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Abstract. The singular limit ε→ 0 of the S-matrix associated with the equation iεdψ(t)/dt =
H(t)ψ(t) is considered, where the analytic generator H(t) ∈Mn(C) is such that its spectrum is real
and nondegenerate for all t ∈ R. Sufficient conditions allowing us to compute asymptotic formulas
for the exponentially small off-diagonal elements of the S-matrix as ε → 0 are made explicit and
a wide class of generators for which these conditions are verified is defined. These generators are
obtained by means of generators whose spectrum exhibits eigenvalue crossings which are perturbed
in such a way that these crossings turn into avoided crossings. The exponentially small asymptotic
formulas which are derived are shown to be valid up to exponentially small relative error by means
of a joint application of the complex Wentzel–Kramers–Brillouin (WKB) method together with
superasymptotic renormalization. This paper concludes with the application of these results to
the study of quantum adiabatic transitions in the time-dependent Schrödinger equation and of the
semiclassical scattering properties of the multichannel stationary Schrödinger equation. The results
presented here are a generalization to n-level systems, n ≥ 2, of results previously known for two-level
systems only.
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1. Introduction. Several problems of mathematical physics lead to the study
of the scattering properties of linear ordinary differential equations in a singular limit

iεψ′(t) = H(t)ψ(t), t ∈ R, ε→ 0,(1.1)

where the prime denotes the derivative with respect to t, ψ(t) ∈ Cn, and H(t) ∈
Mn(C) for all t. A system described by such an equation will be called an n-level
system. Let us mention, for example, the study of the adiabatic limit of the time-
dependent Schrödinger equation or the semiclassical limit of the one-dimensional mul-
tichannel stationary Schrödinger equation at energies above the potential barriers, to
which we will return below. When the generator H(t) is well behaved at +∞ and
−∞, the scattering properties of the problem can be described by means of a matrix
naturally associated with equation (1.1), the so-called S-matrix. This matrix relates
the behavior of the solution ψ(t) as t → −∞ to that of ψ(t) as t → +∞. Assuming
that the spectrum σ(t) of H(t) is real and nondegenerate,

σ(t) = {e1(t) < e2(t) < · · · < en(t)} ∈ R,(1.2)

the S-matrix is essentially given by the identity matrix

(1.3)

S = diag(s11(ε), s22(ε), . . . , snn(ε)) +O(ε∞), where sjj(ε) = 1 +O(ε) as ε→ 0,
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670 ALAIN JOYE

provided H(t) is C∞; see, e.g., [F1], [F2], and [W]. Moreover, if H(t) is assumed to
be analytic, it was proven in various situations that the off-diagonal elements sjk of
S are exponentially decreasing [FF], [W], [F1], [F2], [JKP], [JP4]:

sjk = O
(

e−κ/ε
)
, ∀j 6= k,(1.4)

as ε → 0. See also [JP1], [N], [M], and [Sj] for corresponding results in infinite-
dimensional spaces. Since the physical information is often contained in these off-
diagonal elements, it is of interest to be able to give an asymptotic formula for sjk
rather than a mere estimate.

For two-level systems (or systems reducible to this case (see [JP2], [J], and [MN])),
the situation is now reasonably well understood, at least under generic circumstances.
Indeed, a rigorous study of the S-matrix associated with (1.1) when n = 2 under the
hypotheses loosely stated above is provided in the recent paper [JP4]. The treatment
presented unifies, in particular, earlier results obtained for either the time-dependent
adiabatic Schrödinger equation (see, e.g., [JP3] and the references therein) or the
study of the above barrier reflexion in the semiclassical limit (see, e.g., [FF] and [O]).
Further references are provided in [JP4]. As an intermediate result, the asymptotic
formula

sjk = gjke−Γjk/ε (1 +O(ε)), ε→ 0,(1.5)

for j 6= k ∈ {1, 2} with gjk ∈ C and ReΓjk > 0 is proven in [JP4]. As is well known,
to get an asymptotic formula for sjk, one has to consider (1.1) in the complex plane,
in particular in the vicinity of the degeneracy points of the analytic continuations of
eigenvalues e1(z) and e2(z). Provided the level lines of the multivalued function

Im

∫ z

0

e1(z′)− e2(z′)dz′ = cst,(1.6)

called Stokes lines, naturally associated with (1.1) behave properly in the complex
plane, the so-called complex Wentzel–Kramers–Brillouin (WKB) method allows to
prove (1.5). More importantly, however, it is also shown in [JP4] how to improve
(1.5) to an asymptotic formula accurate up to an exponentially small relative error:

sjk = g∗jk(ε)e−Γ∗jk(ε)/ε(1 +O(e−κ/ε)), ε→ 0,(1.7)

with g∗jk(ε) = gjk + O(ε) and Γ∗jk(ε) = Γjk + O(ε2). This is achieved by using a
complex WKB analysis jointly with the recently developed superasymptotic theory
[Be], [N], [JP2]. Note that when given a generator, the principal difficulty in justifying
formulas (1.5) and (1.7) is the verification that the corresponding Stokes lines (1.6)
display the proper behavior globally in the complex plane, which may or may not
be the case [JKP]. However, this condition is always satisfied when the complex
eigenvalue degeneracy is close to the real axis, as shown in [J]. See also [MN] and [R]
for recent related results.

For n-level systems, with n ≥ 3, the situation is by no means as well understood.
There are some results obtained with particular generators. In [D], [CH1], [CH2], and
[BE], certain elements of the S-matrix are computed if H(t) = H∗(t) depends linearly
on t, H(t) = A+tB for some particular matrices A and B. The choices of A and B are
such that all components of the solution ψ(t) can be deduced from the first one and
an exact integral representation of this first component can be obtained. The integral
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EXPONENTIAL ASYMPTOTICS FOR n-LEVEL S-MATRICES 671

representation is analyzed by standard asymptotic techniques, and this leads to results
which are valid for any ε > 0, as in the case for the classical Landau–Zener generator.
The study of the three-level problem when H(t) = H∗(t) ∈ M3(R) is tackled in the
closing section of the very interesting paper [HP]. A nonrigorous and essentially local
discussion of the behavior of the level lines of Im

∫ z
0
ej(z

′)− ek(z′)dz′, j 6= k = 1, 2, 3,
is provided, and it justifies in very favorable cases an asymptotic formula for some
elements of the S-matrix. See also the review [So], where a nonrigorous study of
(1.1) is made close to a complex degeneracy point of a group of eigenvalues by means
of an exact solution to a model equation. However, no asymptotic formula for sjk,
j 6= k, can be found in the literature for general n-level systems, n ≥ 3. This is due
to the fact that the direct generalization of the method used successfully for two-level
systems may lead to seemingly inextricable difficulties for n = 3. Indeed, with three
eigenvalues, one has to consider three sets of level lines Im

∫ z
0
ej(z

′)−ek(z′)dz′ to deal
with (1.1) in the complex plane, and the conditions that they have to fulfill in order
for the limit ε → 0 to be controlled may be incompatible for a given generator; see
[F1], [F2], and [HP]. It should be mentioned, however, that there are specific examples
in which this difficult problem can be mastered. Such a result was recently obtained
in the semiclassical study [Ba] of a particular problem of resonances for which similar
considerations in the complex plane are required.

The goal of this paper is to provide some general insight into the asymptotic
computation of the S-matrix associated with n-level systems, n ≥ 3, based on a
generalization of the techniques which proved to be successful for two-level systems.
The content of this paper is twofold. On one hand, we set up a general framework
in which asymptotic formulas for the exponentially small off-diagonal coefficients can
be proven. On the other hand, we actually prove such formulas for a wide class of
n-level systems. In the first part of the paper, we give our definition of the S-matrix
associated with equation (1.1) and make explicit the symmetries it inherits from the
symmetries of H(t) for t ∈ R (Proposition 2.1). We then turn to the determination of
the analyticity properties of the eigenvalues and eigenvectors ofH(z), z ∈ C, which are
at the root of the asymptotic formulas that we derive later (Lemma 3.1). The next step
is the formulation of sufficient conditions adapted to the scattering situation that we
consider, under which a complex WKB analysis allows us to prove a formula like (1.5)
(Proposition 4.1). The conditions stated are similar but not identical to those given
in [JKP] or [HP]. As a final step, we show how to improve the asymptotic formula
(1.5) to (1.7) by means of superasymptotic machinery (Proposition 5.2 and Lemma
5.2). We then turn to the second part of the paper, where we show that a wide class
of generators fits into our framework and satisfies our conditions. These generators
are obtained by perturbation of generators whose eigenvalues display degeneracies on
the real axis (in the spirit of [J]). We prove that for these generators, in the absence
of any symmetry of the generator H(t), at least one element per column in the S-
matrix can be asymptotically computed (Theorem 6.1). This is the main technical
section of the paper. The major advantage of this construction is that it is sufficient
to look at the behavior of the eigenvalues on the real axis to check if the conditions are
satisfied. The closing section contains an application of our general results to the study
of quantum adiabatic transitions in the time-dependent Schrödinger equation and
of the semiclassical scattering properties of the multichannel stationary Schrödinger
equation. In particular, we make explicit use of the symmetries of the S-matrix to
increase the number of its elements for which an asymptotic formula holds. In the
latter application, further specific symmetry properties of the S-matrix are derived
(Lemma 7.1).
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672 ALAIN JOYE

2. Definition and properties of the S-matrix. We consider the evolution
equation

iεψ′(t) = H(t)ψ(t), t ∈ R, ε→ 0,(2.1)

where the prime denotes the derivative with respect to t, ψ(t) ∈ Cn, and H(t) ∈
Mn(C) for all t. We make some assumptions on the generator H(t). The first is the
usual analyticity condition in this context.

H1. There exists a strip

Sα = {z ∈ C| |Imz| ≤ α}, α > 0,(2.2)

such that H(z) is analytic for all z ∈ Sα.
Since we are studying scattering properties, we need sufficient decay at infinity.
H2. There exist two nondegenerate matrices H(+), H(−) ∈ Mn(C) and a > 0

such that

lim
t→±∞

|t|1+a sup
|s|≤α

‖H(t+ is)−H(±)‖ <∞.(2.3)

We finally give a condition which has to do with the physics behind the problem.
H3. For t ∈ R, the spectrum of H(t), denoted by σ(t), is real and nondegenerate

σ(t) = {e1(t) < e2(t) < · · · < en(t)} ⊂ R,(2.4)

and there exists g > 0 such that

inf
j 6=k
t∈R

|ej(t)− ek(t)| ≥ g.(2.5)

As a consequence of H3, for each t ∈ R, there exists a complete set of projectors
Pj(t) = P 2

j (t) ∈Mn(C), j = 1, 2, . . . , n, such that

n∑
j=1

Pj(t) ≡ I,(2.6)

H(t) =
n∑
j=1

ej(t)Pj(t),(2.7)

and there exists a basis of Cn of eigenvectors of H(t). We determine these eigenvectors
ϕj(t), j = 1, 2, . . . , n, uniquely (up to a constant) by requiring them to satisfy

H(t)ϕj(t) = ej(t)ϕj(t),(2.8)

Pj(t)ϕ
′
j(t) ≡ 0, j = 1, 2, . . . , n.(2.9)

Explicitly, if ψj(t), j = 1, 2, . . . , n, form a complete set of differentiable eigenvectors
of H(t), the eigenvectors

ϕj(t) = e
−
∫ t

0
ξj(t
′)dt′

ψj(t) s.t. ϕj(0) = ψj(0)(2.10)

with

ξj(t) =
〈ψj(t)|Pj(t)ψ′j(t)〉

‖ψj(t)‖2
, j = 1, . . . , n,(2.11)
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EXPONENTIAL ASYMPTOTICS FOR n-LEVEL S-MATRICES 673

verify (2.9). The fact that this choice leads to an analytic set of eigenvectors close
to the real axis will be proven below. We expand the solution ψ(t) along the basis
just constructed, thus defining the unknown coefficients cj(t), j = 1, 2, . . . , n, to be
determined,

ψ(t) =
n∑
j=1

cj(t)e
−i
∫ t

0
ej(t

′)dt′/ε
ϕj(t).(2.12)

The phases e
−i
∫ t

0
ej(t

′)dt′/ε
(see H3) are introduced for convenience. By inserting

(2.12) into (2.1), we get the following differential equation for the cj(t)’s:

c′j(t) =
n∑
k=1

ajk(t)ei∆jk(t)/εck(t),(2.13)

where

∆jk(t) =

∫ t

0

(ej(t
′)− ek(t′))dt′(2.14)

and

ajk(t) = −〈ϕj(t)|Pj(t)ϕ
′
k(t)〉

‖ϕj(t)‖2
.(2.15)

Here 〈·|·〉 denotes the usual scalar product in Cn. Our choice (2.9) implies ajj(t) ≡ 0.
It is also shown below that the ajk(t)’s are analytic functions in a neighborhood of
the real axis and that hypothesis H2 implies that they satisfy the estimate

lim
t→±∞

sup
j 6=k
|t|1+a |ajk(t)| <∞.(2.16)

As a consequence of this last property and of the fact that the eigenvalues are real by
assumption, the following limits exist:

lim
t→±∞

cj(t) = cj(±∞).(2.17)

We are now able to define the associated S-matrix, S ∈Mn(C), by the identity

S


c1(−∞)
c2(−∞)

...
cn(−∞)

 =


c1(+∞)
c2(+∞)

...
cn(+∞)

 .(2.18)

Such a relation makes sense because of the linearity of equation (2.13). It is a well-
known result that under our general hypotheses, the S-matrix satisfies

S = I +O(ε).(2.19)

Note that the jth column of the S-matrix is given by the solution of (2.13) at t =∞
subjected to the initial conditions ck(−∞) = δjk, k = 1, 2, . . . , n.

In general, the S-matrix defined above has no particular properties besides that
of being invertible. However, when the generator H(t) satisfies some symmetry prop-
erties, the same is true for S. Since such properties are important in applications, we
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674 ALAIN JOYE

show below that if H(t) is self-adjoint with respect to some indefinite scalar product,
then S is unitary with respect to another indefinite scalar product. Let J ∈ Mn(C)
be an invertible self-adjoint matrix. We define an indefinite metric on Cn by means
of the indefinite scalar product

(·, ·)J = 〈·|J ·〉.(2.20)

It is easy to check that the adjoint A# of a matrix A with respect to the (·, ·)J scalar
product is given by

A# = J−1A∗J.(2.21)

Proposition 2.1. Let H(t) satisfy H1 and H2 and possess n distinct eigenvalues
∀t ∈ R. Furthermore, assume that H(t) is self-adjoint with respect to the scalar
product (·, ·)J ,

H(t) = H#(t) = J−1H∗(t)J, ∀t ∈ R,(2.22)

and the eigenvectors ϕj(0) of H(0) satisfy

(ϕj(0), ϕj(0))J = ρj , ρj ∈ {−1, 1}, ∀j = 1, . . . , n.(2.23)

Then the eigenvalues of H(t) are real ∀t ∈ R and the S-matrix is unitary with respect
to the scalar product (·, ·)R, where R = R∗ = R−1 is the real diagonal matrix R =
diag(ρ1, ρ2, . . . , ρn),

S# = RS∗R = S−1.(2.24)

Remark. The condition (ϕj(0), ϕj(0))J = ±1 can always be satisfied by suitable
renormalization provided (ϕj(0), ϕj(0))J 6= 0.

The main interest of this proposition is that when the S-matrix possesses symme-
tries, some of its elements can be deduced from resulting identities without resorting
to their actual computations.

A simple proof of Proposition 2.1 that makes use of notions discussed in the next
section can be found in Appendix A. Proposition 2.1 can actually be used for the two
main applications that we deal with in section 7. Note that in specific cases, further
symmetry properties can be derived for the S-matrix; see section 7.

3. Analyticity properties. The generator H(z) is analytic in Sα; hence the
solution of the linear equation (2.1) ψ(z) is analytic in Sα as well. However, the
eigenvalues and eigenprojectors of H(z) may have singularities in Sα. Let us recall
some basic properties, the proofs of which can be found in [K]. The eigenvalues and
eigenprojectors of a matrix analytic in a region of the complex plane have analytic
continuations in that region with possible singularities located at points z0, called
exceptional points. In a neighborhood free of exceptional points, the eigenvalues are
given by branches of analytic functions and their multiplicities are constant. One
eigenvalue can therefore be analytically continued until it coincides at z0 with one or
several other eigenvalues. The set of such points defines the set of exceptional points.
The eigenvalues may possess branching points at an exceptional z0, where they are
continuous, whereas the eigenprojectors are also multivalued but diverge as z → z0.
Hence by hypothesis H3, the n distinct eigenvalues ej(t) defined on the real axis are
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EXPONENTIAL ASYMPTOTICS FOR n-LEVEL S-MATRICES 675

Fig. 1. The paths β, δ, and η0 in Sα\Ω.

analytic on the real axis and possess multivalued analytic continuations in Sα, with
possible branching points at the set of degeneracies Ω, given by

Ω = {z0| ej(z0) = ek(z0) for some k and j and some analytic continuation}.(3.1)

By assumption H2, Ω is finite, and by H3, Ω ∩R = ∅ and Ω = Ω due to Schwarz’s
principle. Similarly, the eigenprojectors Pj(t) defined on the real axis are analytic
on the real axis and possess multivalued analytic continuations in Sα with possible
singularities at Ω. To see more precisely what happens to these multivalued functions
when we turn around a point z0 ∈ Ω, we consider the construction described in Figure
1. Let f be a multivalued analytic function in Sα\Ω. We denote by f(z) the analytic
continuation of the restriction of f around 0 along some path β ∈ Sα\Ω from 0 to
z. Then we perform the analytic continuation of f(z) along a negatively oriented

loop δ based at z around a unique point z0 ∈ Ω, and we denote by f̃(z) the function
that we get when we come back to the starting point. (If δ is positively oriented, the
construction is similar.) For later purposes, we define η0 as the negatively oriented
loop homotopic to the loop based at the origin encircling z0 obtained by following β
from 0 to z, δ from z back to z, and β in the reverse sense from z back to the origin.
We will keep this notation in the rest of this section. It follows from the discussion
above that if we perform the analytic continuation of the set of eigenvalues {ej(z)}nj=1,
along a negatively oriented loop around z0 ∈ Ω, we get the set {ẽj(z)}nj=1 with

ẽj(z) = eσ0(j)(z), j = 1, . . . , n,(3.2)

where

σ0 : {1, 2, . . . , n} → {1, 2, . . . , n}(3.3)

is a permutation that depends on η0. Similarly, and with the same notations, we get
for the analytic continuations of the projectors around z0

P̃j(z) = Pσ0(j)(z), j = 1, . . . , n.(3.4)

Let us consider now the eigenvectors ϕj(t). We define W (t) as the solution of

W ′(t) =
n∑
j=1

P ′j(t)Pj(t)W (t)(3.5)

≡ K(t)W (t), W (0) = I,

where t ∈ R. It is well known [K], [Kr] that W (t) satisfies the intertwining identity

W (t)Pj(0) = Pj(t)W (t), j = 1, 2, . . . , n, ∀t ∈ R,(3.6)
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676 ALAIN JOYE

so that if {ϕj(0)}nj=1 denotes a set of eigenvectors of H(0), the vectors defined by

ϕj(t) = W (t)ϕj(0)(3.7)

are eigenvectors of H(t). Moreover, using the identityQ(t)Q′(t)Q(t) ≡ 0, which is true
for any differentiable projector, it is easily checked that condition (2.9) is satisfied by
these vectors. The generator K(t) is analytic on the real axis and can be analytically
continued in Sα\Ω. Actually, K(z) is single valued in Sα\Ω. Indeed, let us consider
the analytic continuation of K(z) around z0 ∈ Ω. We get from (3.4) that

P̃ ′j(z) = P ′σ0(j)(z)(3.8)

so that

K̃(z) =

n∑
j=1

P̃ ′j(z)P̃j(z) =
n∑
j=1

P ′σ0(j)(z)Pσ0(j)(z)

=
n∑
k=1

P ′k(z)Pk(z) = K(z).(3.9)

Consequently, W (t) can be analytically continued in Sα\Ω, where it is multivalued
and satisfies both (3.5) and (3.6) with z ∈ Sα\Ω in place of t ∈ R. Moreover, the
relation between the analytic continuation W (z) from 0 to some point z ∈ Sα\Ω and

the analytic continuation W̃ (z) is given by a monodromy matrix W (η0) such that

W̃ (z) = W (z)W (η0),(3.10)

where η0 is the negatively oriented loop based at the origin which encircles only z0 ∈ Ω
(see Figure 1). Note also that the analytic continuation W (z) is invertible in Sα\Ω
and W−1(z) satisfies

W−1′(z) = −W−1(z)K(z), W−1(0) = I.(3.11)

As a consequence, the eigenvectors (3.7) possess multivalued analytic extensions in
Sα\Ω. Indeed, it is easily seen that the analytic continuation of ϕj(z) along a neg-
atively oriented loop around z0 ∈ Ω, ϕ̃j(z), is proportional to ϕσ0(j)(z). Hence we
introduce the quantity θj(η0) ∈ C by the definition

ϕ̃j(z) = e−iθj(η0)ϕσ0(j)(z), j = 1, 2, . . . , n.(3.12)

Note that this is equivalent to W (η0)ϕj(0) = e−iθj(η0)ϕσ0(j)(0) (see (3.10)). Let us
consider the couplings (2.15). Using the definition (3.7), the invertibility of W (t), and
the identity (3.6), it is not difficult to see that we can rewrite

ajk(t) = −〈ϕj(0)|Pj(0)W (t)−1K(t)W (t)ϕk(0)〉
‖ϕj(0)‖2 , t ∈ R,(3.13)

which is analytic on the real axis and can be analytically continued in Sα\Ω, where it
is multivalued. Thus the same is true for the coefficients cj(t) which satisfy the linear
differential equation (2.13), and their analytic continuations satisfy the same equation
with z ∈ Sα\Ω in place of t ∈ R. We now come to the main identity of this section
regarding the coefficients cj(z). Let us denote by cj(z) the analytic continuation of
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EXPONENTIAL ASYMPTOTICS FOR n-LEVEL S-MATRICES 677

cj(0) from 0 to some z ∈ Sα\Ω. We perform the analytic continuation of cj(z) along
a negatively oriented loop around z0 ∈ Ω and denote by c̃j(z) the function that we
get when we come back at the starting point z.

Lemma 3.1. For any j = 1, . . . , n, we have

c̃j(z)e
−i
∫
η0
ej(u)du/ε

e−iθj(η0) = cσ0(j)(z)(3.14)

where η0, θj(η0) and σ0(j) are defined as above.
Proof. It follows from hypothesis H1 that ψ(z) is analytic in Sα so that

n∑
j=1

cj(z)e
−i
∫ z

0
ej(u)du/ε

ϕj(z)(3.15)

=
n∑
j=1

c̃j(z)
˜

e
−i
∫ z

0
ej(u)du/ε

ϕ̃j(z)

=
n∑
j=1

c̃j(z)e
−i
∫
η0
ej(u)du/ε

e
−i
∫ z

0
eσ0(j)(u)du/ε

e−iθj(η0)ϕσ0(j)(z).

We conclude by the fact that {ϕj(z)}nj=1 is a basis.
Remark. It is straightforward to generalize the study of the analytic continuations

around one singular point of the functions given above to the case where the analytic
continuations are performed around several singular points since Ω is finite. The loop
η0 can be rewritten as a finite succession of individual loops encircling only one point
of Ω so that the permutation σ0 is given by the composition of a finite number of
individual permutations. Thus the factors e−iθj(η0) in (3.12) should be replaced by
a product of such factors, each associated with one individual loop, and the same is
true for the factors exp(−i

∫
η0
ej(z)dz/ε) in Lemma 3.1. This process is performed in

the proof of Theorem 6.1.

4. Complex WKB analysis. This section is devoted to basic estimates on the
coefficients cj(z) in certain domains extending to infinity in both the positive and
negative directions inside the strip Sα. We first consider what happens in neighbor-
hoods of ±∞. It follows from assumption H2 by a direct application of the Cauchy
formula that (possibly by reducing α by an arbitrarily small amount)

lim
t→±∞

sup
|s|≤α

|t|1+a‖H ′(t+ is)‖ <∞.(4.1)

Hence the same is true for the single-valued matrix K(z):

lim
t→±∞

sup
|s|≤α

|t|1+a‖K(t+ is)‖ <∞.(4.2)

Let 0 < T ∈ R be such that

min
z∈Ω

Rez > −T and max
z∈Ω

Rez < +T.(4.3)

All quantities encountered so far are analytic in Sα ∩ {z||Rez| > T}, and we denote
with a “˜” any analytic continuation in that set. As noticed earlier,

W̃ ′(z) = K(z)W̃ (z), z ∈ Sα ∩ {z||Rez| > T}(4.4)

D
ow

nl
oa

de
d 

12
/1

2/
13

 to
 1

46
.1

55
.2

3.
42

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



678 ALAIN JOYE

Fig. 2. The path of integration for ∆̃jk(z) (the x’s denote points of Ω).

so that it follows from (4.2) that the limits

lim
t→±∞

W̃ (t+ is) = W̃ (±∞)(4.5)

exist uniformly in s ∈ ]−α, α[. Consequently (see (3.13)),

lim
t→±∞

|t|1+a sup
|s|≤α

|ãjk(t+ is)| <∞, ∀j, k ∈ {1, . . . , n}.(4.6)

Finally, for |t| > T , we can write

Im∆̃jk(t+ is) = Im

(∫
η

ej(z)dz −
∫
η

ek(z)dz

)
+

∫ s

0

Re(eσ(j)(t+ is′)− eσ(k)(t+ is′))ds′,(4.7)

where this equation is obtained by deforming the path of integration from 0 to z =
t + is into a loop η based at the origin, which may encircle points of Ω, followed by
the real axis from 0 to Rez and a vertical path from Rez to z (see Figure 2) and σ is
the corresponding permutation. Hence we have

sup
z∈Sα∩{z||Rez|>T}

Im∆̃jk(z) <∞,(4.8)

which together with (4.6) yields the existence of the limits

lim
t→±∞

c̃j(t+ is) = c̃j(±∞)(4.9)

uniformly in s ∈ ]−α, α[. We now define the domains in which useful estimates can
be obtained.

Definition. Let j ∈ {1, . . . , n} be fixed. A dissipative domain for the index j,
Dj ⊂ Sα\Ω, is such that

sup
z∈Dj

Rez =∞, inf
z∈Dj

Rez = −∞(4.10)

and is defined by the property that for any z ∈ Dj and any k ∈ {1, . . . , n}, there exists
a path γk ⊂ Dj parameterized by u ∈ ]−∞, t] which links −∞ to z,

lim
u→−∞

Reγk(u) = −∞, γk(t) = z,(4.11)

with

sup
z∈Dj

sup
u∈]−∞,t]

∣∣∣∣ dduγk(u)

∣∣∣∣ <∞,(4.12)
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EXPONENTIAL ASYMPTOTICS FOR n-LEVEL S-MATRICES 679

Fig. 3. The path β along which the analytic continuation of ∆jk(t) in Dj is taken.

and satisfies the monotonicity condition

Im∆̃jk(γk(u)) is a nondecreasing function of u ∈ ]−∞, t].(4.13)

Such a path is a dissipative path for {jk}. Here ∆̃jk(z) is the analytic continuation
of

∆jk(t) =

∫ t

0

(ej(t
′)− ek(t′))dt′, t ∈ R,(4.14)

in Dj along a path β described in Figure 3 going from 0 to −T ∈ R along the real
axis and then vertically up or down until it reaches Dj, where T > 0 is chosen as in
(4.3).

Let c̃k(z), k = 1, 2, . . . , n, z ∈ Dj , be the analytic continuations of ck(t) along the
same path β which are solutions of the analytic continuation of (2.13) in Dj along β:

c̃′k(z) =
n∑
l=1

ãkl(z)e
i∆̃kl(z)/εc̃l(z).(4.15)

We take as initial conditions in Dj

lim
Re z→−∞

c̃k(z) = lim
t→−∞

ck(t) = δjk, k = 1, . . . , n,(4.16)

and we define

xk(z) = c̃k(z)ei∆̃jk(z)/ε, z ∈ Dj , k = 1, . . . , n.(4.17)

Lemma 4.1. In a dissipative domain for the index j, we get the estimates

sup
z∈Dj

|xj(z)− 1| = O(ε),(4.18)

sup
z∈Dj

|xk(z)| = O(ε), ∀k 6= j.(4.19)

Remark. The real axis is a dissipative domain for all indices. In this case, we
have c̃j(t) ≡ cj(t). Hence we get from the application of the lemma for all indices
successively that S = I +O(ε).

The estimates we are looking for are then just a direct corollary.
Proposition 4.1. Assume that there exists a dissipative domain Dj for the index

j. Let ηj be a loop based at the origin which encircles all of the degeneracies between
the real axis and Dj and let σj be the permutation of labels associated with ηj, in the
spirit of the remark ending the previous section. The loop ηj is negatively (respectively,
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680 ALAIN JOYE

positively) oriented if Dj is above (respectively, below) the real axis. Then the solution
of (2.13) subjected to the initial conditions ck(−∞) = δjk satisfies

cσj(j)(+∞) = e−iθj(ηj)e
−i
∫
ηj
ej(z)dz/ε

(1 +O(ε)) ,(4.20)

cσj(k)(+∞) = O
(
εe

Im
∫
ηj
ej(z)dz/ε+hj(eσj(j)(+∞)−eσj(k)(+∞))/ε)

,(4.21)

with hj ∈ [H−j , H
+
j ], where H±j is the maximum (respectively, minimum) imaginary

part of the points at +∞ in Dj:

H+ = lim sup
t→+∞

sup
s|t+is∈Dj

s, H− = lim inf
t→+∞

inf
s|t+is∈Dj

s.(4.22)

Thus we see that it is possible to get the (exponentially small) asymptotic behavior
of the element sσj(j),j of the S-matrix, provided there exists a dissipative domain for
the index j. The difficult part of the problem is, of course, to prove the existence
of such domains Dj , which do not necessarily exist, and to have enough of them to
compute the asymptotic of the whole S-matrix. This task is the equivalent for n-level
systems of studying the global behavior of the Stokes lines for two-level systems. We
postpone this aspect of the problem until the next section. Note that we also get
from this result an exponential bound on the elements sσj(k),j of the S-matrix, k 6= j,
which may or may not be useful. If ηj encircles no point of Ω, we cannot get the
asymptotic behavior of sσj(j),j but only get the exponential bounds. Since our main
concern is asymptotic behaviors, we call the corresponding dissipative domain trivial.

Remark. In contrast with the two-level case (see [JP4]) we have to work with
dissipative domains instead of working with one dissipative path for all indices. In-
deed, it is not difficult to convince oneself with specific three-level cases that such a
dissipative path may not exist, even when the eigenvalue degeneracies are close to
the real axis. In return, we prove below the existence of dissipative domains in this
situation.

Proof of Proposition 4.1. The asymptotic relation is a direct consequence of
Lemma 3.1, (4.9), (4.17), and the first part of Lemma 4.1. The estimate is a conse-
quence of the same equations, the second estimate of Lemma 4.1, and the identity,
for t > T ,

Im∆̃jk(t+ is) = Im

(∫
ηj

ej(z)dz −
∫
ηj

ek(z)dz

)

+

∫ s

0

Re(eσj(j)(t+ is′)− eσj(k)(t+ is′))ds′.(4.23)

The path of integration from 0 to z for ∆̃jk(z) is deformed into the loop ηj followed
by the real axis from 0 to Rez and a vertical path from Rez to z. It remains to take
the limit t→ +∞.

Proof of Lemma 4.1. We rewrite equations (4.15) and (4.16) as an integral equa-
tion and perform an integration by parts on the exponentials:

c̃k(z) = δjk − iε
n∑
l=1

ãkl(z)

ẽk(z)− ẽl(z)
ei∆̃kl(z)/εc̃l(z)

+ iε
n∑
l=1

∫ z

−∞

(
ãkl(z

′)

ẽk(z′)− ẽl(z′)

)′
ei∆̃kl(z

′)/εc̃l(z
′)dz′
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EXPONENTIAL ASYMPTOTICS FOR n-LEVEL S-MATRICES 681

+ iε

n∑
l,m=1

∫ z

−∞

ãkl(z
′)ãlm(z′)

ẽk(z′)− ẽl(z′)
ei∆̃km(z′)/εc̃m(z′)dz′.(4.24)

Since all eigenvalues are distinct in Sα\Ω, the denominators are always different from
0. In terms of the functions xk, we get

xk(z) = δjk − iε
n∑
l=1

ãkl(z)

ẽk(z)− ẽl(z)
xl(z)

+ iε
n∑
l=1

∫ z

−∞

(
ãkl(z

′)

ẽk(z′)− ẽl(z′)

)′
ei(∆̃jk(z)−∆̃jk(z′))/εxl(z

′)dz′

+ iε
n∑

l,m=1

∫ z

−∞

ãkl(z
′)ãlm(z′)

ẽk(z′)− ẽl(z′)
ei(∆̃jk(z)−∆̃jk(z′))/εxm(z′)dz′.(4.25)

We introduce the quantity

|||x|||j = sup
z∈Dj
l=1,...,n

|xl(z)|(4.26)

and consider for each k equation (4.25) along the dissipative path γk(u) described in
the definition of Dj such that∣∣∣ei(∆̃jk(γk(t))−∆̃jk(γk(u)))/ε

∣∣∣ ≤ 1(4.27)

when u ≤ t along that path. Due to the integrability of the ãkl(z) at infinity and the
uniform boundedness of dγk(u)/du, we get the estimate |xk(z)− δkj | ≤ ε|||x|||jA for
some constant A uniform in z ∈ Dj ; hence |||x|||j ≤ 1 + ε|||x|||jA. Consequently, for
ε small enough, |||x|||j ≤ 2 and the result follows.

5. Superasymptotic improvement. All of the results above can be improved
substantially by using the so-called superasymptotic renormalization method [Be], [N],
[JP2]. The joint use of complex WKB analysis and superasymptotic renormalization
is very powerful, as demonstrated recently in [JP4] for two-level systems, and, roughly
speaking, it allows us to replace all remainders O(ε) by O(e−κ/ε), where κ > 0. We
briefly show how to achieve this improvement in the case of n-level systems.

Let H(z) satisfy H1, H2, and H3 in Sα, and let

Ŝα = Sα\ ∪r=1,...,p (Jr ∪ Jr),(5.1)

where each Jr is an open domain containing only one point of Ω in the open upper
half-plane. Hence any analytic continuation ej(z) of ej(t), t ∈ R, in Ŝα is isolated in

the spectrum of H(z) so that ej(z) is analytic and multivalued in Ŝα, and the same is
true for the corresponding analytic continuation Pj(z) of Pj(t), t ∈ R. Let σr be the
permutation associated with the loop ζr based at the origin which encircles Jr once
such that

ẽj(z) = eσr(j)(z),(5.2)

with the convention of section 3. The matrix K(z) is analytic and single valued in

Ŝα. Consider the single-valued analytic matrix

H1(z, ε) = H(z)− iεK(z), z ∈ Ŝα.(5.3)
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682 ALAIN JOYE

For ε small enough, the spectrum of H1(z, ε) is nondegenerate ∀z ∈ Ŝα so that its
eigenvalues e1

j (z, ε) and eigenprojectors P 1
j (z, ε) are multivalued analytic functions in

Ŝα. Moreover, for ε small enough, the analytic continuations of e1
j (z, ε) and P 1

j (z, ε)

around Jr satisfy ẽ1
j (z) = e1

σr(j)(z) and P̃ 1
j (z) = P 1

σr(j)(z), as can be easily deduced

from (5.2) by perturbation theory. Consequently, the matrix

K1(z, ε) =
m∑
j=1

P 1
j
′
(z, ε)P 1

j (z, ε)(5.4)

is analytic and single valued in Ŝα. Defining the single-valued matrix

H2(z, ε) = H(z)− iεK1(z, ε), z ∈ Ŝα,(5.5)

we can repeat the argument for ε small enough. By induction, we set for any q ∈ N

Hq(z, ε) = H(z)− iεKq−1(z, ε),(5.6)

Kq−1(z, ε) =

m∑
j=1

P q−1
j

′
(z, ε)P q−1

j (z, ε), z ∈ Ŝα,(5.7)

for ε is small enough. We have

Hq(z, ε) =
m∑
j=1

eqj(z, ε)P
q
j (z, ε),(5.8)

where the eigenvalues and eigenprojections are multivalued in Ŝα and satisfy

ẽqj(z, ε) = eqσr(j)(z, ε),(5.9)

P̃ qj (z, ε) = P qσr(j)(z, ε), j = 1, . . . , n,(5.10)

with the notations of (5.2). We quote from [JP4] and [JP2] the main proposition
regarding this construction.

Proposition 5.1. Let H(z) satisfy H1, H2, and H3 in Sα, and let Ŝα be defined
as above. Then there exist constants c > 0 and ε∗ > 0 and a real function b(t) with
limt→±∞ |t|1+ab(t) <∞ such that

‖Kq(z, ε)−Kq−1(z, ε)‖ ≤ b(Rez)εqcqq!,(5.11)

‖Kq(z, ε)‖ ≤ b(Rez)(5.12)

for all z ∈ Ŝα, all ε < ε∗, and all q ≤ q∗(ε) ≡ [1/ecε], where [y] denotes the integer
part of y and e is the basis of the neperian logarithm.

We can deduce from this that in Ŝα

eqj(z, ε) = ej(z) +O(ε2b(Rez)),(5.13)

P qj (z, ε) = ej(z) +O(εb(Rez)), ∀q ≤ q∗(ε).(5.14)

We introduce the notation fq
∗(ε) ≡ f∗ for any quantity fq depending on the index q,

and we henceforth drop the ε in the arguments of the functions that we encounter.
We define the multivalued analytic matrix W∗(z) for z ∈ Ŝα by

W∗
′(z) = K∗(z)W∗(z), W∗(0) = I.(5.15)
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EXPONENTIAL ASYMPTOTICS FOR n-LEVEL S-MATRICES 683

Due to the above observations and Proposition 5.1, W∗(z) enjoys all of the properties
that W (z) does, such as

W∗(z)P
∗
j (0) = P ∗j (z)W∗(z),(5.16)

W̃ ∗(z) = W∗(z)W∗(ζr)(5.17)

and, uniformly in s,

lim
t±∞

W∗(t+ is) = W∗(∞).(5.18)

Thus we define for any z ∈ Ŝα a set of eigenvectors of H∗(z) by ϕ∗j (z) = W∗(z)ϕ
∗
j (0),

where H∗(0)ϕ∗j (0) = e∗j (0)ϕ∗j (0), j = 1, . . . , n, that satisfy

ϕ̃∗j (0) = exp{−iθ∗j (ζr)}ϕ∗σr(j)(0),

with θ∗j (ζr) = θ(ζr)+O(ε) ∈ C. Let us expand the solution of (2.1) on this multivalued
set of eigenvectors as

ψ(z) =
n∑
j=1

c∗j (z)e
−i
∫ z

0
e∗j (z′)dz′/ε

ϕ∗j (z).(5.19)

Since the analyticity properties of the eigenvectors and eigenvalues of H∗(z) are the
same as those enjoyed by the eigenvectors and eigenvalues of H(z), we get, as in
Lemma 3.1,

c̃∗j (z)e
−i
∫
ζr
e∗j (u)du/ε

e−iθ
∗
j (ζr) = c∗σr(j)(z), ∀z ∈ Ŝα.(5.20)

Substituting (5.19) in (2.1), we see that in Ŝα the multivalued coefficients c∗j (z) satisfy
the differential equation

c∗j
′(z) =

n∑
k=1

a∗jk(z)ei∆
∗
jk(z)/εc∗k(z),(5.21)

where

∆∗jk(z) =

∫ z

0

e∗j (z
′)− e∗k(z′)dz′(5.22)

and

a∗jk(z) =
〈ϕ∗j (z)(0)|P ∗j (z)(0)W∗(z)

−1
(Kq∗−1(z)−Kq∗(z))W∗(z)ϕ

∗
k(0)〉

‖ϕ∗j (0)‖2 ;(5.23)

compare this with (3.13). The key point of this construction is that it follows from
Proposition 5.1 with q = q∗(ε) that

|a∗jk(z)| ≤ 2b(Rez)e−κ/ε, ∀z ∈ Ŝα,(5.24)

where κ = 1/ec > 0, and it follows from (5.13) that

Im∆∗jk(z) = Im∆jk(z) +O(ε2)(5.25)
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684 ALAIN JOYE

uniformly in z ∈ Ŝα. Thus we deduce from (5.24) that the limits

lim
t→±∞

c∗j (t+ is) = c∗j (±∞), j = 1, . . . , n,(5.26)

exist for any analytic continuation in Ŝα. Moreover, along any dissipative path γk(u)
for {jk}, as defined above, we get from (5.25)∣∣∣ei(∆̃∗jk(γk(t))−∆̃∗jk(γk(u)))/ε

∣∣∣ = O(1), ∀u ≤ t,(5.27)

so that, reproducing the proof of Lemma 4.1, we have the following result.
Lemma 5.1. In a dissipative domain Dj, if c̃∗k(−∞) = c∗k(−∞) = δkj, then

c̃∗j (z) = 1 +O(e−κ/ε),(5.28)

ei∆̃jk(z)εc̃∗k(z) = O(e−κ/ε), ∀k 6= j,(5.29)

uniformly in z ∈ Ŝα.
This lemma yields the following improved version of our main result.
Proposition 5.2. Under the conditions of Proposition 4.1 and with the same

notations, if c∗k(−∞) = δjk, then

c∗σj(j)(+∞) = e−iθ
∗
j (ηj)e

−i
∫
ηj
e∗j (z)dz/ε

(1 +O(e−κ/ε)),(5.30)

c∗σj(k)(+∞) = O
(

e−κ/εe
Im
∫
ηj
ej(z)dz/ε+hj(eσj(j)(+∞)−eσj(k)(+∞))/ε

)
.(5.31)

Note that we may or may not replace ej(z) by e∗j (z) in the estimate without al-
tering the result. It remains to make the link between the S-matrix and the c∗k(+∞)’s
of the proposition explicit. We define β∗±j by the relations

ϕ∗j (±∞) = e−iβ
∗±
j ϕj(±∞)(5.32)

(H∗(z) and H(z) coincide at ±∞). By comparison with (5.19) and (2.12), we deduce
the following lemma.

Lemma 5.2. If ck(t) and c∗k(t) satisfy ck(−∞) = c∗k(−∞) = δjk, then the element
kj of the S-matrix is given by

(5.33)

skj = ck(+∞) = e−i(β
∗+
k
−β∗−

j
)e
−i
∫ +∞

0
e∗k(t′)−ek(t′)dt′/ε

e
−i
∫ 0

−∞
e∗j (t′)−ej(t′)dt′/ε

c∗k(+∞)

≡ e−iα
∗
kj c∗k(+∞),

with β∗±j = O(ε) and
∫ 0

±∞ e∗j (t
′)− ej(t′)dt′/ε = O(ε), i.e., e−iα

∗
kj = 1 +O(ε).

Remarks. (i) Proposition 5.2 together with Lemma 5.2 are the main results of the
first part of this paper.

(ii) As a direct consequence of these estimates on the real axis, we have

sjk = O(e−κ/ε), ∀k 6= j,(5.34)

and

sjj = e−iα
∗
jj (1 +O(e−κ/ε)).(5.35)
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EXPONENTIAL ASYMPTOTICS FOR n-LEVEL S-MATRICES 685

(iii) It should be clear from the analysis performed above that all of the results
obtained hold if the generator H(z) in (2.1) is replaced by

H(z, ε) = H0(z) +O(εb(Rez)),(5.36)

with b(t) = O(1/t1+a), provided H0(z) satisfies the hypotheses we assumed.

6. Avoided crossings. We now come to the second part of the paper, in which
we prove asymptotic formulas for the off-diagonal elements of the S-matrix by means
of the general setup presented above. To start with, we define a class of n-level
systems for which we can prove the existence of one nontrivial dissipative domain
for all indices. They are obtained by means of systems that exhibit degeneracies
of eigenvalues on the real axis, hereafter called real crossings, which we perturb in
such a way that these degeneracies are lifted and turn into avoided crossings on the
real axis. When the perturbation is small enough, this process moves the eigenvalue
degeneracies off the real axis, but they remain close to the place where the real
crossings occurred. This method was used successfully in [J] to deal with two-level
systems. We do not attempt to list all of the cases in which dissipative domains can
be constructed by means of this technique but rather present a wide class of examples
which are relevant in the theory of quantum adiabatic transitions and in the theory
of multichannel semiclassical scattering, as described below.

Let H(t, δ) ∈Mn(C) satisfy the following assumptions.
H4. For each fixed δ ∈ [0, d], the matrix H(t, δ) satisfies H1 in a strip Sα indepen-

dent of δ and H(z, δ) and ∂/∂zH(z, δ) are continuous as a functions of two variables
(z, δ) ∈ Sα × [0, d]. Moreover, it satisfies H2 uniformly in δ ∈ [0, d], with limiting
values H(±, δ) which are continuous functions of δ ∈ [0, d].

H5. For each t ∈ R and each δ ∈ [0, d], the spectrum of H(t, δ), denoted by σ(t, δ),
consists of n real eigenvalues

σ(t, δ) = {e1(t, δ), e2(t, δ), . . . , en(t, δ)} ⊂ R(6.1)

which are distinct when δ > 0:

e1(t, δ) < e2(t, δ) < · · · < en(t, δ).(6.2)

When δ = 0, the functions ej(t, 0) are analytic on the real axis and there exists a
finite set of crossing points {t1 ≤ t2 ≤ · · · ≤ tp} ∈ R, p ≥ 0, such that the following
hold:

(i) ∀t < t1,

e1(t, 0) < e2(t, 0) < · · · < en(t, 0).(6.3)

(ii) ∀j < k ∈ {1, 2, . . . , n}, there exists at most one tr with

ej(tr, 0)− ek(tr, 0) = 0,(6.4)

and if such a tr exists, we have

∂

∂t
(ej(tr, 0)− ek(tr, 0)) > 0.(6.5)

(iii) ∀j ∈ {1, 2, . . . , n}, the eigenvalue ej(t, 0) crosses eigenvalues whose indices
are all superior to j or all inferior to j.
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686 ALAIN JOYE

Fig. 4. A pattern of eigenvalue crossings (bold curves) with the corresponding pattern of avoided
crossings (fine curves) satisfying H5.

Remarks. (i) The parameter δ can be understood as a coupling constant that
controls the strength of the perturbation.

(ii) The eigenvalues ej(t, 0) are assumed to be analytic on the real axis, because of
the degeneracies on the real axis. However, if H(t, δ) is self-adjoint for any δ ∈ [0, d],
this is true for an indexation, as follows from a theorem of Rellich; see [K].

(iii) In Figure 4, we give an example of a pattern of crossings with the correspond-
ing pattern of avoided crossings for which the above conditions are fulfilled.

(iv) The crossings are assumed to be generic in the sense that the derivatives of
ej − ek are nonzero at the crossing tr.

(v) The crossing points {t1, t2, . . . , tp} need not be distinct, which is important
when the eigenvalues possess symmetries. However, for each j = 1, . . . , n, the eigen-
value ej(t, δ) experiences avoided crossings with ej+1(t, δ) and/or ej−1(t, δ) at a subset
of distinct points {tr1 , . . . , trj} ⊆ {t1, t2, . . . , tp}.

We now state the main lemma of this section regarding the analyticity properties
of the perturbed levels and the existence of dissipative domains for all indices in this
perturbative context.

Lemma 6.1. Let H(t, δ) satisfy H4 and H5. We can choose α > 0 small enough
so that the following assertions are true for sufficiently small δ > 0:

(i) Let {tr1 , . . . , trj} be the set of avoided crossing points experienced by ej(t, δ),
j = 1, . . . , n. For each j, there exists a set of distinct domains Jr ∈ Sα, where
r ∈ {r1, . . . , rj},

Jr = {z = t+ is| 0 ≤ |t− tr| < L, 0 < g < s < α′},(6.6)

with L small enough, α′ < α, and g > 0 such that ej(−∞, δ) can be analytically
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EXPONENTIAL ASYMPTOTICS FOR n-LEVEL S-MATRICES 687

continued in

Sjα = Sα\ ∪r=r1,...,rj (Jr ∪ Jr).(6.7)

(ii) Let tr be an avoided crossing point of ej(t, δ) with ek(t, δ), k = j ± 1. Then
the analytic continuation of the restriction of ej(t, δ) around tr along a loop based at
tr ∈ R which encircles Jr once yields ẽj(tr, δ) back at tr with

ẽj(tr, δ) = ek(tr, δ).(6.8)

(iii) For each j = 1, . . . , n, there exists a dissipative domain Dj above or below
the real axis in Sα ∩ {z = t+ is| |s| ≥ α′}. The permutation σj associated with these
dissipative domains (see Proposition 4.1) are all given by σj = σ, where σ is the
permutation that maps the index of the kth eigenvalue ej(∞, 0) numbered from the
lowest one on k for all k ∈ {1, 2, · · · , n}.

Remarks. (i) In part (ii), the same result is true along a loop encircling Jr.
(ii) The dissipative domainsDj of part (iii) are located above (respectively, below)

all of the sets Jr (respectively, Jr), r = 1, . . . , p.
(iii) The main interest of this lemma is that the sufficient conditions required for

the existence of dissipative domains in the complex plane can be deduced from the
behavior of the eigenvalues on the real axis.

(iv) We emphasize that more general types of avoided crossings than those de-
scribed in H5 may lead to the existence of dissipative domains for certain indices, but
we want to obtain dissipative domains for all indices. For example, if part (iii) of H5
is satisfied for certain indices only, then part (iii) of Lemma 6.1 is satisfied for those
indices only.

(v) Note also that there are patterns of eigenvalue crossings for which there exist
no dissipative domain for some indices. For example, if ej(t, 0) and ek(t, 0) display
two crossings, it is not difficult to see from the proof of the lemma that no dissipative
domains can exist for j or k.

We postpone the proof of Lemma 6.1 to the end of this section and continue with
its consequences. By applying the results of the previous section, we get the following
result.

Theorem 6.1. Let H(t, δ) satisfy H4 and H5. If δ > 0 is small enough, the
elements σ(j)j of the S-matrix, with σ(j) defined in Lemma 6.1, are given in the
limit ε→ 0 for all j = 1, . . . , n by

sσ(j)j =

σ(j)∓1∏
k=j

e−iθk(ζk)e
−i
∫
ζk
ek(z,δ)dz/ε

(1 +O(ε)) , σ(j)

{
> j,

< j,
(6.9)

where for σ(j) > j (respectively, σ(j) < j), ζk, k = j, . . . , σ(j) − 1 (respectively,
k = j, . . . , σ(j) + 1), denotes a negatively (respectively, positively) oriented loop based
at the origin which encircles the set Jr (respectively, Jr) corresponding to the avoided
crossing between ek(t, δ) and ek+1(t, δ) (respectively, ek−1(z, δ)) at tr,

∫
ζk
ek(z, δ)dz

denotes the integral along ζk of the analytic continuation of ek(0, δ), and θk(ζk) is the
corresponding factor defined by (3.12); see Figure 5.

More accurately, with the notations of section 5, we have the improved formula

(6.10)

sσ(j)j = e−iα
∗
σ(j)j

σ(j)∓1∏
k=j

e−iθ
∗
k(ζk)e

−i
∫
ζk
e∗k(z,δ)dz/ε

(1 +O(e−κ/ε)), σ(j)

{
> j,

< j.
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688 ALAIN JOYE

Fig. 5. The loops ηj and ζk, k = j, . . . , σ(j)− 1.

The elements σ(l)j, l 6= j, are estimated by

sσ(l)j = O

εeh(eσ(j)(∞,δ)−eσ(l)(∞,δ))/ε
σ(j)∓1∏
k=j

e
Im
∫
ζk
ek(z,δ)dz/ε

 , σ(j)

{
> j,

< j,
(6.11)

where h is strictly positive (respectively, negative) for σ(j) > j (respectively, σ(j) <
j).

Remarks. (i) Since the eigenvalues are continuous at the degeneracy points, we
have that

lim
δ→0

Im

∫
ζk

ek(z, δ)dz = 0, ∀k = 1, . . . , p.(6.12)

(ii) The remainders O(ε) depend on δ, but it should be possible to get estimates
that are valid as both ε and δ tend to zero, in the spirit of [J], [MN], and [R].

(iii) This result shows that at least one off-diagonal element per column of the
S-matrix can be computed asymptotically. However, it is often possible to get more
elements by making use of the symmetries of the S-matrix. Moreover, if there exist
dissipative domains that go above or below other eigenvalue degeneracies further away
in the complex plane, other elements of the S-matrix can be computed.

(iv) Finally, note that all starred quantities in (6.10) depend on ε.
Proof of Theorem 6.1. The first thing to determine is whether the loops ζk are

above or below the real axis. Since the formulas that we deduce from the complex
WKB analysis are asymptotic, it suffices to choose the case that yields exponential
decay of sσ(j)j . It is readily checked in the proof of Lemma 6.1 below that if σ(j) > j,
Dj is above the real axis and if σ(j) < j, Dj is below the real axis. Then it remains
to explain how to pass from the loop ηj given in Proposition 4.1 to the set of loops
ζk, k = j, . . . , σ(j) − 1. We briefly deal with the case where σ(j) > j; the other case
is similar. It follows from Lemma 6.1 that we can deform ηj into the set of loops ζk,
each associated with one avoided crossing, as described in Figure 5. Thus we have∫

ηj

=

σ(j)−1∑
k=j

∫
ζk

(6.13)

for the decay rate and (see (3.10))

W (ηj) = W (ζσ(j)−1) · · ·W (ζj+1)W (ζj)(6.14)
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EXPONENTIAL ASYMPTOTICS FOR n-LEVEL S-MATRICES 689

for the prefactors. Let νj be a negatively oriented loop based at tr which encircles
Jr as described in Lemma 6.1. Now consider the loop ζj associated with this avoided
crossing and deform it to the path obtained by going from 0 to tr along the real axis,
from tr to tr along νj , and back from tr to the origin along the real axis. By point
(ii) of Lemma 6.1, we get

ẽj(0, δ) = ej+1(0, δ)(6.15)

along ζj , and, accordingly (see (3.12)),

ϕ̃j(0, δ) = e−iθj(ζj)ϕj+1(0, δ).(6.16)

This justifies the first factor in the formula. By repeating the argument at the next
avoided crossings, keeping in mind that we get ej+1(0, δ) at the end of ζj and so on,
we get the final result. The estimate on sσ(l)j is obtained by direct application of
lemma 6.1.

Proof of Lemma 6.1. In what follows, we shall denote “ ∂
∂t” by a “′.” We must

consider the analyticity properties of ẽj(z, δ) and define domains in which every point
z can be reached from −∞ by means of a path γ(u), u ∈ ]−∞, t], γ(t) = z such

that Im∆̃jk(γ(u), δ) is nondecreasing in u for certain indices j 6= k when δ > 0 is

fixed. Note that by Schwarz’s principle, if γ(u) is dissipative for {jk}, then γ(u) is
dissipative for {kj}. When γ(u) = γ1(u) + iγ2(u) is differentiable, saying that γ(u) is
dissipative for {jk} is equivalent to

Re(ẽj(γ(u), δ)− ẽk(γ(u), δ))γ̇2(u) + Im(ẽj(γ(u), δ)− ẽk(γ(u), δ))γ̇1(u) ≥ 0,

∀u ∈ ]−∞, t],(6.17)

where “ ˙ ” denotes the derivative with respect to u. Moreover, if the eigenvalues are
analytic in a neighborhood of the real axis, we have in that neighborhood the relation

Im(ẽj(t+ is, δ)− ẽk(t+ is, δ)) =

∫ s

0

Re (ẽ′j(t+ is′, δ)− ẽ′k(t+ is′, δ))ds′,(6.18)

which is a consequence of the Cauchy–Riemann identity. We proceed as follows. We
construct dissipative domains above and below the real axis when δ = 0, and we show
that they remain dissipative for the perturbed quantities ∆̃jk(z, δ), provided δ is
small enough. We introduce some quantities to be used in the construction. Let Cr ⊂
{1, . . . , n}2 denote the set of distinct couples of indices such that the corresponding
eigenvalues experience one crossing at t = tr. Similarly, N ⊂ {1, . . . , n}2 denotes the
set of couples of indices such that the corresponding eigenvalues never cross.

Let Ir = [tr − L, tr + L] ∈ R, r = 1, . . . , p, with L so small that

min
r∈{1,...,p}

min
{jk}∈Cr, j<k

inf
t∈Ir

(e′j(t, 0)− e′k(t, 0)) ≡ 4c > 0.(6.19)

This relation defines the constant c, and we also define b by

min
r∈{1,...,p}

min
{jk}∈Cr, j<k

inf
t∈R\Ir

|ej(t, 0)− ek(t, 0)| ≥ 4b > 0,(6.20)

min
{jk}∈N, j<k

inf
t∈R
|ej(t, 0)− ek(t, 0)| ≥ 4b > 0.(6.21)

We further introduce

Iαr = {z = t+ is|t ∈ Ir, |s| ≤ α}, r = 1, . . . , p.(6.22)
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690 ALAIN JOYE

Then we choose α small enough so that the only points of degeneracy of eigenvalues
in Sα are on the real axis and

min
r∈{1,...,p}

min
{jk}∈Cr, j<k

inf
z∈Iαr

Re(e′j(z, 0)− e′k(z, 0)) > 2c > 0(6.23)

min
r∈{1,...,p}

min
{jk}∈Cr, j<k

inf
z∈Sα\Iαr

|Re(ej(z, 0)− ek(z, 0))| > 2b > 0(6.24)

min
{jk}∈N, j<k

inf
z∈Sα

|Re(ej(z, 0)− ek(z, 0))| > 2b > 0.(6.25)

The fact that this choice is always possible is a consequence of the analyticity of
ej(z, 0) close to the real axis and of the fact that we can essentially work in a compact
because of hypothesis H4. Let a(t) be integrable on R and such that

a(t)

2
> max
j<k∈{1,...,n}

sup
|s|≤α

∣∣Re(e′j(t+ is, 0)− e′k(t+ is, 0))
∣∣.(6.26)

It follows from H4 that such functions exist.
Let r ∈ {1, . . . , p} and γ2(u) be a solution of γ̇2(u) = −γ2(u)a(u)

b , u ∈ ]−∞, tr − L],
γ̇2(u) = 0, u ∈ ]tr − L, tr + L[,

γ̇2(u) = +γ2(u)a(u)
b , u ∈ [tr + L,∞[,

(6.27)

with γ2(tr) > 0. Then γ2(u) > 0 for any u since
γ2(u) = γ2(tr)e

−
∫ u
tr−L

a(u′)du′/b
, u ∈ ]−∞, tr − L],

γ2(u) = γ2(tr), u ∈ ]tr − L, tr + L[,

γ2(u) = γ2(tr)e

∫ u
tr+L

a(u′)du′/b
, u ∈ [tr + L,∞[,

(6.28)

and since a(u) is integrable, the limits

lim
u→±∞

γ2(u) = γ2(±∞)(6.29)

exist. Moreover, we can always choose γ2(tr) > 0 sufficiently small so that γr(u) ≡
u + iγ2(u) ∈ Sα for any real u. Let us verify that this path is dissipative for all
{jk} ∈ Cr, j < k. For u ∈ ]−∞, tr − L], using

Re(ej(z, 0)− ek(z, 0)) < −2b < 0, ∀z ∈ Sα ∩ {z|Rez ≤ tr − L},(6.30)

(6.31)

|Im(ej(t+ is, 0)− ek(t+ is, 0))| < |s| sup
s′∈[0,s]

∣∣Re(e′j(t+ is′, 0)− e′k(t+ is′, 0))
∣∣

(see (6.18)), and the definition (6.26), we have

(6.32)

Re(ej(γ
r(u), 0)− ek(γr(u), 0))γ̇2(u) + Im(ej(γ

r(u), 0)− ek(γr(u), 0))γ̇1(u)

= −Re(ej(γ
r(u), 0)− ek(γr(u), 0))

γ2(u)a(u)

b
+ Im(ej(γ

r(u), 0)− ek(γr(u), 0))

> 2γ2(u)a(u)− γ2(u)a(u)/2 > γ2(u)a(u) > 0.
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EXPONENTIAL ASYMPTOTICS FOR n-LEVEL S-MATRICES 691

Similarly, when u ≥ tr + L, using

Re(ej(z, 0)− ek(z, 0)) > 2b > 0, ∀z ∈ Sα ∩ {z|Rez ≥ tr + L},(6.33)

we get

(6.34)

Re(ej(γ
r(u), 0)− ek(γr(u), 0))γ̇2(u) + Im(e1(γr(u), 0)− ek(γr(u), 0))γ̇1(u)

= Re(ej(γ
r(u), 0)− ek(γr(u), 0))

γ2(u)a(u)

b
+ Im(ej(γ

r(u), 0)− ek(γr(u), 0))

> 2γ2(u)a(u)− γ2(u)a(u)/2 > γ2(u)a(u) > 0.

Finally, for s ∈ [tr − L, tr + L], we have with (6.23) that

(6.35)

Im(ej(γ
r(u), 0)− ek(γr(u), 0)) =

∫ γ2(u)

0

Re(e′j(t
′ + is, 0)− e′k(t′ + is, 0))

≥ γ2(u)2c > γ2(u)c > 0.

Thus γr(u) is dissipative for all {jk} ∈ Cr, j < k. Note that the last estimate shows
that it is not possible to find a dissipative path for {jk} ∈ Cr, j < k below the real
axis.

Now consider {jk} ∈ N, j < k, and let γ+
2 (u) be a solution of

γ̇+
2 (u) = −γ

+
2 (u)a(u)

b
, γ+

2 (0) > 0, u ∈ ]−∞,+∞[,(6.36)

i.e.,

γ+
2 (u) = γ+

2 (0)e
−
∫ u

0
a(u′)du′/b

.(6.37)

As above, we have γ+
2 (u) > 0 for any u and we can choose γ+

2 (0) > 0 small enough
so that γ+(u) ≡ u+ iγ+

2 (u) ∈ Sα for any u ∈ R. Since

Re(ej(z, 0)− ek(z, 0)) > −2b, ∀z ∈ Sα,(6.38)

we check by a computation analogous to (6.32) that γ+(u) is dissipative for {jk} ∈
N, j < k. Similarly, we can verify that if γ−2 (u) is the solution of

γ̇−2 (u) =
γ−2 (u)a(u)

b
, γ−2 (0) < 0, u ∈ ]−∞,+∞[,(6.39)

with |γ−2 (0)| small enough, the path γ−(u) ≡ u+ iγ−2 (u) below the real axis is in Sα
for any u ∈ R and is dissipative for {jk} ∈ N, j < k, as well.

Finally, the complex conjugates of these paths yield dissipative paths above and
below the real axis for {jk} ∈ N, j > k.

We now define the dissipative domains by means of their borders. Let γ+(u) and
γ−(u), u ∈ R, be two dissipative paths in Sα defined as above with |γ−2 (0)| sufficiently
small so that γ− is below γ+. We set

D = {z = t+ is|0 < −γ−2 (t) ≤ s ≤ γ+
2 (t), t ∈ R}.(6.40)
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692 ALAIN JOYE

Fig. 6. The dissipative domain D and some dissipative paths.

Let z ∈ D, and j ∈ {1, . . . , n} be fixed. By assumption H5, the set Xj of indices k
such that {jk} ∈ Cr for some r ∈ {1, . . . , p} consists of values k that satisfy j < k
or it consists of values k that satisfy j > k. Let us assume that the first alternative
takes place. Now for any k ∈ {1, . . . , n}, there are three cases.

(1) If k ∈ Xj , then there exists a dissipative path γr ∈ D for {jk} ∈ Cr, j < k,
constructed as above which links −∞ to z. It is enough to select the initial condition
γ2(tr) suitably; see Figure 6.

(2) Similarly, if j < k 6∈ Xj , there exists a dissipative path γ+ ∈ D for {jk}
constructed as above which links −∞ to z obtained by a suitable choice of γ+

2 (0).
(3) Finally, if k > j, we can take as a dissipative path for {jk} the path γ− ∈ D

constructed as above which links −∞ to z with a suitable choice of γ−2 (0). Hence
D is dissipative for the index j when δ = 0. If j is such that the set Xj consists of
points k with k > j, a similar argument with the complex conjugates of the above
paths shows that the domain D below the real axis is dissipative for j when δ = 0.

Let us show that these domains remain dissipative when δ > 0 is not too large. We
start by considering the analyticity properties of the perturbed eigenvalues ej(z, δ),
δ > 0. Let 0 < α′ < α be such that

Iα
′

r ∩ (D ∪D) = ∅, ∀r = 1, . . . , p.(6.41)

The analytic eigenvalues ej(z, 0), j ∈ {1, . . . , n}, are isolated in the spectrum of

H(z, 0) for any z ∈ S̃α, where

S̃α = Sα\ ∪r=1,...,p I
α′

r .(6.42)

For any j = 1, . . . , n we get from perturbation theory [K] that the analytic continua-

tions ẽj(z, δ) of ej(t1 − L, δ) in S̃α are all distinct in S̃α, provided δ is small enough.
This is due to the fact that assumption H4 implies the continuity of H(z, δ) in δ
uniformly in z ∈ Sα, as is easily verified. More precisely, for any fixed index j, the
eigenvalue ej(t, δ) experiences avoided crossings at the points {tr1 , . . . , trj}. We can
assume without loss of generality that

Iα
′

k ∩ Iα
′

l = ∅, ∀k 6= l ∈ {r1, . . . , rj}.(6.43)

Hence for δ > 0 small enough, the analytic continuation ẽj(z, δ) is isolated in the

spectrum of H(z, δ) uniformly in z ∈ Sα\∪r=r1,...,rj Iα
′

r . Since by assumption H5 there
is no crossing of eigenvalues on the real axis when δ > 0, there exists a 0 < g < α′

that depends on δ such that ẽj(z, δ) is isolated in the spectrum of H(z, δ) uniformly
in z ∈ Sjα, where

Sjα = Sα\ ∪r=r1,...,rj (Jr ∪ Jr)(6.44)
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EXPONENTIAL ASYMPTOTICS FOR n-LEVEL S-MATRICES 693

and

Jr = Iα
′

r ∩ {z| Imz > g}, r = 1, . . . , p.(6.45)

Hence the singularities of ẽj(z, δ) are located in ∪r=r1,...,rj (Jr ∪ Jr), which yields the
first assertion of the lemma.

Consider a path νr from tr − L to tr + L which goes above Jr, where tr is an
avoided crossing between ej(t, δ) and ek(t, δ), k = j ± 1. By perturbation theory
again, ej(tr −L, δ) and ek(tr −L, δ) tend to ej′(tr −L, 0) and ek′(tr −L, 0) as δ → 0
for some j′, k′ ∈ 1, . . . , n, whereas ej(tr +L, δ) and ek(tr +L, δ) tend to ek′(tr +L, 0)
and ej′(tr + L, 0) as δ → 0; see Figure 4. Now the analytic continuations of the
restrictions of ej(t, δ) and ek(t, δ) around tr − L along νr, ẽj(z, δ) and ẽk(z, δ) tend
to the analytic functions ẽj′(z, 0) = ej′(z, 0) and ẽk′(z, 0) = ek′(z, 0) as δ → 0 for all
z ∈ νr. Thus we deduce that for δ small enough,

ẽj(tr + L, δ) ≡ ek(tr + L, δ)(6.46)

since we know that ẽj(tr + L, δ) = eσ(j)(tr + L, δ) for some permutation σ. Hence
point (iii) of the lemma follows.

Note that the analytic continuations ẽj(z, δ) are single valued in S̃α. Indeed, the
analytic continuation of ej(tr − L, δ) along νr, denoted by êj(z, δ), ∀z ∈ νr, is such
that

êj(tr + L, δ) = ẽj(tr + L, δ) = ẽj(tr + L, δ) = ek(tr + L, δ)(6.47)

due to Schwarz’s principle. We further require δ to be sufficiently small so that the
following estimates are satisfied:

min
r∈{1,...,p}

min
{jk}∈Cr
j<k

inf
z∈S̃α\Iαr

|Re(ẽj(z, δ)− ẽk(z, δ))| > b > 0,(6.48)

min
{jk}∈N
j<k

inf
z∈S̃α

|Re(ẽj(z, δ)− ẽk(z, δ))| > b > 0,(6.49)

max
j<k∈{1,...,n}

sup
Imz| z∈S̃α

∣∣Re(ẽ′j(z, δ)− ẽ′k(z, δ))
∣∣ < a(Rez),(6.50)

and, in the compacts Ĩαr = Iαr \Iα
′

r ,

min
r∈{1,...,p}

min
{jk}∈Cr
j<k

inf
z∈Ĩαr

|Im(ẽj(z, δ)− ẽk(z, δ))|

>
1

2
min

r∈{1,...,p}
min
{jk}∈Cr
j<k

inf
z∈Ĩαr

|Im(ẽj(z, 0)− ẽk(z, 0))| > |Imz|c,(6.51)

max
r∈{1,...,p}

max
j<k∈{1,...,n}

sup
z∈Ĩαr

|Im(ẽj(z, δ)− ẽk(z, δ))|

< 2 max
r∈{1,...,p}

max
j<k∈{1,...,n}

sup
z∈Ĩαr

|Im(ẽj(z, 0)− ẽk(z, 0))| < |Imz|a(Rez).(6.52)

The simultaneous requirements (6.26) and (6.50) are made possible by the continuity
properties of H ′(z, δ) and the uniformity in δ of the decay at ±∞ of H(z, δ) assumed
in H4 together with the fact that a(t) can be replaced by a multiple of a(t) if necessary
to satisfy both estimates. The condition on δ is given by the first inequalities in (6.51)
and (6.52), whereas the second ones are just recalls.
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694 ALAIN JOYE

Then it remains to check that the paths γr, γ+, and γ− defined above satisfy the
dissipativity condition (6.17) for the corresponding indices. This is not difficult since
the above estimates are precisely designed to preserve inequalities such as (6.32),
(6.34), and (6.35). However, it should not be forgotten that in the sets Iα

′

r , the
eigenvalues may be singular so that (6.18) cannot be used there. Therefore, when
checking that a path parameterized as above by u ∈ R is dissipative, it is necessary
to consider separately the case u ∈ R\(∪r=1,...,pIr), where we proceed as above with
(6.48), (6.49), (6.50), and (6.18), and the case u ∈ ∪r=1,...,pIr, where we use use
(6.51) and (6.52) instead of (6.18) as follows. If u ∈ Ir for r such that tr is a crossing
point for ej(t, 0) and ek(t, 0), we take (6.51) to estimate Im(ẽj′(z, δ) − ẽk′(z, δ)) for
the corresponding indices j′ and k′, and if tr is not a crossing point for ej(t, 0) and
ek(t, 0), we use (6.52) to estimate Im(ẽj′(z, δ)− ẽk′(z, δ)). Consequently, the domains
D and D defined above keep the same dissipativity properties when δ > 0 is small
enough.

Let us finally turn to the determination of the associated permutation σ. As
noticed earlier, the eigenvalues ẽj(z, δ) are continuous in δ uniformly in z ∈ S̃α.
Hence, since the eigenvalues ej(z, 0) are analytic in Sα, we have

lim
δ→0

ẽj(∞, δ) = ej(∞, 0) j = 1, 2, . . . , n,(6.53)

whereas along the real axis (see Figure 4), we have

lim
δ→0

eσ(j)(∞, δ) = ej(∞, 0),(6.54)

with σ defined in the lemma, from which the result follows.

7. Applications. Let us consider the time-dependent Schrödinger equation in
the adiabatic limit. The relevant equation is then (2.1), where H(t) = H∗(t) is the
time-dependent self-adjoint Hamiltonian. Thus we can take J = I in Proposition 2.1
to get

H(t) = H∗(t) = H#(t).(7.1)

Since the norm of an eigenvector is positive, it remains to impose the gap hypothesis in
H3 to fit in the framework, and we deduce that the S-matrix is unitary since R = I.
In this context, the elements of the S-matrix describe the transitions between the
different levels between t = −∞ and t = +∞ in the adiabatic limit.

We now specify our concern a little further and consider a three-level system, i.e.,
H(t) = H∗(t) ∈M3(C). We assume that H(t) satisfies the hypotheses of Theorem 6.1
with an extra parameter δ, which we omit in the notation, and displays two avoided
crossings at t1 < t2, as shown in Figure 7. The corresponding permutation σ is given
by

σ(1) = 3, σ(2) = 1, σ(3) = 2.(7.2)

By Theorem 6.1, we can compute asymptotically the elements s31, s12, s23, and sjj ,
j = 1, 2, 3. Using the unitarity of the S-matrix, we can get some more information.
Introducing

Γj =

∣∣∣∣∣Im
∫
ζj

ej(z)dz

∣∣∣∣∣ , j = 1, 2,(7.3)
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EXPONENTIAL ASYMPTOTICS FOR n-LEVEL S-MATRICES 695

Fig. 7. The pattern of avoided crossings in the adiabatic context.

where ζj is in the upper half-plane, with the notation of section 6, it follows that

s31 = O(e−(Γ1+Γ2)/ε), s12 = O(e−Γ1/ε), s23 = O(e−Γ2/ε),(7.4)

and

sjj = 1 +O(ε), j = 1, 2, 3.(7.5)

Expressing the fact that the first and second columns as well as the second and third
rows are orthogonal, we deduce

s21 = −s12
s11

s22
(1 +O(e−2Γ2/ε)),(7.6)

s32 = −s23
s33

s22
(1 +O(e−2Γ1/ε)).(7.7)

Finally, the estimate in Theorem 6.1 yields

s13 = O(εe−|h|(e2(∞,δ)−e1(∞,δ))/εe−Γ2/ε) = O(e−(Γ2+Γ2+K)/ε),(7.8)

where K > 0, since we have that Γj → 0 as δ → 0. Hence we get

(7.9)

S =

 s11 s12 O
(
e−(Γ2+Γ2+K)/ε

)
−s12

s11
s22

(
1 +O

(
e−2Γ2/ε

))
s22 s23

s31 −s23
s33
s22

(
1 +O

(
e−2Γ1/ε

))
s33

 ,

where all sjk’s above can be computed asymptotically up to exponentially small rel-
ative error using (6.10).

The smallest asymptotically computable element s31 describes the transition from
e1(−∞, δ) to e3(+∞, δ). The result that we obtain for this element is in agreement
with the rule of thumb that claims that the transitions take place locally at the avoided
crossings and can be considered as independent. Accordingly, we can only estimate
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696 ALAIN JOYE

the smallest element of all, s13, which describes the transition from e3(−∞, δ) to
e1(+∞, δ), for which the avoided crossings are not encountered in the “right order,”
as discussed in [HP]. It is possible, however, to get an asymptotic expression for this
element in some cases. When the unperturbed levels e2(z, 0) and e3(z, 0) possess a
degeneracy point in Sα and when there exists a dissipative domain for the index 3 of
the unperturbed eigenvalues going above this point, one can convince oneself that s13

can be computed asymptotically for δ small enough using the techniques presented
above.

Our second application is the study of the semiclassical scattering properties of
the multichannel stationary Schrödinger equation with energy above the potential
barriers. The relevant equation is then

− ε2 d
2

dt2
Φ(t) + V (t)Φ(t) = EΦ(t),(7.10)

where t ∈ R is a space variable, Φ(t) ∈ Cm is the wave function, ε → 0 denotes
Planck’s constant, V (t) = V ∗(t) ∈Mm(C) is the matrix of potentials, and the spectral
parameter E is kept fixed and large enough so that

U(t) ≡ E − V (t) > 0.(7.11)

Introducing

ψ(t) =

(
Φ(t)
iεΦ(t)

)
∈ C2m,(7.12)

we cast equation (7.10) into the equivalent form (2.1) for ψ(t) with the generator

H(t) =

(
O I
U(t) O

)
∈M2m(C).(7.13)

It is readily verified that

H(t) = J−1H∗(t)J,(7.14)

with

J =

(
O I
I O

)
.(7.15)

Concerning the spectrum of H(t), we should remark that if the real and positive
eigenvalues of U(t), k2

j (t), j = 1, . . . ,m associated with the eigenvectors uj(t) ∈ Cm

are assumed to be distinct, i.e.,

0 < k2
1(t) < k2

2(t) < · · · < k2
m(t),(7.16)

then the spectrum of the generator H(t) given by (7.13) consists of 2m real distinct
eigenvalues

− km(t) < −km−1(t) < · · · < −k1(t) < k1(t) < k2(t) < · · · < km(t)(7.17)

associated with the 2m eigenvectors

χ±j (t) =

(
uj(t)

±kj(t)uj(t)

)
∈ C2m,

H(t)χ±j (t) = ±kj(t)χ±j (t).(7.18)
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EXPONENTIAL ASYMPTOTICS FOR n-LEVEL S-MATRICES 697

We check that

(χ±j (0), χ±j (0))J = ±2kj(0)‖uj(0)‖ 6= 0, j = 1, . . . ,m,(7.19)

where ‖uj(0)‖ is computed in Cm, so that Proposition 2.1 applies. Before dealing
with its consequences, we further make explicit the structure of S. Adopting the
notation suggested by (7.17) and (7.18), we write

H(t) =

m∑
j=1

kj(t)P
+
j (t)−

m∑
j=1

kj(t)P
−
j (t),(7.20)

ψ(t) =
m∑
j=1

c+j (t)ϕ+
j (t)e

−i
∫ t

0
kj(t

′)dt′/ε
+

m∑
j=1

c−j (t)ϕ−j (t)e
i
∫ t

0
kj(t

′)dt′/ε
(7.21)

and introduce

c±(t) =


c±1 (t)
c±2 (t)

...
c±m(t)

 ∈ Cm.(7.22)

Hence we have the block structure

S

(
c+(−∞)
c−(−∞)

)
≡
(
S++ S+−
S−+ S−−

)(
c+(−∞)
c−(−∞)

)
=

(
c+(+∞)
c−(+∞)

)
,(7.23)

where Sστ ∈Mm(C), σ, τ ∈ {+,−}.
Let us turn to the symmetry properties of S. We get from (7.19) and Proposition

2.1 that

(7.24)(
S++ S+−
S−+ S−−

)−1

=

(
I O
O −I

)(
S++ S+−
S−+ S−−

)∗(
I O
O −I

)
=

(
S∗++ −S∗−+

−S∗+− S∗−−

)
.

In terms of the blocks Sστ , this is equivalent to

S++S
∗
++ − S+−S

∗
+− = I,(7.25)

S++S
∗
−+ − S+−S

∗
−− = O,(7.26)

S−−S
∗
−− − S−+S

∗
−+ = I.(7.27)

The block S++ describes the transmission coefficients associated with a wave traveling
from the right and S−+ describes the associated reflexion coefficients. Similarly, S−−
and S+− are related to the transmission and reflexion coefficients associated with a
wave incoming from the left. It should be noted that in the case of equation (7.10),
another convention is often used to define an S-matrix (see, for instance, [F1]). This
gives rise to a different S-matrix with a similar interpretation. However, it is not
difficult to establish a one-to-one correspondence between the two definitions. If the
matrix of potentials V (t) is real symmetric, we have further symmetry in the S-matrix.

Lemma 7.1. Let S given by (7.23) be the S-matrix associated with (7.10) under
condition (7.11). If we further assume that V (t) = V (t), then taking ϕ±j (0) ∈ R2m,
j = 1, . . . ,m, in (7.21), we get

S++ = S−−, S+− = S−+.(7.28)

D
ow

nl
oa

de
d 

12
/1

2/
13

 to
 1

46
.1

55
.2

3.
42

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



698 ALAIN JOYE

Fig. 8. The pattern of avoided crossings in the semiclassical context.

The corresponding results for the S-matrix defined in [F1] are derived in [MN].
The proof of this lemma can be found in Appendix B. We now consider (7.10) in the
case where U(t) = U∗(t) = U(t) ∈M2(R), which describes a two-channel Schrödinger
equation. We assume that the four-level generator H(t) displays three avoided cross-
ings at t1 < t2, two of which take place at the same point t1 because of the symmetry
of the eigenvalues, as in Figure 8. By Lemma 7.1, it is enough to consider the blocks
S++ and S+−. The transitions corresponding to elements of these blocks which we
can compute asymptotically are from level 1+ to level 2+ and from level 2− to level
1+. They correspond to elements s++

21 and s+−
12 , respectively. With the notation

Γj =

∣∣∣∣∣Im
∫
ζj

k1(z)dz

∣∣∣∣∣ , j = 1, 2,(7.29)

where ζj is in the upper half-plane, we have the estimates

(7.30)

s++
21 = O(e−Γ1/ε), s+−

12 = O(e−(Γ1+Γ2)/ε), s++
jj = 1 +O(ε), j = 1, 2.

It follows from (7.26) and Lemma 7.1 that the matrix S++S
T
+− is symmetric. Hence

s++
11 s+−

21 + s++
12 s+−

22 = s++
21 s+−

11 + s++
22 s+−

12 ,(7.31)

whereas we get from (7.25) that

s++
11 s++

21 + s++
12 s++

22 = s+−
11 s+−

21 + s+−
12 s+−

22 .(7.32)

The only useful estimate we get with Theorem 6.1 is

s+−
22 = O(e−(Γ1+Γ2+K)/ε), K > 0,(7.33)
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which together with (7.30) in (7.31) yields

s+−
21 = s++

21 s+−
11 /s++

11 +O(e−(Γ1+Γ2)/ε).(7.34)

Thus from (7.32) and (5.34) for s+−
11 ,

s++
12 = −s++

21

s++
11

s++
22

(1 +O(e−κ/ε)),(7.35)

with

0 < κ < min(Γ1,Γ2).(7.36)

Summarizing, we have

S++ =

(
s++

11 −s++
21

s++
11

s++
22

(
1 +O

(
e−κ/ε

))
s++

21 s++
22

)
(7.37)

and

S+− =

(
O
(
e−κ/ε

)
s+−

12

O
(
e−κ/ε

)
O
(
e−(Γ1+Γ2+K)/ε

)) ,(7.38)

where all elements sστjk can be asymptotically computed up to exponentially small
relative corrections using (6.10). We obtain no information on the first column of
S+− except estimate (5.34), where (7.36) necessarily holds. However, if there exists
one or several other dissipative domains for certain indices, it is then possible to get
asymptotic formulas for the estimated terms.

Appendix A. Proof of Proposition 2.1. A direct consequence of the property

H(t) = H#(t) = J−1H∗(t)J(A.1)

is the relation σ(H(t)) = σ(H(t)). Thus if σ(H(0)) ⊂ R, then σ(H(t)) ⊂ R for all
t ∈ R since the analytic eigenvalues are assumed to be distinct and nondegenerate
for all t ∈ R. Let ej(0) be the eigenvalue associated with ϕj(0). Then due to the
property H(0) = H#(0),

(ϕj(0), H(0)ϕk(0))J = ek(0)(ϕj(0), ϕk(0))J = ej(0)(ϕj(0), ϕk(0))J(A.2)

for any j, k = 1, . . . , n. For j = k, we get from the assumption (ϕj(0), ϕj(0))J 6= 0
that ej(0) ∈ R, and from the fact that the eigenvalues of H(0) are distinct,

(ϕj(0), ϕk(0))J = 0, j 6= k.(A.3)

The resulting reality of ej(t) for all t ∈ R and j = 1, . . . , n together with (A.1) yields

Pj(t) = J−1P ∗j (t)J.(A.4)

Hence using the fact that the P ∗j ’s are projectors,

K(t) =

n∑
j=1

Pj
′(t)Pj(t) =

n∑
j=1

(J−1P ∗j (t)J)′J−1P ∗j (t)J = J−1
n∑
j=1

P ∗j
′(t)P ∗j (t)J

= −J−1
n∑
j=1

P ∗j (t)P ∗j
′(t)J = −J−1K∗(t)J.(A.5)
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Let Φ,Ψ ∈ Cn and W (t) be defined by

W ′(t) = K(t)W (t), W (0) = I(A.6)

(see (3.5)). Then we have

(W (t)Φ,W (t)Ψ)′J = 〈W ′(t)Φ|JW (t)Ψ〉+ 〈W (t)Φ|JW ′(t)Ψ〉
= 〈K(t)W (t)Φ|JW (t)Ψ〉+ 〈W (t)Φ|JK(t)W (t)Ψ〉
= 〈W (t)Φ|J(J−1K∗(t)J +K(t))W (t)Ψ〉 ≡ 0.(A.7)

Thus in the indefinite metric, the scalar products of the eigenvectors of H(t), ϕj(t) =
W (t)ϕj(0) (see (3.7)), are constants:

(ϕj(t), ϕk(t))J ≡ (ϕj(0), ϕk(0))J .(A.8)

We can then normalize the ϕj(0) in such a way that

(ϕj(t), ϕk(t))J = (ϕj(0), ϕk(0))J = δjkρj ,(A.9)

with ρj ∈ {+1,−1}. Let ψ(t) and χ(t) be two solutions of (2.1). By an argument
similar to the one above using (A.1), we deduce

(χ(t), ψ(t))J ≡ (χ(0), ψ(0))J .(A.10)

Inserting the decompositions

ψ(t) =

n∑
j=1

cj(t)e
−i
∫ t

0
ej(t

′)dt′/ε
ϕj(t),(A.11)

χ(t) =
n∑
j=1

dj(t)e
−i
∫ t

0
ej(t

′)dt′/ε
ϕj(t)(A.12)

in this last identity yields

n∑
j,k=1

dk(t)cj(t)(ϕk(t), ϕj(t))Je
i
∫ t

0
(ek(t′)−ej(t′))/εdt′ =

n∑
j

dj(t)ρjcj(t)

≡
n∑
j=1

dj(0)ρjcj(0) =
n∑
j=1

dj(±∞)ρjcj(±∞).(A.13)

Since the initial conditions for the coefficients,

cj(−∞) = δjk, dj(−∞) = δjl,(A.14)

imply

cj(+∞) = sjk, dj(+∞) = sjl,(A.15)

introducing the matrix R = diag(ρ1, ρ2, . . . , ρn) ∈Mn(C), we get from (A.13) that

R = S∗RS,(A.16)

which is equivalent to the assertion S−1 = RS∗R.
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Appendix B. Proof of Lemma 7.1. Let G = G∗ = G−1 be given in block
structure by

G =

(
I O
O −I

)
∈M2m(C)(B.1)

and H(t) be given by (7.13) with U(t) = U(t) = U∗(t). Since

GH(t)G = −H(t), H(t) = H(t) ,(B.2)

and the eigenvalues of H(t) are real, it is readily verified that

GP±j (t)G = P∓j (t), P±j (t) = P±j (t), j = 1, . . . ,m.(B.3)

Hence

K(t) =

m∑
j=1
τ=±

P τj
′(t)P τj (t) = K(t) = GK(t)G,(B.4)

from which it follows that the solution W (t) of

W ′(t) = K(t)W (t), W (0) = I(B.5)

satisfies

W (t) = W (t) = GW (t)G.(B.6)

Since the matrix of potentials U(0) is real symmetric, its eigenvectors uj(0) may be
chosen real so that we can assume that

ϕ±j (0) =

(
uj(0)

±kj(0)uj(0)

)
∈ R2m.(B.7)

Thus it follows from the above that

ϕ±j (t) = W (t)ϕ±j (0) ∈ R2m, ∀t ∈ R,(B.8)

and satisfies

Gϕ±j (t) = GW (t)GGϕ±j (0) = W (t)Gϕ±j (0) = ϕ∓j (t).(B.9)

Finally, the main consequence of (B.2) is that if ψ(t) is a solution of

iεψ′(t) = H(t)ψ(t),(B.10)

then ϕ(t) = Gψ(t) is another solution, as is easily verified. Thus we can write with
(7.21), (B.8), and (B.9) that

ϕ(t) =

m∑
j=1

d+
j (t)ϕ+

j (t)e
−i
∫ t

0
kj(t

′)dt′/ε
+

m∑
j=1

d−j (t)ϕ−j (t)e
i
∫ t

0
kj(t

′)dt′/ε

=
m∑
j=1

c+j (t)ϕ−j (t)e
i
∫ t

0
kj(t

′)dt′/ε
+

m∑
j=1

c−j (t)ϕ+
j (t)e

−i
∫ t

0
kj(t

′)dt′/ε
,(B.11)
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i.e.,

d+
j (t) = c−j (t),

d−j (t) = c+j (t), ∀j = 1, . . . ,m, ∀t ∈ R.(B.12)

Finally, using the definition (7.23) and the above property for t = ±∞, we get for any
d±(−∞) ∈ Cm that

(B.13)(
d+(+∞)
d−(+∞)

)
=

(
S++ S+−
S−+ S−−

)(
d+(−∞)
d−(−∞)

)
=

(
S−− S−+

S+− S++

)(
d+(−∞)
d−(−∞)

)
,

from which the result follows.
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microlocal, thèse, Université de Paris Nord, Paris, 1995.

[Be] M. V. Berry, Histories of adiabatic quantum transitions, Proc. Roy. Soc. London Ser.
A, 429 (1990), pp. 61–72.

[BE] S. Brundobler and V. Elser, S-matrix for generalized Landau–Zener problem, J.
Phys. A, 26 (1993), pp. 1211–1227.

[CH1] C. E. Carroll and F. T. Hioe, Generalization of the Landau–Zener calculation to
three-level systems, J. Phys. A, 19 (1986), pp. 1151–1161.

[CH2] C. E. Carroll and F. T. Hioe, Transition probabilities for the three-level Landau–
Zener model, J. Phys. A, 19 (1986), pp. 2061–2073.

[D] Yu. N. Demkov, Adiabatic perturbation of discrete spectrum states, Soviet Phys. Dokl.,
11 (1966), p. 138.
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