intertwining identity

(3.6) W(t)P;(0) = P()W(t), j=1,2,...,n, VtER,
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so that if {¢;(0)}7_; denotes a set of eigenvectors of H(0), the vectors defined by

(3.7) ;i (t) = W(t)e;(0)

are eigenvectors of H (t). Moreover, using the identity Q(¢)Q’(¢)Q(¢) = 0, which is true
for any differentiable projector, it is easily checked that condition (2.9) is satisfied by
these vectors. The generator K (t) is analytic on the real axis and can be analytically
continued in S, \Q. Actually, K(z) is single valued in S,\§2. Indeed, let us consider
the analytic continuation of K (z) around zg € . We get from (3.4) that

(3.8) Pi(2) = P}, (=)

so that

K(z) = Z Pj(2)Pj(2) = Zpéo(j)(z)Pao(j)(Z)

(39) = Y BIP() = K(:).
k=1

Consequently, W (t) can be analytically continued in S,\2, where it is multivalued
and satisfies both (3.5) and (3.6) with z € S,\Q in place of ¢ € R. Moreover, the
relation between the analytic continuation W(z) from 0 to some point z € S, \§ and
the analytic continuation W(z) is given by a monodromy matrix W (ny) such that

(3.10) W(z) = W(z)W(no),

where 79 is the negatively oriented loop based at the origin which encircles only 2y € 2
(see Figure 1). Note also that the analytic continuation W(z) is invertible in S, \2
and W~1(2) satisfies

(3.11) W V() =W (2)K(z), W '0)=L

As a consequence, the eigenvectors (3.7) possess multivalued analytic extensions in
Sa\2. Indeed, it is easily seen that the analytic continuation of ¢;(z) along a neg-
atively oriented loop around zy € €, @;(z), is proportional to ¢, (;)(2). Hence we
introduce the quantity 6,(n) € C by the definition

(3.12) Gi(z) =e gy 5 (2), j=12,....n.

Note that this is equivalent to W (no)g;(0) = e~ (M) (0) (see (3.10)). Let us
consider the couplings (2.15). Using the definition (3.7), the invertibility of W (t), and
the identity (3.6), it is not difficult to see that we can rewrite

(i (O)[P; ()W (£) " K ()W (£)px(0))
1 (0)12 ’

which is analytic on the real axis and can be analytically continued in S, \{2, where it
is multivalued. Thus the same is true for the coefficients ¢;(¢) which satisfy the linear
differential equation (2.13), and their analytic continuations satisfy the same equation
with z € S,\Q in place of t € R. We now come to the main identity of this section
regarding the coefficients ¢;(z). Let us denote by c¢;(z) the analytic continuation of

(3.13) ajr(t) = — teR,
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¢;(0) from 0 to some z € S, \Q2. We perform the analytic continuation of ¢;(z) along
a negatively oriented loop around zy € € and denote by ¢;(z) the function that we
get when we come back at the starting point z.

LEMMA 3.1. For any j =1,...,n, we have

ej(u)du/e

(3.14) [ (z)e_ifno e~ i) — Coo()(2)

where 1o, 0;(no) and o(j) are defined as above.
Proof. Tt follows from hypothesis H1 that ¢(z) is analytic in S, so that

(3815) S ejz)e o sl (o)
j=1

—z " ej(u)du/e ~
_ch 5 () /890]'(2)

_ Z'c}-(z)e_i "o ej(u)du/fe—i Ix ego(j)(u)du/ae—iej(no)goo_o(j)(Z).

We conclude by the fact that {¢;(2)}7_; is a basis. 0

Remark. 1t is straightforward to generalize the study of the analytic continuations
around one singular point of the functions given above to the case where the analytic
continuations are performed around several singular points since €2 is finite. The loop
7o can be rewritten as a finite succession of individual loops encircling only one point
of € so that the permutation oy is given by the composition of a finite number of
individual permutations. Thus the factors e=*% () in (3.12) should be replaced by
a product of such factors, each associated with one individual loop, and the same is
true for the factors exp(—i f ej(#z)dz/e) in Lemma 3.1. This process is performed in

the proof of Theorem 6.1.

4. Complex WKB analysis. This section is devoted to basic estimates on the
coefficients ¢;(z) in certain domains extending to infinity in both the positive and
negative directions inside the strip S,. We first consider what happens in neighbor-
hoods of £oo. It follows from assumption H2 by a direct application of the Cauchy
formula that (possibly by reducing a by an arbitrarily small amount)

(4.1) hm sup [t/ H' (t +is)| < oo.

OO\ [<a
Hence the same is true for the single-valued matrix K(z):

(4.2) h? s‘u<p [t K (t +ds)|| < oo.

Let 0 < T € R be such that

(4.3) minRez > —T and maxRez<+T
z€Q 2€Q

All quantities encountered so far are analytic in S, N {z||Rez| > T}, and we denote
with a “7” any analytic continuation in that set. As noticed earlier,

(4.4) W'(z) = K(z2)W(2), z€ Sqn{z|[Rez|>T}
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T 0 T

F1G. 2. The path of integration for Ajk(z) (the z’s denote points of Q).

so that it follows from (4.2) that the limits

(4.5) gﬁﬁw+m=W&@

exist uniformly in s € |—a, a[. Consequently (see (3.13)),

(4.6) . lirin [t sup [a;(t +is)| < oo, Vi k€ {l,...,n}.
o |s|<a

Finally, for [¢| > T, we can write

M&W+M=m(équ—éw@w>
(4.7) + /0 Re(eq () (t+is") — eqq) (t + is"))ds’,

where this equation is obtained by deforming the path of integration from 0 to z =
t + is into a loop 1 based at the origin, which may encircle points of €2, followed by
the real axis from 0 to Rez and a vertical path from Rez to z (see Figure 2) and o is
the corresponding permutation. Hence we have

(4.8) sup Imzjk(z) < 00,
2€8,N{z||Rez|>T}

which together with (4.6) yields the existence of the limits

(4.9) . liin ¢;(t+1is) = ¢;(£o0)
uniformly in s € |—a, a[. We now define the domains in which useful estimates can
be obtained.

DEFINITION. Let j € {1,...,n} be fized. A dissipative domain for the index 7,
D; C 8,\Q, is such that

(4.10) sup Rez = oo, inf Rez = —o0
2€D; zeD;

and is defined by the property that for any z € D and any k € {1,...,n}, there exists
a path ¥¥ C D; parameterized by u € |—oo0,t] which links —oo to z,

(4.11) uli)rzloo Rev"(u) = —o0, YR (t) = 2,
with
d
(4.12) sup  sup 7 (u)| < oo,
z€D; u€]—oo0,t] du
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L

'\

F1G. 3. The path 8 along which the analytic continuation of Aji(t) in D; is taken.

and satisfies the monotonicity condition

(4.13) Imﬁjk('yk(u)) is a nondecreasing function of u € |—o0, t].

Such a path is a dissipative path for {jk}. Here Aj,(2) is the analytic continuation
of

(4.14) Aji(t) :/O (e;(t') —er(t'))dt’, teR,

in D; along a path B described in Figure 3 going from 0 to =T € R along the real
azris and then vertically up or down until it reaches D;, where T' > 0 is chosen as in
(4.3).

Let ¢x(2), k= 1,2,...,n, z € Dj, be the analytic continuations of ¢ (t) along the
same path @ which are solutions of the analytic continuation of (2.13) in D, along 3:

(4.15) E;C(Z) _ Zakl(z)eigm(z)/ea(z).
=1

We take as initial conditions in D;

(4.16) lim  ¢(2) = tl@r_noo ce(t) =6k, k=1,...,n,

Re z——o0

and we define
(4.17) xp(z) = Ek(z)eizf"‘(z)/s7 z€Dj;, k=1,...,n.

LEMMA 4.1. In a dissipative domain for the index j, we get the estimates

(4.18) sup |z;(z) — 1| = O(e),
z€D;
(4.19) sup |zi(2)| = O(e), Vk #j.
z€D;

Remark. The real axis is a dissipative domain for all indices. In this case, we
have ¢;(t) = ¢;(t). Hence we get from the application of the lemma for all indices
successively that S =14 O(e).

The estimates we are looking for are then just a direct corollary.

PROPOSITION 4.1. Assume that there exists a dissipative domain D; for the index
j. Let n; be a loop based at the origin which encircles all of the degeneracies between
the real axis and D; and let o; be the permutation of labels associated with n;, in the
spirit of the remark ending the previous section. The loop n; is negatively (respectively,
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positively) oriented if D; is above (respectively, below) the real axis. Then the solution
of (2.13) subjected to the initial conditions ci(—00) = 61 satisfies

N ) e;j(z)dz/e
(4.20) Co;(j)(H00) = e i) f"j (14 0()),

Im ej(z)dz/ethj(es ;) (+o0)—€q. +o0o
(421) ey y(+00) = Ofce S, szl hs o, ) (o) =0, 7y

)

with h; € [HJ_,HJ"’], where HjjE is the mazimum (respectively, minimum) imaginary
part of the points at +o00 in Dj:

(4.22) H* =limsup sup s, H™ =liminf inf s.
t—+00 slt+iseD; t—+00 slt+iseD;

Thus we see that it is possible to get the (exponentially small) asymptotic behavior
of the element s, ;) ; of the S-matrix, provided there exists a dissipative domain for
the index j. The difficult part of the problem is, of course, to prove the existence
of such domains Dj, which do not necessarily exist, and to have enough of them to
compute the asymptotic of the whole S-matrix. This task is the equivalent for n-level
systems of studying the global behavior of the Stokes lines for two-level systems. We
postpone this aspect of the problem until the next section. Note that we also get
from this result an exponential bound on the elements s, ), ; of the S-matrix, k # j,
which may or may not be useful. If n; encircles no point of Q, we cannot get the
asymptotic behavior of s, (;) ; but only get the exponential bounds. Since our main
concern is asymptotic behaviors, we call the corresponding dissipative domain trivial.

Remark. In contrast with the two-level case (see [JP4]) we have to work with
dissipative domains instead of working with one dissipative path for all indices. In-
deed, it is not difficult to convince oneself with specific three-level cases that such a
dissipative path may not exist, even when the eigenvalue degeneracies are close to
the real axis. In return, we prove below the existence of dissipative domains in this
situation.

Proof of Proposition 4.1. The asymptotic relation is a direct consequence of
Lemma 3.1, (4.9), (4.17), and the first part of Lemma 4.1. The estimate is a conse-
quence of the same equations, the second estimate of Lemma 4.1, and the identity,

fort > T,
Imﬁjk(t +is) =Im (/ ej(z)dz 7/ ek(z)dz>
nj M5

(4.23) + /0 Re(eq, ) (t +i5") — e, (t + i)

The path of integration from 0 to z for Ajk(z) is deformed into the loop 7; followed
by the real axis from 0 to Rez and a vertical path from Rez to z. It remains to take
the limit ¢ — +o0. O

Proof of Lemma 4.1. We rewrite equations (4.15) and (4.16) as an integral equa-
tion and perform an integration by parts on the exponentials:

ck(2) = 6jk — iez _ akl(i) eiz“(z)/ggl(z)
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N~
(4.24) + e Z / . 2" )am (2 )) iAo (2 )/EEm(Z')dZ/.
k

_el(

Since all eigenvalues are distinct in S, \(2, the denominators are always different from
0. In terms of the functions x, we get

) — @z
!/ ~ ~
+ie Z/ < akl— e)z(z/)) et (Ask(2)=Ajk(z ))/Eafl(zl)dzl
am(2') (K n(2)=B () Nd'
(4.25) +ie Z ) —a:n ’ T (#)d2.
l,m=1

We introduce the quantity

(4.26) Hlz[ll; = sup |z:(2)]
z€D;
1=1,..m
and consider for each k equation (4.25) along the dissipative path v¥(u) described in
the definition of D; such that

(4.27) e Bak () =R ) /2| < 1

when u < t along that path. Due to the integrability of the ax;(z) at infinity and the
uniform boundedness of dv*(u)/du, we get the estimate |z (2) — ox;| < €l||z]||; A for
some constant A uniform in z € Dj; hence ||[z]||; < 1+ €|||z]||;A. Consequently, for

¢ small enough, |||z]||; < 2 and the result follows. 0

5. Superasymptotic improvement. All of the results above can be improved
substantially by using the so-called superasymptotic renormalization method [Be], [N],
[JP2]. The joint use of complex WKB analysis and superasymptotic renormalization
is very powerful, as demonstrated recently in [JP4] for two-level systems, and, roughly
speaking, it allows us to replace all remainders O(e) by O(e™"/¢), where k > 0. We
briefly show how to achieve this improvement in the case of n-level systems.

Let H(z) satisfy H1, H2, and H3 in S,,, and let

(5.1) Sa = Sa\Up—i...p (Jn U ),

where each J,. is an open domain containing only one point of {2 in the open upper
half-plane. Hence any analytic continuation e;(z) of e;(t), t € R, in S, is isolated in

the spectrum of H(z) so that e;(2) is analytic and multivalued in S, and the same is
true for the corresponding analytic continuation P;(z) of P;(t), t € R. Let o, be the
permutation associated with the loop (, based at the origin which encircles J,. once
such that

(5.2) €j(2) = eq,(j)(2),

with the convention of section 3. The matrix K(z) is analytic and single valued in
Sq. Consider the single-valued analytic matrix

(5.3) Hy(z,¢) = H(z) —icK(2), 2z € S,
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For & small enough, the spectrum of Hy(z,e) is nondegenerate Vz € S, so that its
eigenvalues e; (z,¢) and eigenprojectors le (z,¢€) are multivalued analytic functions in
S.,. Moreover, for & small enough, the analytic continuations of ej(z,e) and P} (z,¢)
around J, satisfy €}(z) = e} ;,(2) and P}(2) = P} ;/(2), as can be easily deduced
from (5.2) by perturbation theory. Consequently, the matrix

m

(5.4) Ki(z,e) =Y Pl(z,e)P}(z¢)

j=1
is analytic and single valued in Sa. Defining the single-valued matrix
(5.5) Hs(z,€) = H(2) — iK1 (2,€), 2 € Sa,

we can repeat the argument for ¢ small enough. By induction, we set for any ¢ € N

(5.6) H,(z,e) = H(z) —ieK4_1(z,€),
(5.7) Kyi1(z,6) =Y PV (2,)PI (2,e), 2 € 8,
j=1

for € is small enough. We have

(5.8) Hy(z,6) = el(z,6)Pi(z,e),

j=1

where the eigenvalues and eigenprojections are multivalued in §a and satisfy

(59) 52(276) = eg-r(j)(zag)a
(5.10) }3;-1(275) = Pgr(j)(z,a), j=1,...,n,

with the notations of (5.2). We quote from [JP4] and [JP2] the main proposition
regarding this construction. N

PROPOSITION 5.1. Let H(z) satisfy H1, H2, and H3 in S, and let S, be defined
as above. Then there exist constants ¢ > 0 and €* > 0 and a real function b(t) with
lim;—, o0 [¢]1Tb(t) < 00 such that

(5.11) 1Ky (2,€) — Kq—1(z,€)|| < b(Rez)eclq!,
(5.12) [1Kq(2,€)l| < b(Rez)

for all z € :9\@, all e < €*, and all ¢ < ¢*(e) = [1/ece], where [y] denotes the integer
part of y and e is the basis of the neperian logarithm.
We can deduce from this that in S,

(5.13) ef(z,6) = ej(z) + O(£%b(Rez)),

(5.14) Pl(z,e) = ej(z) + O(eb(Rez)), Vg < g"(e).

We introduce the notation f9 (¥) = f* for any quantity f¢ depending on the index ¢,
and we henceforth drop the € in the arguments of the functions that we encounter.
We define the multivalued analytic matrix W, (z) for z € S, by

(5.15) W,/ (2) = Ko (2)Wi(2),  Wi(0) =L
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Due to the above observations and Proposition 5.1, W, (z) enjoys all of the properties
that W(z) does, such as

(5.16) W.(2)P;(0) = P (2)W.(z),
(5.17) W (z) = Wa(2)W.(Cr)
and, uniformly in s,
(5.18) 1tlijtm W (t +is) = Wi(o0).
Thus we define for any z € 5, a set of eigenvectors of H,(z) by ©;(2) = Wi (2);(0),
where H..(0)¢}(0) = €7(0)¢3(0), j = 1,...,n, that satisfy
$5(0) = exp{—i0; (¢-) }¢y, (;,(0),
with 07 (¢) = 0(¢-)+0O(e) € C. Let us expand the solution of (2.1) on this multivalued
set of eigenvectors as

(5.19) B(z) = S es(z)e o TEE ey,

Since the analyticity properties of the eigenvectors and eigenvalues of H,(z) are the
same as those enjoyed by the eigenvectors and eigenvalues of H(z), we get, as in
Lemma 3.1,

J

(5.20) E%(Z)eiifr ej(wdu/e —io3(¢,) _ (7). Vze S...

Substituting (5.19) in (2.1), we see that in S, the multivalued coefficients c;(z) satisfy
the differential equation

(5.21) c;'(z) = z:a;fk(z)em;k(Z)/ECZ(Z)7
k=1

where

(5.22) i(2) = /0 ej(2') — ep(2')d?’

and

= *(z ()7t g 1(2) = K= (2)) W (2)
(5.23) a;k(z>:<%<><0>IP]<><0>W<>||;§0)||2<> Ky ()W.()60))

compare this with (3.13). The key point of this construction is that it follows from
Proposition 5.1 with ¢ = ¢*(¢) that

(5.24) laj,(2)] < 2h(Rez)e "%, VzeS,,
where k = 1/ec > 0, and it follows from (5.13) that

(5.25) ImA7,(2) = ImAjx(2) + 0O(e%)
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uniformly in z € S,. Thus we deduce from (5.24) that the limits

(5.26) tliimoo cj(t+is) =cj(£o0), j=1,...,n,

exist for any analytic continuation in S,. Moreover, along any dissipative path 7* ()
for {jk}, as defined above, we get from (5.25)

(5.27) G BLOF =A@/l — o), vu <t

so that, reproducing the proof of Lemma 4.1, we have the following result.
LEMMA 5.1. In a dissipative domain Dj, if ¢ (—00) = ¢j(—00) = by;, then

(5.28) T(z) =1+ 0(e"*),
(5.29) ARG (2) = O(e™7), VI £,

uniformly in z € §a
This lemma yields the following improved version of our main result.
PROPOSITION 5.2. Under the conditions of Proposition 4.1 and with the same
notations, if ¢ (—o0) = 8,1, then

- —1 *(2)dz
(5:30) ¢, (;)(+00) = e e o GO L oeriey),

Im e;j(z)dz/e+hj(es, () (+00)—e,. “+oo €
(5.31) C:j(k)(+OO)O(eN/Ee Joy esGHaa e4hs o (Ho0)=cayao (koo >

Note that we may or may not replace e;(2) by €j(z) in the estimate without al-
tering the result. It remains to make the link between the S-matrix and the ¢} (+00)’s
of the proposition explicit. We define ﬂ;i by the relations

—igrE
(5.32) @i (Eo0) = e i p;(o0)

(H.(z) and H(z) coincide at +00). By comparison with (5.19) and (2.12), we deduce
the following lemma.

LEMMA 5.2. If ci(t) and ci(t) satisfy cx(—o0) = cf(—00) = bk, then the element
kj of the S-matrix is given by

(5.33)

(B =y i [T e (1) —ep () dt! i [0 er)—e; ()t
sijCk(+oo)=e_Z(ﬁk+_ﬁf Yty Rt —en(thar /e, S5 ](t)dt/ECZ(—i-oo)

= ¢ (+00),

with 6;i = 0O(e) and fioo ej(t') —e;(t')dt' /e = O(e), i.e., e % =14 O(e).
Remarks. (i) Proposition 5.2 together with Lemma 5.2 are the main results of the
first part of this paper.
(ii) As a direct consequence of these estimates on the real axis, we have

(5.34) sjr=0(e "), Vk#j,
and

(5.35) 55, = e %1 (1+ O(e™"/9)).



Downloaded 12/12/13 to 146.155.23.42. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

EXPONENTIAL ASYMPTOTICS FOR n-LEVEL S-MATRICES 685

(iii) It should be clear from the analysis performed above that all of the results
obtained hold if the generator H(z) in (2.1) is replaced by

(5.36) H(z,e) = Ho(z) + O(eb(Rez)),

with b(t) = O(1/t172), provided Hy(z) satisfies the hypotheses we assumed.

6. Avoided crossings. We now come to the second part of the paper, in which
we prove asymptotic formulas for the off-diagonal elements of the S-matrix by means
of the general setup presented above. To start with, we define a class of n-level
systems for which we can prove the existence of one nontrivial dissipative domain
for all indices. They are obtained by means of systems that exhibit degeneracies
of eigenvalues on the real axis, hereafter called real crossings, which we perturb in
such a way that these degeneracies are lifted and turn into avoided crossings on the
real axis. When the perturbation is small enough, this process moves the eigenvalue
degeneracies off the real axis, but they remain close to the place where the real
crossings occurred. This method was used successfully in [J] to deal with two-level
systems. We do not attempt to list all of the cases in which dissipative domains can
be constructed by means of this technique but rather present a wide class of examples
which are relevant in the theory of quantum adiabatic transitions and in the theory
of multichannel semiclassical scattering, as described below.

Let H(t,6) € M, (C) satisfy the following assumptions.

H4. For each fived § € [0,d)], the matriz H(t,6) satisfies H1 in a strip S, indepen-
dent of & and H(z,6) and 8/0zH (z,0) are continuous as a functions of two variables
(2,8) € Sy x [0,d]. Moreover, it satisfies H2 uniformly in 6 € [0,d], with limiting
values H (%, 6) which are continuous functions of 6 € [0,d].

H5. For eacht € R and each 6 € [0,d], the spectrum of H(t,6), denoted by o(t,9),
consists of n real eigenvalues

(6.1) o(t,6) = {e1(t,6),ea(t,6),...,en(t,6)} CR
which are distinct when 6 > 0:
(6.2) e1(t,6) < ea(t,6) < -+ < en(td).

When 6 = 0, the functions e;(t,0) are analytic on the real axis and there exists a
finite set of crossing points {t1 <t < --- <t} € R, p > 0, such that the following
hold:

(i) Vit < t1,

(6.3) e1(t,0) < ea(t,0) < --- < en(t,0).
(ii) Vi < k € {1,2,...,n}, there exists at most one t, with
(64) €j (tTv 0) - ek(th 0) = 07

and if such a t, exists, we have

(65) €j(tr, 0) — ek(tT,O)) > 0.

0
(
ot
iii) V5 € {1,2,...,n}, the eigenvalue e;(t,0) crosses eigenvalues whose indices
J
are all superior to j or all inferior to j.
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e,(t,3)
A
e,(t,8)

F1G. 4. A pattern of eigenvalue crossings (bold curves) with the corresponding pattern of avoided
crossings (fine curves) satisfying H5.

Remarks. (i) The parameter § can be understood as a coupling constant that
controls the strength of the perturbation.

(ii) The eigenvalues ¢;(¢,0) are assumed to be analytic on the real axis, because of
the degeneracies on the real axis. However, if H(t,06) is self-adjoint for any ¢ € [0, d],
this is true for an indexation, as follows from a theorem of Rellich; see [K].

(iii) In Figure 4, we give an example of a pattern of crossings with the correspond-
ing pattern of avoided crossings for which the above conditions are fulfilled.

(iv) The crossings are assumed to be generic in the sense that the derivatives of
€; — eg are nonzero at the crossing t,.

(v) The crossing points {t1,t2,...,t,} need not be distinct, which is important
when the eigenvalues possess symmetries. However, for each j = 1,...,n, the eigen-
value e (t, ) experiences avoided crossings with e; (¢, 6) and/or e;_1(t,6) at a subset
of distinct points {t,,,...,t,, } C {t1,t2,...,1p}.

We now state the main lemma of this section regarding the analyticity properties
of the perturbed levels and the existence of dissipative domains for all indices in this
perturbative context.

LEMMA 6.1. Let H(t,6) satisfy H4 and H5. We can choose a > 0 small enough
so that the following assertions are true for sufficiently small 6 > 0:

(i) Let {tr,,...,t,;} be the set of avoided crossing points experienced by e;(t,0),

j = 1,...,n. For each j, there exists a set of distinct domains J. € S, where
re{r,...,r},
(6.6) Jo={z=t+is|0<|t—t,|] <L, 0<g<s<dal},

with L small enough, o' < o, and g > 0 such that ej(—o0,8) can be analytically
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continued in

(6.7) 57 =S\ Urzry,.r; (Jr U Jp).

(i) Let t, be an avoided crossing point of e;(t,8) with ex(t,6), k = j+1. Then
the analytic continuation of the restriction of e;(t,6) around t, along a loop based at
t. € R which encircles J, once yields €;(t,,6) back at t, with

(6.8) €(tr,0) = eg(tr,0).

(iii) For each j = 1,...,n, there exists a dissipative domain D; above or below
the real axis in So N {z =t +1is||s| > o'}. The permutation o; associated with these
dissipative domains (see Proposition 4.1) are all given by o; = o, where o is the

permutation that maps the index of the kth eigenvalue ej(co,0) numbered from the
lowest one on k for all k € {1,2,---,n}.

Remarks. (i) In part (ii), the same result is true along a loop encircling J,..

(ii) The dissipative domains D; of part (iii) are located above (respectively, below)
all of the sets J, (respectively, J,.), r =1,...,p.

(iii) The main interest of this lemma is that the sufficient conditions required for
the existence of dissipative domains in the complex plane can be deduced from the
behavior of the eigenvalues on the real axis.

(iv) We emphasize that more general types of avoided crossings than those de-
scribed in H5 may lead to the existence of dissipative domains for certain indices, but
we want to obtain dissipative domains for all indices. For example, if part (iii) of H5
is satisfied for certain indices only, then part (iii) of Lemma 6.1 is satisfied for those
indices only.

(v) Note also that there are patterns of eigenvalue crossings for which there exist
no dissipative domain for some indices. For example, if e;(t,0) and ex(t,0) display
two crossings, it is not difficult to see from the proof of the lemma that no dissipative
domains can exist for j or k.

We postpone the proof of Lemma 6.1 to the end of this section and continue with
its consequences. By applying the results of the previous section, we get the following
result.

THEOREM 6.1. Let H(t,06) satisfy H4 and H5. If § > 0 is small enough, the
elements o(j)j of the S-matriz, with o(j) defined in Lemma 6.1, are given in the
limite =0 forallj=1,...,n by

o()F1

(69)  soy= J] ¢ @e o
k=j

<J

ka er(z,6)dz/e

1+ 0), a<j>{

where for o(j) > j (respectively, o(j) < j), Ck, k = j,...,0(j) — 1 (respectively,
k=3j,...,0(j) + 1), denotes a negatively (respectively, positively) oriented loop based
at the origin which encircles the set J, (respectively, J,) corresponding to the avoided
crossing between ey (t,8) and exy1(t,6) (respectively, ex_1(z,0)) at t,, ka er(z,6)dz
denotes the integral along (i of the analytic continuation of e (0,6), and 0 ((x) is the
corresponding factor defined by (3.12); see Figure 5.

More accurately, with the notations of section 5, we have the improved formula

(6.10)

o(g)F1 .
B _ia;(:)/‘ )T 07 (Cr) 7if< ey (z,6)dz/e 140 ke . > 7,
soyy =€ o [ e HBe o (1+0(9), o))
k=j

<J.
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FiG. 5. The loops n; and g, k= j,...,0(j) — 1.

The elements o(l)j, | # j, are estimated by

Im z,6)d . > .,
(6-11)50(l)j — O | geleai(00.80)—eoq)(00,6)) /e H e fck er(z,6)dz/e o) { g j
k=j ’

where h is strictly positive (respectively, negative) for o(j) > j (respectively, o(j) <
).

Remarks. (i) Since the eigenvalues are continuous at the degeneracy points, we
have that

(6.12) %in})lm ex(z,8)dz=0, Vk=1,...,p.
- Ck

(ii) The remainders O(e) depend on 8, but it should be possible to get estimates
that are valid as both ¢ and é tend to zero, in the spirit of [J], [MN], and [R].

(iii) This result shows that at least one off-diagonal element per column of the
S-matrix can be computed asymptotically. However, it is often possible to get more
elements by making use of the symmetries of the S-matrix. Moreover, if there exist
dissipative domains that go above or below other eigenvalue degeneracies further away
in the complex plane, other elements of the S-matrix can be computed.

(iv) Finally, note that all starred quantities in (6.10) depend on e.

Proof of Theorem 6.1. The first thing to determine is whether the loops (i are
above or below the real axis. Since the formulas that we deduce from the complex
WKB analysis are asymptotic, it suffices to choose the case that yields exponential
decay of s5,(;);. It is readily checked in the proof of Lemma 6.1 below that if o(j) > j,
D; is above the real axis and if o(j) < j, D; is below the real axis. Then it remains
to explain how to pass from the loop 1; given in Proposition 4.1 to the set of loops
Cy k=174,...,0(j) — 1. We briefly deal with the case where o(j) > j; the other case
is similar. It follows from Lemma 6.1 that we can deform n; into the set of loops (j,
each associated with one avoided crossing, as described in Figure 5. Thus we have

o(j)—1

(6.13) /7va Z /Ck

j k=j

for the decay rate and (see (3.10))
(6.14) W(n;) = W(Cy-1) - WI(G+)W ()
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for the prefactors. Let v; be a negatively oriented loop based at t, which encircles
Jr as described in Lemma 6.1. Now consider the loop (; associated with this avoided
crossing and deform it to the path obtained by going from 0 to ¢, along the real axis,
from ¢, to t, along v;, and back from ¢, to the origin along the real axis. By point
(ii) of Lemma 6.1, we get

(6.15) €; (0,6) = ej+1(07 6)
along (;, and, accordingly (see (3.12)),
(6.16) $:(0,8) = e 1D pi1(0,6).

This justifies the first factor in the formula. By repeating the argument at the next
avoided crossings, keeping in mind that we get e;41(0,6) at the end of (; and so on,
we get the final result. The estimate on s,(;); is obtained by direct application of
lemma 6.1. g

Proof of Lemma 6.1. In what follows, we shall denote “gt” by a “” We must
consider the analyticity properties of €;(z,6) and define domains in which every point
z can be reached from —oco by means of a path y(u), u € |—o00,t], 7(¢t) = z such
that Imﬁjk(v(u),é) is nondecreasing in u for certain indices j # k when 6 > 0 is
fixed. Note that by Schwarz’s principle, if v(u) is dissipative for {jk}, then v(u) is
dissipative for {kj}. When v(u) = v1(u) 4+ ivy2(u) is differentiable, saying that y(u) is
dissipative for {jk} is equivalent to

Re(€j(7(u), 6) — €x(v(u), 6))F2(u) + Im(&;(v(u), 6) — €k (y(u),6))31(u) = 0,
(6.17) Yu € |—00,1],

where “’” denotes the derivative with respect to u. Moreover, if the eigenvalues are
analytic in a neighborhood of the real axis, we have in that neighborhood the relation

(6.18) Im(e;(t +is,6) — ex(t +is,6)) = / Re (€)(t +1is',6) — &, (t +is',6))ds’,
0

which is a consequence of the Cauchy—Riemann identity. We proceed as follows. We
construct dissipative domains above and below the real axis when 6 = 0, and we show
that they remain dissipative for the perturbed quantities Aji(z,6), provided ¢ is
small enough. We introduce some quantities to be used in the construction. Let C, C
{1,...,n}? denote the set of distinct couples of indices such that the corresponding
eigenvalues experience one crossing at t = t,.. Similarly, N C {1,...,n}? denotes the
set of couples of indices such that the corresponding eigenvalues never cross.
Let I, =[t, — L,t,+ L] € R, r =1,...,p, with L so small that

(6.19) in inf (¢}(t,0) — e} (,0)) = 4c > 0.

mi min
re{l,...p} {jk}eCr, j<ktel,

This relation defines the constant ¢, and we also define b by

(6.20) min min inf |e;(¢,0) —ex(t,0)| > 4b > 0,
re{l,...,p} {jk}eC,, j<k teR\I,
(6.21) min inf |e;(¢,0) — ex(¢,0)] > 4b > 0.

{jk}EN, j<ktER
We further introduce

(6.22) It ={z=t+isltel.,|s|<a}, r=1,...,p.
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Then we choose a small enough so that the only points of degeneracy of eigenvalues
in S, are on the real axis and

6.23 f R (2,0)) >2c>0
(6.23) re{l,n,p} {jk}tenclfl,g« zlenza (€j(2,0) = €3 (,0)) > 2¢
6.24 f |Re(e;(z,0) — ,0)|>20>0
(6.24) o pin {jk}renclgj<kze§n\lal e(e;(2,0) — ex(2,0))|

(6.25) min inf |Re(e;(2,0) —ex(2,0))] > 20> 0.

{jk}EN, j<k 2€Sa

The fact that this choice is always possible is a consequence of the analyticity of
e;(z,0) close to the real axis and of the fact that we can essentially work in a compact
because of hypothesis H4. Let a(t) be integrable on R and such that

a(t)

(6.26) >  max _ sup ’Re (t+15,0) — e} (¢ + is,0))].
2 J<ke{l,...n}|s|<a

It follows from H4 that such functions exist.
Let r € {1,...,p} and y2(u) be a solution of

Yo (u) = —VQ(H)G(U), u € ]—o0,t, — L],
(6.27) Aa(u) =0, u € t, — L,t,. + L,
Ao (u) = —|—72(u)a(u) u € [t + L, o0,

(u)

-2

with ~2(¢,) > 0. Then y3(u) > 0 for any u since

Yo (u) = ya(t,)e ffr*L a(u)du /b7 u € ]|—o0,t, — L],
(6.28) Yo (u) = y2(t,), uw € Jt, — Lt + L,
72(u) :’)/Q(t )eff +La(u )du' /b c [tr-l-L,OO[,

and since a(u) is integrable, the limits

(6.29) lim o (u) = y2(£o0)

u—+oo

exist. Moreover, we can always choose v3(t,) > 0 sufficiently small so that 4" (u) =
u + iya(u) € S, for any real u. Let us verify that this path is dissipative for all
{jk} € Cy, j < k. For u € |—00,t, — L], using

(6.30) Re(e;(z,0) — ex(z,0)) < —2b < 0, Vz € SoN{zRez <t, — L},

(6.31)

[Im(e;(t + is,0) — ex(t +is,0))| <|s| sup |Re(e](t+is’,0) — e} (t +is',0))]
s'€[0,s]

(see (6.18)), and the definition (6.26), we have

(6.32)
Re(e; (7" (1), 0) — ex (7" (w), 0))F2(u) + Im(e; (7" (u), 0) — er (7" (w), 0)) 91 (u)

= Re(ey (7 (), 0) — ex(y”(),0) ) 4 (e (37 ), 0) — ex (a7 1), 0)

> 27 (u)a(u) — ya(u)a(u)/2 > vo(u)a(u) > 0.
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Similarly, when u > ¢, + L, using
(6.33) Re(ej(2,0) —ex(2,0)) > 20 >0, Vze Sqan{z|Rez>t,+ L},
we get

(6.34)
Re(e; (7" (1) 0) — ex(y” (), 0))32(00) + Im(ex (3 (1), 0) — ex (" (1), 0)) 3 ()
= Re(e (7 (), 0) — ex(y"(),0) ) 4 (e (37 1), 0) — ex (37 1), 0)
> 27 (u)a(u) — ya(u)a(u)/2 > va(u)a(u) > 0.

Finally, for s € [t, — L, t, + L], we have with (6.23) that

(6.35)

2 (u)

Tm(e; (v (1), 0) — ex(7" (), 0)) = / Re(e) (¢ +is,0) — ej(t' + is, 0))

> ya(u)2¢ > yo(u)c > 0.

Thus " (u) is dissipative for all {jk} € C,, j < k. Note that the last estimate shows
that it is not possible to find a dissipative path for {jk} € C,, j < k below the real
axis.

Now consider {jk} € N, j < k, and let 75 (u) be a solution of

Jr
(6.36) A (u) = — 2 (“Z“(“), A (0) >0, u€]—o00,+00l,
ie.,
(6.37) 7 () = 55 ()™ Jo o,

As above, we have v (u) > 0 for any u and we can choose 75 (0) > 0 small enough
so that v+ (u) = u + iy (u) € S, for any u € R. Since

(6.38) Re(e;(z,0) —er(z,0)) > —2b, Vz € Sq,

we check by a computation analogous to (6.32) that v (u) is dissipative for {jk} €
N, j < k. Similarly, we can verify that if v5 (u) is the solution of

(6.39) 75 (0) <0, u€]—o0,+00],
with |75 (0)| small enough, the path v~ (u) = u + #y5 (u) below the real axis is in S,
for any u € R and is dissipative for {jk} € N, j < k, as well.

Finally, the complex conjugates of these paths yield dissipative paths above and
below the real axis for {jk} € N, j > k.

We now define the dissipative domains by means of their borders. Let v*(u) and
v~ (u), u € R, be two dissipative paths in S, defined as above with |, (0)| sufficiently
small so that v~ is below v*. We set

(6.40) D={z=t+isl0< -y, (t) <s<v (t), teR}
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FiG. 6. The dissipative domain D and some dissipative paths.

Let z € D, and j € {1,...,n} be fixed. By assumption H5, the set X; of indices k
such that {jk} € C, for some r € {1,...,p} consists of values k that satisfy j < k
or it consists of values k that satisfy j > k. Let us assume that the first alternative
takes place. Now for any k € {1,...,n}, there are three cases.

(1) If & € X, then there exists a dissipative path 4" € D for {jk} € C., j < k,
constructed as above which links —oo to z. It is enough to select the initial condition
~2(tr) suitably; see Figure 6.

(2) Similarly, if j < k ¢ X, there exists a dissipative path v* € D for {jk}
constructed as above which links —oo to 2 obtained by a suitable choice of 5 (0).

(3) Finally, if k > j, we can take as a dissipative path for {jk} the path v~ € D
constructed as above which links —co to z with a suitable choice of 75 (0). Hence
D is dissipative for the index j when 6 = 0. If j is such that the set X; consists of
points k with k£ > j, a similar argument with the complex conjugates of the above
paths shows that the domain D below the real axis is dissipative for j when 6 = 0.

Let us show that these domains remain dissipative when 6 > 0 is not too large. We
start by considering the analyticity properties of the perturbed eigenvalues e;(z, §),
6 > 0. Let 0 < & < « be such that

(6.41) I“N(DUD) =0, Yr=1,...,p.

The analytic eigenvalues e;(z,0), j € {1,...,n}, are isolated in the spectrum of
H(z,0) for any z € S, where

(6.42) Sa = Sa\ Ur=t,.p I

For any j =1,...,n we get from perturbation theory [K] that the analytic continua-
tions €;(z,0) of e;(t1 — L,6) in S, are all distinct in S, provided & is small enough.
This is due to the fact that assumption H4 implies the continuity of H(z,6) in ¢
uniformly in z € S, as is easily verified. More precisely, for any fixed index j, the
eigenvalue e;(t,6) experiences avoided crossings at the points {t,,,...,t, }. We can
assume without loss of generality that

(6.43) N =0, Vk#le{r,...,r}

Hence for 6 > 0 small enough, the analytic continuation €;(z,06) is isolated in the
spectrum of H(z,¢) uniformly in z € So\Up=r,.....r, ISI. Since by assumption H5 there
is no crossing of eigenvalues on the real axis when § > 0, there exists a 0 < g < o’
that depends on 6 such that €;(z, §) is isolated in the spectrum of H(z,§) uniformly
in z € S7, where

(6.44) 57 =S\ Urzpy,.or; (Jr U Jy)
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and
(6.45) Jr =1 N{z|Imz > g}, r=1,...,p.

Hence the singularities of €;(z, ) are located in U,—, ..., (J» U J;-), which yields the
first assertion of the lemma.

Consider a path v, from ¢, — L to t, + L which goes above J,., where ¢, is an
avoided crossing between e;(t,6) and e(t,8), k = j £ 1. By perturbation theory
again, e;(t, — L, 6) and ex(t, — L, ) tend to e; (¢, — L,0) and ep (¢, — L,0) as 6§ — 0
for some j', k" € 1,...,n, whereas e;(t, + L, 6) and ey(t, + L,6) tend to ey (¢, + L,0)
and ej (t, + L,0) as § — 0; see Figure 4. Now the analytic continuations of the
restrictions of e;(t,6) and ex(t,8) around ¢, — L along v, €;(z,6) and €(z,6) tend
to the analytic functions €;(z,0) = e;/(2,0) and €y (2,0) = ey (2,0) as § — 0 for all
z € v,.. Thus we deduce that for 6 small enough,

(6.46) €j(tr +L,6) = ex(tr + L, 9)

since we know that €;(t, + L,8) = e,(;)(t» + L,0) for some permutation . Hence
point (iii) of the lemma follows.

Note that the analytic continuations €;(z, §) are single valued in ga. Indeed, the
analytic continuation of e;(t, — L,6) along v,, denoted by €;(z,6), Vz € v,, is such
that

(6.47) ity + L,8) = &;(ty + L,6) = &;(t, + L,6) = ex(t, + L, )

due to Schwarz’s principle. We further require ¢ to be sufficiently small so that the
following estimates are satisfied:

(6.48) min  min  inf |Re(€;(z,6) —ex(2,6))| > b >0,
re{lip} GRIECr g\ Ja J
(6.49) min inf |Re(€;(z,8) —ex(z,6))] > b >0,
GRIEN CF
i<k o
(6.50) ~ max sup  |Re(¢)(z,6) — €,(2,6))| < a(Rez),
j<ke{l,...n} Imz‘zega

and, in the compacts 1% = I\ 1%,

i mi inf |Im(€;(z,8) — € 1)
o pin “*;LI{%” zlenTg [Tm(e;(z,0) — ex(z,9))]

1 : o ~ -
(6.51) > 5 T‘E{I?,I.I},p} {J_Ik.rg{l@ zleana [Im(€;(z,0) — €x(z,0))| > [Imz|c,
g

Im(€;(z,6) — €x(z,6
T By S I ,8) =B )
(6.52) <2 max max _ sup [Im(e;(z,0) —€x(z,0))| < [Imz|a(Rez).
re{l,...,p}j<k€{1,...,n}Ze'fa

The simultaneous requirements (6.26) and (6.50) are made possible by the continuity
properties of H'(z,6) and the uniformity in 6 of the decay at +oo of H(z, ) assumed
in H4 together with the fact that a(¢) can be replaced by a multiple of a(t) if necessary
to satisfy both estimates. The condition on § is given by the first inequalities in (6.51)
and (6.52), whereas the second ones are just recalls.
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Then it remains to check that the paths 4",vT, and v~ defined above satisfy the
dissipativity condition (6.17) for the corresponding indices. This is not difficult since
the above estimates are precisely designed to preserve inequalities such as (6.32),
(6.34), and (6.35). However, it should not be forgotten that in the sets I2, the
eigenvalues may be singular so that (6.18) cannot be used there. Therefore, when
checking that a path parameterized as above by u € R is dissipative, it is necessary
to consider separately the case u € R\(Uy=1,.. pI;), where we proceed as above with
(6.48), (6.49), (6.50), and (6.18), and the case u € Up=1, . pI,, where we use use
(6.51) and (6.52) instead of (6.18) as follows. If u € I, for r such that ¢, is a crossing
point for e;(t,0) and eg(t,0), we take (6.51) to estimate Im(€j (z,6) — € (z,0)) for
the corresponding indices j and k', and if ¢, is not a crossing point for e;(¢,0) and
ex(t,0), we use (6.52) to estimate Im(e;/(z,6) —€x/(2,6)). Consequently, the domains
D and D defined above keep the same dissipativity properties when 6 > 0 is small
enough.

Let us finally turn to the determination of the associated permutation o. As
noticed earlier, the eigenvalues €;(z,8) are continuous in 6 uniformly in z € S,.
Hence, since the eigenvalues e;(z,0) are analytic in S, we have
(6.53) lim €;(00,6) = ej(c0,0) j=1,2,...,n,

6—0
whereas along the real axis (see Figure 4), we have

(654) %l_r% €o(5) (OO,(S) = 6.7'(00,0),

with ¢ defined in the lemma, from which the result follows. O

7. Applications. Let us consider the time-dependent Schrédinger equation in
the adiabatic limit. The relevant equation is then (2.1), where H(t) = H*(t) is the
time-dependent self-adjoint Hamiltonian. Thus we can take J = I in Proposition 2.1
to get

(7.1) H(t)= H*(t) = H*(t).

Since the norm of an eigenvector is positive, it remains to impose the gap hypothesis in
H3 to fit in the framework, and we deduce that the S-matrix is unitary since R = 1.
In this context, the elements of the S-matrix describe the transitions between the
different levels between ¢ = —co and ¢ = +o00 in the adiabatic limit.

We now specify our concern a little further and consider a three-level system, i.e.,
H(t) = H*(t) € M3(C). We assume that H(t) satisfies the hypotheses of Theorem 6.1
with an extra parameter ¢, which we omit in the notation, and displays two avoided
crossings at t1 < to, as shown in Figure 7. The corresponding permutation ¢ is given
by

(7.2) (1) =3, a(2) =1, a(3) = 2.

By Theorem 6.1, we can compute asymptotically the elements s31, s12, 23, and s;;,
7 = 1,2,3. Using the unitarity of the S-matrix, we can get some more information.
Introducing

Im /C e;()dz

J
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1 e,(t,d)

0 e
e(t,?)

e2(t ,0) 7 /
el(t ,0)

e,(t,0)

t

FiG. 7. The pattern of avoided crossings in the adiabatic context.

where (; is in the upper half-plane, with the notation of section 6, it follows that
(7.4) sg = O(e”TFT2)/e)y g0 = O(e1/%), 595 = O(e712/5),

and

(7.5) sj; =1+0(), j=123.

Expressing the fact that the first and second columns as well as the second and third
rows are orthogonal, we deduce

(7.6) so1 = —s12" L (14 0(e722/9)),
522

(77) a2 = —saa oo (1+0(e72/%)).
22

Finally, the estimate in Theorem 6.1 yields

(7.8) S13 = @(ge—\h\(ez(oo,é‘)—el(oo.,é))/se—l‘z/s) _ O(e_(r2+p2+]()/s)7

where K > 0, since we have that I'; — 0 as 6 — 0. Hence we get

(7.9)
S11 $12 O (e—(F2+F2+K)/E)
S = —S812 z;; (1 -+ O (672F2/6)) 59292 523 s
S31 —S8923 ;22 (1 + 0O (€_2F1/E)) S33

where all s;,’s above can be computed asymptotically up to exponentially small rel-
ative error using (6.10).

The smallest asymptotically computable element s3; describes the transition from
e1(—00,8) to ez(+00,6). The result that we obtain for this element is in agreement
with the rule of thumb that claims that the transitions take place locally at the avoided
crossings and can be considered as independent. Accordingly, we can only estimate
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the smallest element of all, s;3, which describes the transition from es(—o0,d) to
e1(400,8), for which the avoided crossings are not encountered in the “right order,”
as discussed in [HP]. It is possible, however, to get an asymptotic expression for this
element in some cases. When the unperturbed levels es(z,0) and e3(z,0) possess a
degeneracy point in S, and when there exists a dissipative domain for the index 3 of
the unperturbed eigenvalues going above this point, one can convince oneself that s;3
can be computed asymptotically for § small enough using the techniques presented
above.

Our second application is the study of the semiclassical scattering properties of
the multichannel stationary Schrédinger equation with energy above the potential
barriers. The relevant equation is then

2

(7.10) —e? d2 O(t) + V()®(t) = BD(1),

dt
where t € R is a space variable, ®(¢) € C™ is the wave function, £ — 0 denotes
Planck’s constant, V (t) = V*(t) € M,,(C) is the matrix of potentials, and the spectral
parameter F is kept fixed and large enough so that

(7.11) Uit)y=E-V(t)>0.

Introducing

(7.12) P(t) = (ig@(t)) e Cc*m,

we cast equation (7.10) into the equivalent form (2.1) for ¢ (¢) with the generator
0O 1

(7.13) H(t) = (U(t) O) € M, (C).

It is readily verified that

(7.14) H(t)=J 'H*(t)J,

with

(7.15) J:<? é).

Concerning the spectrum of H(t), we should remark that if the real and positive
eigenvalues of U(t), k3(t), j = 1,...,m associated with the eigenvectors u;(t) € C™
are assumed to be distinct, i.e.,

(7.16) 0<ki(t) <ki(t)<--- <k2(t),

then the spectrum of the generator H(t) given by (7.13) consists of 2m real distinct
eigenvalues

(7T17) = kp(t) < —kmoi1(t) < -+ < —=k1(t) < k1(t) < ka(t) < -+ < kp(2)

associated with the 2m eigenvectors

Uj (t) 2m
G 0= (i) <€

(7.18) H(t)x7 () = £k; (t)x; (1)
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We check that

(7.19) (xX;(0),x;7(0)) s = £2k;(0)[Ju; (0)| #0, j=1,...,m,

where ||u;(0)|| is computed in C™, so that Proposition 2.1 applies. Before dealing
with its consequences, we further make explicit the structure of S. Adopting the
notation suggested by (7.17) and (7.18), we write

(7.20) H(t) = Zm: k(P () = > k()P (1),
Jj=1 j=1
(7.21)  Y@t) = zm: Cj(t)@;(t)e_i fot k;(t")dt' /e + zm: ij (t)(p; (t)ei f; kj(t")dt' /e

and introduce
(7.22) cE(t) = . cCcm.

Hence we have the block structure

o s(S09) = (3 80 (S0) - (£)
where Sy, € M,,(C), 0,7 € {+,—}.

Let us turn to the symmetry properties of S. We get from (7.19) and Proposition
2.1 that

(7.24)

Siv S\ D (T ON(S:y S\ (I O\ (S, -5,
s, s ) “\o -1)ls; s )\o -1)7 -5 s )

In terms of the blocks S, -, this is equivalent to

(7.25) SiSt, -8 S8t =1,
(726) S++Si+ — S_;,__Si_ - ()7
(7.27) S S8 -8 .5 =1

The block S 4 describes the transmission coefficients associated with a wave traveling
from the right and S_, describes the associated reflexion coefficients. Similarly, S__
and S;_ are related to the transmission and reflexion coeflicients associated with a
wave incoming from the left. It should be noted that in the case of equation (7.10),
another convention is often used to define an S-matrix (see, for instance, [F1]). This
gives rise to a different S-matrix with a similar interpretation. However, it is not
difficult to establish a one-to-one correspondence between the two definitions. If the
matrix of potentials V' (t) is real symmetric, we have further symmetry in the S-matrix.

LEMMA 7.1. Let S given by (7.23) be the S-matriz associated with (7.10) under
condition (7.11). If we further assume that V(t) = V (t), then taking go}t (0) € R?™,
j=1....m, in (7.21), we get

(728) S++ = 877, S+, = S,+.
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)

e, (t,8)
/

Fic. 8. The pattern of avoided crossings in the semiclassical context.

The corresponding results for the S-matrix defined in [F1] are derived in [MN].
The proof of this lemma can be found in Appendix B. We now consider (7.10) in the
case where U(t) = U*(t) = U(t) € Ma(R), which describes a two-channel Schrédinger
equation. We assume that the four-level generator H(t) displays three avoided cross-
ings at t; < to, two of which take place at the same point ¢; because of the symmetry
of the eigenvalues, as in Figure 8. By Lemma 7.1, it is enough to consider the blocks
Sy+ and S;_. The transitions corresponding to elements of these blocks which we
can compute asymptotically are from level 1T to level 2% and from level 2~ to level
1*. They correspond to elements si;7 and s};, respectively. With the notation

Im/{v k1 (z)dz

J

(7.29) T, = . j=1.2,

where (; is in the upper half-plane, we have the estimates
(7.30)
s;ﬁ = O(e—rl/aL 512 =0O(e —(F1+F2)/6)’ S;rj+ =14+0(), j=1,2.
It follows from (7.26) and Lemma 7.1 that the matrix Sy ST _ is symmetric. Hence
(7.31) SIT 831 813 833 =831 811 533 513
whereas we get from (7.25) that
(7.32) STT 831 + 51 S35 = siy s31 + 81y 535 -
The only useful estimate we get with Theorem 6.1 is

(7.33) g5 = O(e” A2 K)/ey - jr s )
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which together with (7.30) in (7.31) yields
(7.34) 31 = S0 si1 /5T + O(ei(rﬁm)/s)-

Thus from (7.32) and (5.34) for s},

++
(7.:35) st = —sfi 1L (14 0(e9),
++
S22
with
(736) 0< k< min(Fl, Fg)
Summarizing, we have
o+
S++ _8++ S11 1+0 e—m/a
(7.37) Syp=|"" 2 ( ( ))
st st
21 22
and
o (e_m/a) 515
(738) S—i—— = (O (eiﬁ/s) O (e*(F1+F2+K)/5) )

where all elements s7p can be asymptotically computed up to exponentially small
relative corrections using (6.10). We obtain no information on the first column of
Si_ except estimate (5.34), where (7.36) necessarily holds. However, if there exists
one or several other dissipative domains for certain indices, it is then possible to get
asymptotic formulas for the estimated terms.

Appendix A. Proof of Proposition 2.1. A direct consequence of the property
(A1) H(t) = H#(t) = JYH*(t)J

is the relation o(H(t)) = o(H(t)). Thus if o(H(0)) C R, then o(H(t)) C R for all
t € R since the analytic eigenvalues are assumed to be distinct and nondegenerate
for all ¢ € R. Let e;(0) be the eigenvalue associated with ¢;(0). Then due to the
property H(0) = H#(0),

(A2)  (pi(0), H(0)pk(0))s = er(0)(;(0), 0k (0))s = €;(0)(;(0), ¥£(0)).s

for any j,k =1,...,n. For j = k, we get from the assumption (¢;(0),¢,(0))s # 0
that €;(0) € R, and from the fact that the eigenvalues of H(0) are distinct,

(A.3) ((0), 0(0))s =0, j # k.

The resulting reality of e;(¢) for all t € R and j =1, ..., n together with (A.1) yields
(A.4) Pi(t) = J7'P}(t)J.

Hence using the fact that the P;’s are projectors,

n n

K(t)=>_P/t)P;j(t)=> (JT'P;(t)J) J ' P;(t)] =J" Zn:Pf’(t)Pj*(t)J

i=1 i=1 i=1
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Let @, ¥ € C™ and W (¢) be defined by
(A.6) W'(t) = K(t)W(t), W) =1
(see (3.5)). Then we have

(W)@, W(t)W)]; = (W()Q[JW(1)P) + (W (1)@ JW' (1) T)
= (K(OW (@) @[JW ()W) + (W (1)@ JK ()W ()W)
(A7) = (WH)PJ(JTIK*(t)] + K(H)W(H)¥) =0

Thus in the indefinite metric, the scalar products of the eigenvectors of H(t), ¢;(t) =
W (t)p;(0) (see (3.7)), are constants:

(A-8) (05 (1), 2r(t)) s = (;(0), x(0)).s-
We can then normalize the ¢;(0) in such a way that
(A.9) (25(1), (1)) s = ((0), 0£(0)) s = bjkpj>

with p; € {+1,—1}. Let 9¥(t) and x(¢) be two solutions of (2.1). By an argument
similar to the one above using (A.1), we deduce

(A.10) (x(®), ¥(t).s = (x(0),¥(0)).s-

Inserting the decompositions

(All) ZC] 71 e] (t")dt’ /Eiﬂj(t),

(A.12) Z dj(t)e o s 1o )

in this last identity yields

n

7 du(t)e; (1)(pult). (1) e Jo 1D 7es N/ Zd st

Jok=1
(A.13) = d;(0)p;c;(0) = Z d;j(£00)pjc;(£00).
j=1 j=1
Since the initial conditions for the coefficients,
(A.14) ¢j(=00) = bjk,  dj(—00) = bj,
imply
(A.15) ¢j(+00) = sjk,  dj(+00) = 551,

introducing the matrix R = diag(p1, p2, - - -, pn) € M, (C), we get from (A.13) that
(A.16) R = SRS,

which is equivalent to the assertion S~! = RS*R. 0
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Appendix B. Proof of Lemma 7.1. Let G = G* = G~! be given in block
structure by

(B.1) G = <(I) OI) € Moy (C)

and H(t) be given by (7.13) with U(t) = U(t) = U*(¢). Since
(B.2) GH(t)G = —H(t), H(t)=H(t),

and the eigenvalues of H(t) are real, it is readily verified that

(B.3) GPF()G =Pf(t), P (t)=P(t), j=1,...,m.
Hence
(B.4) K(t) = i PI'(t)P] (t) = K(t) = GK(t)G,

(B.5) W'(t) = K(t)W(t), W) =1
satisfies
(B.6) W(t) = W(t) = GW(t)G.

Since the matrix of potentials U(0) is real symmetric, its eigenvectors u;(0) may be
chosen real so that we can assume that

0= (i) x
Thus it follows from the above that

(B.8) e (t) =W(t)p; (0) e R*™, VLER,

and satisfies

(B.9) Gy (t) = GW(1)GGy} (0) = W(1)Gey (0) = o] (t).
Finally, the main consequence of (B.2) is that if ¥(¢) is a solution of
(B.10) ie!(t) = H(t)b(b),

then (t) = G (t) is another solution, as is easily verified. Thus we can write with
(7.21), (B.8), and (B.9) that

o(t) =D dF g (e b MO LS ar g (pgel o BN

j=1

NE

<.
Il
—_

M-

i [Tk@)ar N —i [Tk t))dt!
(B.11) cF ey (e S ki) LS (e (e Jy k@' e
j=1

<.
Il
—_



Downloaded 12/12/13 to 146.155.23.42. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

702

ie.,

(B.12)

ALAIN JOYE

J
d; (t)=cf(t), Vj=1,...,m, VteR.

Finally, using the definition (7.23) and the above property for ¢ = o0, we get for any
d*(—occ0) € C™ that

(B.13)

() = (3 ) (0 - (5 ) (),

from which the result follows. 0
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