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Abstract

We consider the semiclassical limit of systems of autonomous PDEs in 1 + 1

spacetime dimensions in a scattering regime. We assume the matrix-valued co-

efficients are analytic in the space variable, and we further suppose that the cor-

responding dispersion relation admits real-valued modes only with one-dimen-

sional polarization subspaces. Hence a BKW-type analysis of the solutions is

possible. We typically consider time-dependent solutions to the PDE that are

carried asymptotically in the past and as x → −∞ along one mode only and

determine the piece of the solution that is carried for x → +∞ along some

other mode in the future. Because of the assumed nondegeneracy of the modes,

such transitions between modes are exponentially small in the semiclassical pa-

rameter; this is an expression of the Landau-Zener mechanism. We completely

elucidate the spacetime properties of the leading term of this exponentially small

wave, when the semiclassical parameter is small, for large values of x and t ,

when some avoided crossing of finite width takes place between the involved

modes. c© 2006 Wiley Periodicals, Inc.
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1 Introduction

Various physical models of wave propagation in space and time are modeled

by means of linear systems of autonomous partial differential equations (PDEs)

with smooth or analytic coefficients in the space variable x ∈ R
n . The solutions to

such systems are usually difficult to compute in general, and one often resorts to

asymptotic studies in the limit where the wavelength involved is short with respect

to the typical length scale of the problem on adapted time scales. This regime

is often called the “spacetime adiabatic regime” or “semiclassical regime,” due to

its relevance in quantum mechanics. Typical examples of that situation are the

short-wavelength approximation of the wave equation, Maxwell equations, and the

Klein-Gordon equation. Similarly, the semiclassical analysis of the Dirac equation,

of the Schrödinger equation in solid state physics, or for particles with spin in

magnetic fields, and the Born-Oppenheimer approximation in molecular physics

belong to the same type of problems. This is also true for certain quantum systems

whose dynamics is constrained in nanotubes or waveguides. Also, the study of

shallow-water waves in some linearized regime gives rise to the linearized KdV

or Boussinesq equations that share similar properties. Plasma physics is another

source of physically relevant models entering this category. See, for example, [39,

2, 17, 37, 1].

From the mathematical point of view, the semiclassical regime gives rise to sin-

gularly perturbed problems for linear systems of PDEs. These problems are tack-

led with success by means of pseudodifferential operator techniques and/or BKW

methods that provide asymptotic solutions up to errors of order O(εm), where ε is

the ratio of length scales, and m depends on the peculiarities of the problem. See

the monographs [17, 10, 11, 9, 31, 37], for example.

The first step in the study of autonomous linear systems consists in using sepa-

ration of variables to reduce the problem to a stationary system, parametrized by an

energy variable conjugated to the time variable. Superpositions of stationary solu-

tions allow us to reconstruct solutions to the full time-dependent problem. Then we

determine the dispersion relations or modes of the corresponding symbol and the

associated polarization subspaces. We will assume that all modes are real valued;

that is, we will consider dispersive waves, according to [39]. In the semiclassical

limit, when these real-valued modes do not exhibit crossings as the position and

energy parameters vary, the dynamics of the waves decouples inside the polariza-

tion subspaces in the following sense: to leading order, independent waves driven

by the different scalar dispersion relations propagate along the corresponding po-

larization subspaces without interacting. In particular, transitions between isolated

modes, or rather between the corresponding polarization subspaces, are forbidden

in the semiclassical limit. Moreover, in the scattering limit, these semiclassical

transitions are typically of order O(ε∞), respectively O(e−Ŵ/ε), for some Ŵ > 0,

in a smooth, respectively analytic, context. See [18, 34, 32, 35, 14, 5, 6]. This phe-

nomenon goes under the name Landau-Zener mechanism, according to the analysis
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of the adiabatic approximation of the time-dependent Schrödinger equation (in an

ODE context) which yields transitions of this order between isolated eigenvalues

[40, 28, 29, 16, 21, 7]. Let us recall here that in case the modes experience cross-

ings at some point, the transitions may be of finite order in ε, indeed of zeroth order

in some cases, in the semiclassical limit [17]. Their determination is technically

quite different and we do not address these situations.

Although extremely small, the transitions between isolated modes computed in

the scattering limit are quite relevant from a physical point of view in the various

examples above. It is therefore desirable for an ingoing wave prepared at large

negative times along one polarization mode to determine the asymptotics as ε → 0

of the part of the wave that propagates for large positive but finite times along

another mode, be it a transmitted or reflected wave. In a semiclassical context, to

achieve such a goal the initial wave must be well localized in energy.

It is the aim of this paper to determine such exponentially small transmitted

waves for quite general autonomous linear systems of PDEs in 1 + 1 spacetime

dimensions, when the coefficients are analytic and possess limits they reach suffi-

ciently fast as |x | → ∞.

While the conditions allowing the determination of exponentially small tran-

sitions between isolated modes for a variety of physical situations are rather well

understood now in a ODE context, or in the language and setting sketched above,

for stationary solutions (see [23, 24, 21, 30, 36, 15, 25, 22, 12, 13, 19, 3, 4, 33],

it is well-known that the description of intermode transitions in a time-dependent

context requires more work. The only mathematical results we are aware of regard-

ing this issue concern the Born-Oppenheimer approximation in molecular physics

[20]. That paper is mainly motivated by molecular physics considerations, and the

asymptotic descriptions provided there rely heavily on peculiarities of the Born-

Oppenheimer approximation. However, as will become clear, the general strategy

of the analysis is actually model independent and, at the price of sometimes sub-

stantial modifications, it can be adapted to fit the various models and situations

mentioned above. The importance and frequency of the mechanism of intermode

transitions in various fields of applied mathematics is the main motivation for the

present work. Our aim is to extract practical conditions on a system of PDEs in

1 + 1 spacetime dimensions under which the exponentially small pieces of prop-

agating waves describing intermode transitions in a scattering regime can actually

be computed in the semiclassical limit. In that sense, the present paper can be

viewed as a generalization of [20].

Let us describe more precisely the autonomous systems we will be dealing with,

the type of results we get, and the underlying strategy we use to prove these results.

Since it requires a fair amount of notation and number of hypotheses to give a

precise statement of our main result, Theorem 6.1, we remain at a rather informal

level in this introduction.
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Let R(x, iε∂t , iε∂x) be the differential operator

(1.1) R(x, iε∂t , iε∂x) =
∑

l∈{0,...,m}
n∈{0,...,r}

Aln(x)(iε∂x)
l(iε∂t)

n,

where the d ×d matrix-valued coefficients Aln(x) are independent of t and analytic

in x a neighborhood of the real axis. Assuming the matrices Aln(x) possess limits

as |x | → ∞ that they reach fast enough, we want to describe the small-ε behavior

of certain solutions φ(x, t, ε) to the evolution equation

(1.2) R(x, iε∂t , iε∂x)φ(x, t, ε) = 0

for x ∈ R, in the scattering regime t large, in L2(R).

The d × d matrix-valued symbol R(x, E, k) corresponding to R(x, iε∂t , iε∂x)

is written

(1.3) R(x, E, k) =
∑

l∈{0,...,m}
n∈{0,...,r}

Aln(x)k
l En,

where we call the dual variables E and k the energy and the momentum variables,

respectively. The energy parameter will be taken in a window 1 ⊂ R specified

below. The associated dispersion relations or modes are defined as the set of roots

{kj (x, E)} of the polynomial equation in k, of degree md, for x ∈ R and E ∈ 1,

(1.4) det R(x, E, k) = 0.

Our main assumption regarding the type of PDE we consider reads as follows: we

suppose there exists an energy window 1 such that for all E ∈ 1 and all x ∈ R,

there exist md distinct real-valued modes {kj (x, E)}0≤ j≤md . The associated kernels

of R(x, E, kj (x, E)), j = 1, . . . ,md, are then shown to be one-dimensional and

their elements, denoted by ϕj (x, E), are the polarization vectors.

For comparison and illustration purposes, the case considered in [20] corre-

sponds to (iε∂t + ε2∂2
x /2 + A00(x))φ(x, t, ε) = 0, where A00(x) = −V (x) is the

“electronic Hamiltonian”; that is, a d × d self-adjoint matrix. It is assumed that

V (x) has nondegenerate eigenvalues {e1(x), . . . , ed(x)} with associated eigenvec-

tors {ϕ1(x), . . . , ϕd(x)}. For large enough energies E , (1.4) yields

det(E − k2/2 − V (x)) = 0,

which provides the real-valued modes
{
−

√
2(E − e1(x)), . . . ,−

√
2(E − ed(x)),√

2(E − ed(x)), . . . ,
√

2(E − e1(x))
}(1.5)

and corresponding polarization vectors {ϕ1(x), . . . , ϕd(x), ϕd(x), . . . , ϕ1(x)}.
Our assumption is very close to the definition of linear dispersive systems in a

nonuniform autonomous medium given in [39, chap. 11]. Such linear systems are
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characterized there by the fact that the dispersion relation can be solved in the form

of real roots

E = W (k, x) with ∂2
k W (k, x) 6= 0,

for k real and x ∈ R. This notion is also reminiscent of the strictly hyperbolic

equations [38]. In [38], a 1 + 1 first-order partial differential equation is called

strictly hyperbolic in x if it can be written as

∂x8− A(x, t)∂t8− B(x, t)8 = 0,

where the matrix A(x0, t0) has real and distinct eigenvalues. If A and B depend

only on x , these equations are of the same type as (1.2) for r = m = 1. However,

our assumption and this notion are different, in general. The author of [38] gives a

characterization for strictly hyperbolic systems of the form

∂m
x 8 =

∑

l<m
l+p≤m

Alp(x, t)∂ l
x∂

p
t 8

in terms of the principal symbol. By contrast, our assumption concerns the total

symbol.

Separation of variables allows us to construct solutions to (1.2) by means of the

formula

(1.6) φ(x, t, ε) :=
∫

1

Q(E, ε)e−i t E/εψε(x, E)d E,

where ψε(x, E) is a solution to the energy-dependent stationary problem

(1.7) R̂(x, E, iε∂x)ψε(x, E) = 0,

with

(1.8) R̂(x, E, iε∂x) =
∑

l∈{0,...,m}
n∈{0,...,r}

Aln(x)E
n(iε∂x)

l,

and the function Q( · , ε) : 1 7→ C is an energy density that ensures that E belongs

to the prescribed window 1. The dependence of Q( · , ε) on the parameter ε will

be used to localize in energy the waves we want to describe.

Equation (1.7) is a singularly perturbed system of ODEs to which we apply

complex BKW techniques. Making use of suitably normalized polarization vectors

ϕj (x, E), we show that the solutions of (1.7) can be expanded as

(1.9) ψε(x, E) =
md∑

j=1

cj (x, E, ε)e−i
∫ x

0 kj (y,E)dy/εϕj (x, E),

where the C-valued coefficients cj ( · , E, ε) satisfy some linear ODE, which we

analyze in the semiclassical limit ε → 0. The assumption E ∈ 1 implies that
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the factors e−i
∫ x

0 kj (y,E)dy/ε are phases for all x ∈ R with distinct kj (x, E), and the

coefficients cj are constant in the semiclassical limit (see, e.g, [25, 22]),

(1.10) cj (x, E, ε) = cj (0, E, ε)+ O(ε), j = 1, . . . ,md.

The hypotheses on the matrices Aln at infinity ensure the existence of the limits

ϕj (±∞, E), kj (±∞, E), and cj (±∞, E, ε), and the error term in (1.10) is uniform

in x . In particular, the stationary on-shell scattering process characterized by the

S-matrix

(1.11) S(E, ε)c(−∞, E, ε) = c(+∞, E, ε)

where c(+∞, E, ε) =




c1(+∞, E, ε)
...

cmd(+∞, E, ε)




is well-defined. Actually, in our analytic framework, the off-diagonal elements

of S(E, ε) are exponentially small; see below. Thus, for |x | large enough, the

solutions (1.6) of the time-dependent equation (1.2) behave as

φ(x, t, ε)

≃
md∑

j=1

∫

1

Q(E, ε)cj (±∞, E, ε)e−i(t E+xkj (±∞,E))/εϕj (±∞, E)d E .
(1.12)

If we assume that the asymptotic dispersion relations E 7→ kj (±∞, E) are in-

vertible on 1, the asymptotic solutions (1.12) are given by linear combinations

of wave packets associated with each mode and corresponding polarization. The

property (1.10) shows that transitions between modes induced by the evolution are

vanishing in the semiclassical limit.

We determine the asymptotics of certain exponentially small transitions be-

tween modes for solutions that allow us to define a scattering process for |x | large

in a time-dependent setup. Bona fide scattering processes require the energy and

the modes we are interested in to satisfy the following conditions: There exists a

mode supporting ingoing waves on which we start our solution at time −∞ and

that there exists another mode describing outgoing waves at time +∞ to which

transitions are possible. There exist systems of PDEs that support outgoing solu-

tions or ingoing solutions only. Our results do not provide interesting information

on such systems.

For definiteness, let us assume in the introduction that the energy of the waves

is well localized around E0 ∈ 1\∂1 and that, for all x ∈ R, ∂E kj (x, E0) < 0. Our

sign conventions imply that the asymptotic group velocities are then positive; see

in particular Proposition 7.1. This implies that such waves travel from left to right

and are polarized along ϕj (−∞, E0) in the remote past. Let us further assume that

the mode kn supports outgoing solutions from left to right as well for x ≃ +∞.

The incoming waves are thus characterized for x large and negative by stationary

solutions corresponding to ck(−∞, E, ε) = δk j . Hence the summand with label
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n of (1.12) corresponding to the coefficient cn(+∞, E, ε), n 6= j , determines the

exponentially small piece of the wave for x in a neighborhood of +∞ that has

made the transition from mode kj to mode kn in the course of the evolution for

times t large and positive.

In order to compute the exponentially small asymptotics of the scalar coeffi-

cient cn(+∞, E, ε), one uses BKW techniques. That is, one considers the equa-

tion satisfied by these coefficients in the complex plane and makes use of their

multivaluedness around points of degeneracy of the analytic continuations of cer-

tain modes. As is well-known, the complex BKW method requires the existence

of dissipative or canonical domains, for example, [10, 11, 15, 23, 22, 12, 13, 33],

which is not easy to prove. In our setup, we rely on the analysis of [22], which

proves that in some avoided crossing regime, dissipative domains exist. The notion

of avoided crossing requires the introduction of another parameter, but we don’t

want to be specific about this regime yet. Let us only mention here that dissipative

domains exist in particular when the mode kj ( · , E) becomes almost degenerate

with kn( · , E), with either n = j − 1 or n = j + 1, at only one point on the real

axis. The outcome of the analysis is the asymptotic formula for ε → 0

(1.13) cn(+∞, E, ε) = τ(E)ei S(E)/ε(1 + O(ε))

with S(E) = κ(E) + iγ (E), γ (E) > 0, and τ(E) ∈ C
∗. The exponent S(E) is

given by some action integral in the complex plane around the relevant complex

degeneracy point of the modes kj ( · , E) and kn( · , E) (see (4.9)), and the prefactor

τ(E) possesses some geometric meaning [23]. We localize our wave packets in

energy by considering typically Gaussian energy densities of the form

(1.14) Q(E, ε) = P(E, ε)e−(E−E0)
2g/(2ε),

where P has support in1 and diverges at worst like a polynomial in 1/ε as ε → 0.

With these ingredients, we prove in Theorem 6.1 that for t > 0 large enough,

and in the L2(R) norm, the piece of the wave function that has made the transition

from the mode kj to kn is given in the limit ε → 0 by

(1.15)

φnj (x, t, ǫ)

≃ e−α∗/εN∗(ε)

∫

kn(+∞,1)

e−λ2(k−k∗)2/(2ε)e−i(t E+
n (k)+kx+λ1(k−k∗))/ε dk

+ O(1/|t |β)+ o(ε3/4e− Reα∗/εN∗(ε)).

Here 0 < β < 1
2

and k 7→ E+
n (k) is the inverse function of the asymptotic disper-

sion relation E 7→ kn(+∞, E). The exponent α∗, the average momentum k∗, and

factors λ1 and λ2 (such that Re λ2 > 0) are determined by the action integral S and

the energy density Q, and the prefactor N∗(ε) is polynomial at worst in 1/ε. The

leading term in (1.15) is of positive L2 norm, constant in time, and of order ε3/4, up
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to the prefactors. Moreover, in the limits ε → 0 and |t | → ∞, this wave is essen-

tially carried on a ball centered at x = −∂k E+
n (k∗)t of radius

√
t , in the L2 sense;

see Proposition 7.1. Finally, the error terms are uniform in ε and t , respectively.

The function (1.15) corresponds to an exponentially small free wave propagat-

ing according to the dispersion relation E+
n (k) with Gaussian momentum profile

(within the momentum window kn(+∞,1)) centered around k∗. Note that the er-

ror terms are negligible only for large enough times, actually exponentially large

times t ≃ ec/ε, c > 0. Let us emphasize one point revealed by the present analy-

sis and that of [20]. The average momentum k∗ does not coincide with the naive

guess k0 ≃ kn(+∞, E0), which corresponds to energy conservation. It is actually

dependent on the choice of energy density Q. Similarly, the exponential decay rate

α∗ is not determined by the function γ = Im S only, but depends explicitly on the

density Q as well.

In other words, the piece of the wave function that has made the transition

is asymptotically given for small ε and large times by the solution to the linear

evolution equation, in (rescaled) Fourier space,

iε∂t f (t, k) = E+
n (k) f (t, k),

f (0, k) = e−α∗/εN∗(ε)e
−λ2(k−k∗)2/(2ε)e−iλ1(k−k∗)/εχkn(+∞,1)(k),

(1.16)

where χS is the characteristic function of the set S ⊂ R. Finally, we mention that

in case E+
n (k) is quadratic in k, we can further compute the leading term explicitly,

as in [20], which yields a freely propagating Gaussian; see Lemma 6.3. Also, our

analysis applies to the description of exponentially small reflected waves, as will

be explained below.

Let us close this introduction by further commenting on the comparison be-

tween the results of [20] concerning the Born-Oppenheimer approximation and

the generalization provided in the present paper. As mentioned earlier, the gen-

eral strategy making use of separation of variables, complex BKW analysis of the

generalized eigenvectors, and stationary phase analysis of the time-dependent so-

lutions is borrowed from [20]. However, the detailed analysis differs in several

points, due to the general setting adopted here. Let us make explicit the main

differences.

In the Born-Oppenheimer setup, the modes are given explicitly by (1.5). From

this follows a straightforward determination of the allowed energy window1 yield-

ing real-valued modes. Moreover, the direction of propagation for each mode is

simply given by its sign, which cannot change when the modes are distinct for all

x ∈ R. By contrast, in the general case, the direction of propagation along each

mode is determined by the group velocity, whose sign can vary as a function of

the space variable. This gives rise to a richer, more complicated set of scattering

processes, as discussed following Theorem 6.1. This is also illustrated at the end

of Section 5. Furthermore, another peculiarity of the Born-Oppenheimer case is

that the relation E(k) is quadratic. This allows for an explicit determination of the
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asymptotic free waves in terms of Gaussian integrals. In the general case, the main

features of the asymptotic waves have to be extracted from yet another stationary

phase argument.

From a more technical perspective, the fact that the modes are not given in

general by explicit functions makes the BKW analysis in the complex plane more

delicate. Indeed, we rely on an avoided crossing setup in order to control the BKW

ansatz in the complex plane. Hence, it is necessary to elucidate the detailed analytic

properties of the modes as functions of the space variable and the energy variable

and in the supplementary parameter governing the avoided crossing regime alluded

to. In the Born-Oppenheimer setup, these properties are readily checked on (1.5).

However, in the general case, they need to be proven as separate lemmas. Sim-

ilarly, the (canonical) polarization vectors corresponding to the individual modes

are immediately identified in the Born-Oppenheimer setup. Again, in the general

case, their determination is less straightforward, since there is no obvious natural

ansatz for the BKW decomposition of the generalized eigenvectors.

Finally, the generality adopted here does not entail unitarity of the evolution

operator, in contrast with the Born-Oppenheimer case. This requires us to take

further independent steps in the analysis in order to check, for example, that the

solutions leave any compact set as time goes to infinity.

The rest of the paper is organized as follows: The precise hypotheses on the

operator R(x, iεt , iε∂x) are spelled out in the next section. Section 3 is devoted

to the analysis of the corresponding stationary solutions. The BKW method and

the avoided crossing situation are presented in Section 4. The construction of time-

dependent solutions to the original problem and their scattering properties are given

in Section 5. The precise semiclassical analysis in the scattering regime of the

time-dependent asymptotic waves describing intermode transitions is provided in

Section 6. Further properties of the asymptotic waves are given in Section 7. A

technical section closes the paper.

2 Hypotheses for the Differential Operator

We consider a differential operator defined by (1.1) where a supplementary

small parameter δ is included to define the avoided crossing regime in which the

gaps between certain modes are small:

(2.1) R(x, iε∂t , iε∂x , δ) =
∑

l∈{0,...,m}
n∈{0,...,r}

Aln(x, δ)(iε∂x)
l(iε∂t)

n.

We recall that ∀(l, n) ∈ {0, . . . ,m}× {0, . . . , r}, ∀x ∈ R, ∀δ ∈ [0, d0], Aln(x, δ) ∈
Md(C), and we define

R(x, E, k, δ) =
∑

l∈{0,...,m}
n∈{0,...,r}

Aln(x, δ)k
l En.

Now, we describe the hypotheses on the differential operator R.



10 A. JOYE AND M. MARX

(H1) There exist Y > 0 and d0 > 0 such that for any δ ∈ [0, d0] the matrix-

valued functions z 7→ Aln(z, δ), l = 0, . . . ,m, and n = 0, . . . , r are analytic

in a strip ρY = {z ∈ C : |Im z| < Y }, and (z, δ) 7→ Aln(z, δ) is C3 for any

(z, δ) ∈ ρY × [0, d0].
(H2) There exist ν > 1

2
, c > 0, and 2(m + 1)(r + 1)matrix-valued C2 functions

δ 7→ Aln(±∞, δ) such that ∀δ ∈ [0, d0],
sup
z∈ρY

Re z≷0

|Re z|2+ν‖Aln(z, δ)− Aln(±∞, δ)‖ < c.

Now, we describe the avoided crossing assumption. We assume that 1 ⊂ R is

a compact interval with nonempty interior such that, for any E ∈ 1:

(H3) For any x ∈ R and any δ ∈ [0, d0], there are md real values

{k1(x, E, δ), k2(x, E, δ), . . . , kmd(x, E, δ)}
such that det R(x, E, kj (x, E, δ), δ) = 0, j = 1, . . . ,md. For any δ ∈ [0, d0], the

values kj (x, E, δ) have md distinct limits as x → −∞ and as x → +∞, which

we denote by kj (±∞, E, δ). The labels are chosen as follows:

When δ > 0, the functions kj (x, E, δ) are distinct for x ∈ [−∞,+∞] and are

labeled by

k1(x, E, δ) < k2(x, E, δ) < · · · < kmd(x, E, δ).

When δ = 0, the functions kj (x, E, 0), for j = 1, . . . ,md, are given by md real

functions that have p(E) > 0 finitely many real crossings at x1(E) < · · · <
xp(E)(E). Precisely, we assume the following for some fixed positive Ỹ and for

any fixed E ∈ 1:

• The functions kj (x, E, 0) are labeled according to

k1(−∞, E, 0) < k2(−∞, E, 0) < · · · < kmd(−∞, E, 0).

• For any j ∈ {1, . . . ,md}, the function (z, E) 7→ kj (z, E, 0) is continuous on

ρỸ ×1.

• For any j ∈ {1, . . . ,md}, the function z 7→ kj (z, E, 0) is analytic on ρỸ .

• For any l ∈ {1, . . . , p(E)}, there exist exactly two integers (i, j) ∈ {1, . . . ,
md}2 such that

ki (xl(E), E, 0) = kj (xl(E), E, 0).

Besides, we assume that

∂x(ki − kj )(xl(E), E, 0) 6= 0.

For certain results, we also impose the condition that these avoided crossings be

generic in the sense of [16, 20, 21].

(H4) Fix E0 ∈ 1. Near an avoided crossing (x0(E0), E0) of ki and kj , there

exist three functions E 7→ a(E), E 7→ b(E), and E 7→ c(E) such that, in a

neighborhood of E0,
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(1) The difference kj − ki satisfies

[kj (z, E, δ)− ki (z, E, δ)]2 = a2(E)(z − x0(E))
2 + 2c(E)(z − x0(E))δ

+ b2(E)δ2 + R3(z − x0(E), δ),

where R3 is a remainder of order 3 in (z − x0(E), δ).

(2) We have

a(E) > 0, b(E) > 0, a2(E)b2(E)− c2(E) > 0.

According to [27], we know a priori that the functions kj are analytic in both

variables except at the crossing points. The assumptions (H1), (H2), and (H3)

imply analyticity in both variables at the real crossing points:

LEMMA 2.1 Assume that (H1), (H2), and (H3) are satisfied. Then, for 1 small

enough, we have the following:

(i) The number p(E) does not depend on E ∈ 1.

(ii) There exists Y > 0 such that (z, E) 7→ kj (z, E, 0) is analytic on ρY × 1

for any j ∈ {1, . . . ,md}.
(iii) For l ∈ {1, . . . , p(E)}, the function E 7→ xl(E) is analytic on 1.

We will prove Lemma 2.1 in Section 8.

Similarly, assumptions (H1) to (H4) imply the following result:

LEMMA 2.2 Under assumptions (H1) to (H4), the functions a, c, and b2 are ana-

lytic in a neighborhood of E0. In addition, a(E) = |∂z(ki − kj )(x0(E), E)|.

Lemma 2.2 is proven in Section 8.

Let us end this section by noting here that one of our hypotheses is that the

modes be real, but this does not guarantee that the L2 norm is conserved under the

time evolution. This question is addressed in Section 5.

3 Generalized Eigenvectors

In this section, we assume that R and 1 satisfy (H3), and we investigate the

properties of the modes, their corresponding polarization vectors, and the station-

ary solutions. For the time being, the parameter δ > 0 is fixed, and we drop it into

the notation. The generalized eigenvectors ψε(x, E) ∈ C
d are defined as solutions

of the time-independent equation

(3.1) R̂(x, E, iǫ∂x)ψε(x, E) = 0.

For any E ∈ 1, the set of such solutions is md-dimensional, since (3.1) is a system

of d linear equations of order m.

We define

(3.2) ∀l ∈ {0, . . . ,m} Nl(x, E) =
r∑

n=0

Aln(x)E
n
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so that

R(x, E, k) =
m∑

l=0

Nl(x, E)kl .

We first prove the following result:

LEMMA 3.1 We assume that R and1 satisfy (H1) and (H3). We have the following

properties:

(i) For any E ∈ 1 and any x ∈ R, Nm(x, E) is invertible.

(ii) For j ∈ {0, . . . ,m}, (z, E) 7→ Nj (z, E) is analytic in ρY ×1.

(iii) If we define H(x, E) by

(3.3) H =




0 Id 0 . . . 0

0 0 Id . . . 0
...

...
...

. . .
...

0 0 0 . . . Id

−(N−1
m N0) −(N−1

m N1) −(N−1
m N2) . . . −(N−1

m Nm−1)



,

then

σ(H(x, E)) =
{

k : det

( m∑

l=0

Nl(x, E)kl

)
= 0

}
= {k : det(R(x, E, k)) = 0}.

(iv) The functions {(x, E) 7→ kj (x, E)}j∈{1,...,md} are analytic in R ×1.

(v) Ker(R(x, E, kj (x, E))) is one-dimensional.

PROOF: The singular values of R(x, E, k) =
∑m

l=0 Nl(x, E)kl are the roots of

the polynomial

(3.4) L(k) = det

( m∑

l=0

Nl(x, E)kl

)
.

This polynomial is of degree md and the highest coefficient is det Nm(x, E). Ac-

cording to (H3), since L has md distinct roots, det Nm(x, E) 6= 0, which proves (i).

Assertion (ii) is immediate.

Consider statement (iii). A complex number k ∈ σ(H(x, E)) if there exists

8 ∈ C
md \ {0} such that H8 = k8. Block-by-block computations show that 8 is

of the form

(3.5) 8 =




ϕ

kϕ
...

km−1ϕ


 , ϕ ∈ C

d,

with det(
∑m

l=0 Nl(x, E)kl) = 0 and ϕ ∈ Ker(
∑m

l=0 Nl(x, E)kl).

Again by [27], (H3) with δ > 0 implies that the functions kj (x, E) are analytic

in a complex neighborhood of R ×1, which proves (iv).

Point (v) follows from (3.5) and the fact that σ(H(x, E)) is simple. �
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We introduce some normalized eigenvectors of R(x, E, kj (x, E)).

3.1 Canonical Eigenvectors of R(x, E, k j (x, E))

For a matrix A, we denote its adjoint by A∗ = ĀT.

Fix j ∈ {1, . . . ,md}. Under (H3) and according to [27], we know that there

exist two vector-valued functions ξj and ξ
†
j with values in C

d such that

(1) the two functions (x, E) 7→ ξj (x, E) and (x, E) 7→ ξ
†
j (x, E) are analytic

on R ×1, and

(2) for all (x, E) ∈ R × 1, we have ξj (x, E) ∈ Ker R(x, E, kj (x, E)) and

ξ
†
j (x, E) ∈ Ker R∗(x, E, kj (x, E)).

DEFINITION 3.2 The vector ϕj = αjξj , with

(3.6) αj (x, E) = e
−

∫ x
0

〈
ξ

†
j
,∂k R(u,E,kj )∂x ξj

〉
+

〈
ξ

†
j
,(∂x kj /2)∂

2
k

R(u,E,kj )∂x ξj

〉

〈
ξ

†
j
,∂k R(u,E,kj )ξj

〉 du

is called a canonical eigenvector associated to R(x, E, kj (x, E)).

We notice the following facts:

• The vector ϕj does not depend on ξ
†
j ∈ Ker(R∗(x, E, kj (x, E))). In par-

ticular, we can choose ξ
†
j so that

〈ξ †
j , ξj 〉 = 1.

• Condition (3.6) may seem artificial, but we shall see in the proof of Lemma

3.3 that it corresponds to the Kato normalization of the eigenvectors of

H(x, E).

3.2 Decomposition Lemma

LEMMA 3.3 We assume that R and 1 satisfy (H3). Let ψε(x, E) be a solu-

tion of (3.1) and, for any j ∈ {1, . . . ,md}, let ϕj be a canonical eigenvector

of R(x, E, kj (x, E)). Let ϕ
†
j be any eigenvector in Ker R∗(x, E, kj (x, E)). Then

there exist md functions (z, E, ε) 7→ cj (z, E, ε), j = 1, . . . ,md, such that

(i) the function ψε(x, E) satisfies ∀l ∈ {0, . . . ,m − 1}:

(iε∂x)
lψε(x, E) =

md∑

j=1

cj (x, E, ε)kl
j (x, E)e− i

ε

∫ x
0 kj (y,E)dyϕj (x, E).

(ii) If we define

c(x, E, ε) =




c1(x, E, ε)
...

cmd(x, E, ε)


 ,

the vector c satisfies the following differential equation:

(3.7) ∂x c(x, E, ε) = M(x, E, ε)c(x, E, ε),
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where the matrix M is given by

(3.8) Mjl(x, E) = ajl(x, E)ei
1jl (x,E)

ε

with 1jl(x, E) =
∫ x

0
[kj (u, E) − kl(u, E)]du and ∀ j ∈ {1, . . . ,md},

aj j (x, E) = 0, and ∀ j 6= l,

ajl(x, E)

= 1

kj (x, E)− kl(x, E)

×
[

〈ϕ†
j , R(x, E, kl)∂xϕl〉 + ∂x kl〈ϕ†

j , [∂k R(x, E, kl)− ∂k R(x, E, kj )]ϕl〉
〈ϕ†

j , ∂k R(x, E, kj )ϕj 〉

]
.

(3.9)

Remark. The set {ϕj }j∈{1,...,md} is a linearly dependent family of vectors in C
d .

The decomposition in point (i) above corresponds to the familiar BKW ansatz in

semiclassical analysis; see, for example, [10].

PROOF: Let ψε(x, E) be a solution of (3.1). We define

(3.10) 9ε(x, E) =




ψε(x, E)

(iε∂x)ψε(x, E)
...

(iε∂x)
m−1ψε(x, E)


 .

Then 9ε(x, E) satisfies

(3.11) iε∂x9ε(x, E) = H(x, E)9ε(x, E).

Equation (3.11) has been studied in [22, 25]. We use the results obtained there and

write

(3.12) H(x, E) =
md∑

j=1

kj (x, E)Pj (x, E),

where the matrix-valued functions Pj (x, E) are the one-dimensional eigenprojec-

tors of H(x, E) and satisfy

md∑

j=1

Pj (x, E) = Imd .

Hypothesis (H3) implies the existence of a basis of eigenvectors of H(x, E) for

each (x, E), denoted by {8j (x, E)}j=1,...,md .

We determine these eigenvectors uniquely (up to a constant depending on E)

by requiring them to satisfy

H(x, E)8j (x, E) = kj (x, E)8j (x, E) ∀ j = 1, . . . ,md,(3.13)

Pj (x, E)∂x8j (x, E) = 0 ∀ j = 1, . . . ,md.(3.14)
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Indeed, recall that if W (x, E) is the solution of

(3.15) ∂x W (x, E) =
md∑

j=1

(∂x Pj (x, E))Pj (x, E)W (x, E), W (0, E) = Imd,

it is well-known that W (x, E) satisfies the intertwining identity

W (x, E)Pj (0, E) = Pj (x, E)W (x, E) ∀ j ∈ {1, . . . ,md}.
The generator of (3.15) being analytic in E , W is analytic in both variables (x, E) ∈
R ×1; see [8, sec. XI.5]. Hence,

8j (x, E) := W (x, E)8j (0, E) ∀ j ∈ {1, . . . ,md}
where {8j (0, E)}j∈{1,...,md} is the basis of analytic eigenvectors of H(0, E), satis-

fies

Pj (x, E)8j (x, E) = 8j (x, E) and equation (3.14).

We refer to [27, 25, 22] for the details.

We will rewrite the eigenprojectors as

Pj (x, E) = 1

〈8†
j (x, E),8j (x, E)〉

|8j (x, E)〉〈8†
j (x, E)|,

where 8
†
j (x, E) ∈ Ker(H ∗(x, E)− kj (x, E)), since kj (x, E) = kj (x, E).

We use the same notation for duality in C
m and C

md since no confusion should

arise.

Let us begin by specifying equation (3.14) in our case. We consider an eigen-

vector 4j (x, E) of H(x, E), which is written as

4j (x, E) =




ξj (x, E)

kj (x, E)ξj (x, E)
...

km−1
j (x, E)ξj (x, E)


 with ξj (x, E) ∈ Ker R(x, E, kj (x, E)).

The vector 8j must be of the form 8j = αj4j , where αj ∈ C, and we define

ϕj = αjξj . Then

8j =




ϕj

kjϕj

...

km−1
j ϕj


 .

Now, if 4
†
j (x, E) ∈ Ker(H ∗(x, E)− kj (x, E)), then 8j satisfies (3.14) if

∂xαj

αj

= −
〈4†

j , ∂x4j 〉
〈4†

j , 4j 〉
.

It remains to choose 4
†
j and to compute 〈4†

j , ∂x4j 〉 and 〈4†
j , 4j 〉.
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We start with the computation of the vector 4
†
j (x, E). It is an eigenvector of

H ∗(x, E) associated with the eigenvalue kj (x, E) = kj (x, E). Let ξ
†
j (x, E) ∈

Ker(R∗(x, E, kj (x, E))). We check that we can take

4
†
j =




m∑
l=1

kl−1
j N ∗

l ξ
†
j

m∑
l=2

kl−2
j N ∗

l ξ
†
j

...

N ∗
mξ

†
j



.

Then

〈4†
j , 4j 〉 =

m∑

p=1

k
p−1

j

m∑

l=p

k
l−p

j 〈N ∗
l ξ

†
j , ξj 〉 =

m∑

l=1

kl−1
j

l∑

p=1

〈N ∗
l ξ

†
j , ξj 〉

=
〈
ξ

†
j ,

m∑

l=1

lkl−1
j Nlξj

〉
= 〈ξ †

j , ∂k R(x, E, kj (x, E))ξj 〉.

Similarly, we compute

〈4†
j , ∂x4j 〉 = 〈ξ †

j , ∂k R(x, E, kj )∂xξj 〉 +
〈
ξ

†
j ,
∂x kj

2
∂2

k R(x, E, kj )∂xξj

〉
.

This implies that ϕj is a canonical eigenvector of R(x, E, kj ).

From [25, 22], we know that any solution to (3.11) can be written as

9ε(x, E) =
md∑

j=1

cj (x, E, ε)e− i
ε

∫ x
0 kj (y,E)dy 8j (x, E),

where the scalar coefficients cj satisfy the differential equation ∂x c = Mc, where

M is given by (3.8), and

ajl = −
〈8†

j , ∂x8l〉
〈8†

j ,8j 〉
.

We compute

〈8†
j , ∂x8l〉 = ∂x kl

m∑

p=2

m∑

q=p

(q − 1)k
q−p

j k
p−2

l 〈N ∗
qϕ

†
j , ϕl〉

+
m∑

p=1

m∑

q=p

k
q−p

j k
p−1

l 〈N ∗
qϕ

†
j , ∂xϕl〉.

(3.16)

By interchanging the indices p and q and according to the formula

∀a 6= b
∑

p+l=s

a pbl = as+1 − bs+1

a − b
,
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we obtain formula (3.9). The first statement of the lemma stems from formula

(3.10). This ends the proof of Lemma 3.3. �

3.3 Behavior of the Matrix M

The following lemma describes the behavior of the coefficients ai j and phases

entering the definition of M .

LEMMA 3.4 We assume that (H1), (H2), and (H3) are satisfied. Then we have the

following:

• The eigenvalues kj satisfy for any k ∈ N and any l ∈ N

(3.17) ∀E ∈ 1 sup
x→±∞

|x |2+ν∣∣∂ l
E∂

k
x (kj (x, E)− kj (±∞, E))

∣∣ < ∞.

• The eigenvectors ϕj satisfy for any l ∈ N, uniformly in E ∈ 1,

(3.18) sup
x→±∞

|x |1+ν∥∥∂ l
E(ϕj (x, E)− ϕj (±∞, E))

∥∥ < ∞.

• Moreover, for any k ∈ N
∗ and l ∈ N, uniformly in E ∈ 1,

(3.19) sup
x→±∞

|x |2+ν∥∥∂ l
E∂

k
x (ϕj (x, E)− ϕj (±∞, E))

∥∥ < ∞.

• For any k ∈ N and any l ∈ N, the coefficients of the matrix M satisfy

uniformly in E ∈ 1

(3.20) ∀x ∈ R, ∀( j, p) ∈ {1, . . . ,md}2, |∂ l
E∂

k
x aj p(x, E)| |x |2+ν < ∞.

• Let

(3.21) ωj (±∞, E) =
∫ ±∞

0

[kj (y, E)− kj (±∞, E)]dy

and

(3.22)

∫ x

0

kj (y, E)dy = xkj (±∞, E)+ ωj (±∞, E)+ r±
j (x, E).

Then we have, uniformly in E ∈ 1 and for any n ∈ N,

(3.23) ∀ j ∈ {1, . . . ,md}
sup
x>0

|x |1+ν |∂n
Er+

j (x, E)| + sup
x<0

|x |1+ν |∂n
Er−

j (x, E)| < ∞.

We prove Lemma 3.4 in Section 8.
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3.4 The Vector c

In the following lemma, we describe the behavior of the vector c defined by the

ODE (3.7).

LEMMA 3.5 We assume that (H1), (H2), and (H3) are satisfied.

• For any E ∈ 1 and ǫ > 0, the limits cj (±∞, E, ε) exist for all j =
1, . . . ,md.

• If the initial conditions to (3.7) are chosen so that c(−∞, E, ε) is uni-

formly bounded in E ∈ 1 and ǫ > 0, then we have for some constant C

uniform in ε and E ∈ 1
|∂E cj (±∞, E, ε)| + |cj (±∞, E, ε)| < C,

sup
x>0
x<0

|x |ν |∂E cj (x, E, ε)− ∂E cj (±∞, E, ε)| < C,

sup
x>0
x<0

|x |1+ν |cj (x, E, ε)− cj (±∞, E, ε)| < C.

Remarks.

(i) As the proof shows, the condition supE∈1,ε→0 ‖c(−∞, E, ε)‖ < ∞ can

be replaced by

(3.24) ∃x0 ∈ R such that sup
E∈1
ε→0

‖c(x0, E, ε)‖ < ∞.

(ii) In the construction of solutions to (1.2) by means of an energy density, we

can (and will) always assume that the initial conditions, wherever they are chosen,

are uniformly bounded in energy:

(3.25) ∃x0 ∈ R such that sup
E∈1

‖c(x0, E, ε)‖ < ∞.

(iii) The equation being linear, we can actually always assume condition (3.24)

holds. This is what we do in the rest of the paper.

We shall prove Lemma 3.5 in Section 8.

From Lemma 3.5, we can define the stationary scattering matrix S(E, ε) by

(3.26) S(E, ε)c(−∞, E, ε) = c(+∞, E, ε).

In order to describe the time-dependent scattering processes we are interested in,

we need more detailed information about the stationary S-matrix.

4 Complex BKW Analysis

In this section, the parameter δ > 0 is still kept fixed. All the information

about transmissions and transitions among the asymptotic eigenstates is contained

in the asymptotic values of the coefficients cj (x, E,±∞) defined in Section 3.4

and hence in the stationary scattering matrix S(E, ε). We extract this information
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by mimicking the complex BKW method of [25, 22], while keeping track of the

E-dependence.

In the simplest setting, the complex BKW method requires hypotheses on the

behavior of the so-called Stokes lines for equation (3.11) in order to provide the

required asymptotics. These hypotheses are global in nature, and in general are

extremely difficult to check. See, for example, [10, 11]. However, in the physically

relevant situation of avoided crossings, they can be easily checked, as is proven

in [22] and will be recalled in the next section. We restrict our attention to these

avoided crossing situations.

To study the S-matrix, it is enough to consider the coefficients cj that are

uniquely defined by the conditions

(4.1) cj (−∞, E, ε) = 1, ck(−∞, E, ε) = 0, for all k 6= j.

The key of the complex BKW method lies in the multivaluedness of the eigenvalues

and the eigenvectors of the analytic generator H(x, E) in the complex x-plane.

According to (H3), the eigenvalues and eigenvectors of H(x, E) are analytic

in x on the real axis. They may have branch points in ρY that are located in

(4.2) �(E) = {z ∈ ρY : ∃ j 6= l such that kj (z, E) = kl(z, E)}.

4.1 The Set �(E)

By the Schwarz reflection principle, for any E ∈ 1, we have �(E) = �(E).

Besides, the set
⋃

E∈1�(E) is bounded in ρY .

We have the following description of �(E) (see [22]):

LEMMA 4.1 Fix E0 ∈ 1. There exists a neighborhood 10 of E0 and a finite

number R of bounded open sets {�i }i∈{1,...,R} in ρY ∩ C+ such that the following

hold:

• For any E ∈ 10, �(E) ⊂
⋃R

1 �i

⋃R
1 �i .

• For all i ∈ {1, . . . , R}, �i ∩ R = ∅.

• For any E ∈ 10 and i ∈ {1, . . . , R}, �i contains only one crossing point.

This point is a crossing point for finitely many distinct couples of modes.

We define � =
⋃R

1 �i

⋃R
1 �i .

Under our genericity hypotheses, we have the following local behavior at a

complex crossing point z0 ∈ �(E0):

kj (z, E0)− kl(z, E0) = γ (E0)(z − z0)
1/2(1 + O(z − z0)).

The eigenprojectors of H(x, E) also admit multivalued extensions in ρY \ �(E),
but they diverge at generic eigenvalue crossing points. We only have to deal with

generic crossing points.

To see what happens to a multivalued function f in ρY \�when we turn around

a crossing point, we adopt the following convention: For E fixed, we denote by

f (z, E) the analytic continuation of f defined in a neighborhood of the origin
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along some path from 0 to z. Then we perform the analytic continuation of f (z, E)

along a negatively oriented loop that surrounds only one connected component �i

of �. We denote by f̃ (z, E) the function we get by coming back to the original

point z. We define ζ0 to be a negatively oriented loop, based at the origin, that

encircles only �i when �i ∈ C+. When �i ∈ C−, we choose ζ0 to be positively

oriented.

We now fix �i ∈ C+. For any E ∈ 10, if we analytically continue the set of

eigenvalues {kj (z, E)}md
j=1 along a negatively oriented loop around �i , we get the

set {̃kj (z, E)}md
j=1 with

k̃j (z, E) = kπ0( j)(z, E) for j = 1, . . . ,md,

where

(4.3) π0 : {1, . . . ,m} → {1, . . . ,md}
is a permutation that depends on �i . As a consequence, the eigenvectors 8j pos-

sess multivalued analytic extensions in ρY \�. The analytic continuation 8̃j (z, E)

of 8j (z, E) along a negatively oriented loop around �i must be proportional to

8π0( j)(z, E). Thus, for j = 1, . . . ,md, there exists θj (ζ0) ∈ C such that

(4.4) 8̃j (z, E) = e−iθj (ζ0,E)8π0( j)(z, E).

The above implies a key identity for the analytic extensions of the coefficients

cj (z, E, ε), z ∈ ρY \�. Since the solutions to (3.11) are analytic for all z ∈ ρY , the

coefficients cj must also be multivalued. In our setting, lemma 3.1 of [22] implies

the following lemma:

LEMMA 4.2 For any j = 1, . . . ,md, we have

(4.5) c̃j (z, E, ε)e
i
∫
ζ0

kj (u,E)du/ε
e−iθj (ζ0,E) = cπ0( j)(z, E, ε)

where ζ0 and π0( j) are defined as above and are independent of E ∈ 10.

Remark. Since � has a finite number of connected components, it is straightfor-

ward to generalize the study of the analytic continuations around one crossing point

to analytic continuations around several crossing points. The loop ζ0 can be rewrit-

ten as a concatenation of finitely many individual loops, each encircling only one

connected component of �. The permutation π0 is given by the composition of

associated permutations. The factors eiθj (ζ0,E) in (4.4) are given by the product of

the factors associated with the individual loops. The same is true for the factors

exp(i
∫
ζ0

kj (z, E)dz/ε) in Lemma 4.2.

4.2 Dissipative Domains

We now describe how to use the above properties in order to control the limit

ε → 0. The details may be found in [22].

The idea is to integrate the integral equation corresponding to (3.7) along paths

that go above (or below) one or several crossing points, and then to compare
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the result with the integration performed along the real axis. As z → −∞ in

ρY , these paths become parallel to the real axis so that the coefficients take the

same asymptotic value cm(−∞, E, ε) along the real axis and the integration paths.

Since the solutions to (3.11) are analytic, the results of these integrations must

agree as Re z → ∞. Therefore, (4.5) taken at z = ∞ yields the asymptotics of

cπ0( j)(∞, E, ε) provided we can control c̃j (z, E, ε) in the complex plane. We ar-

gue below that this can be done in the so-called dissipative domains of the complex

plane. We do not go into the details of these notions because a result of [22] will

enable us to get sufficient control on c̃j (z, E, ε) in the avoided crossing situation,

to which we restrict our attention.

We recall that 1jl is defined in (3.8). We rewrite (3.7) as an integral equation:

(4.6) cj (x, E, ε) = cj (x0, E, ε)+
∫ x

x0

∑

l

ajl(x
′, E)e

i1jl (x
′,E)

ε cl(x
′, E, ε)dx ′.

By explicit computation, we check that (4.6) can be extended to ρY \ �. We inte-

grate by parts in (4.6) to see that (4.6) with x0 = −∞ can be rewritten as

c̃m(z, E, ε)

= δjm − iε
∑

l

ãml(z, E)

k̃m(z, E)− k̃l(z, E)
ei1̃ml (z,E)/ε c̃l(z, E, ε)

+ iε2
∑

l

∫ z

−∞

(
∂

∂z′
ãml(z

′, E)

k̃m(z′, E)− k̃l(z′, E)

)
ei1̃ml (z

′,E)/ε c̃l(z
′, E, ε)dz′

+ iε
∑

l,p

∫ z

−∞

ãml(z
′, E )̃alp(z

′, E)

k̃m(z′, E)− k̃l(z′, E)
ei1̃mp(z

′,E)/ε c̃p(z
′, E, ε)dz′,

(4.7)

as long as the chosen path of integration does not meet �. Here ˜ denotes the

analytic continuation along the chosen path of integration of the corresponding

function defined originally on the real axis. This distinguishes c̃m(∞, E, ε) from

cm(∞, E, ε) computed along the real axis as x → ∞. These quantities may differ

since the integration path may pass above (or below) points of�. If the exponential

factors in (4.7) are all uniformly bounded when ε → 0, as is the case when the

integration path coincides with the real axis, it is straightforward to get bounds of

the type

(4.8) cm(z, E, ε) = δjm + OE(ε).

However, when dealing with c̃m in the complex plane, these exponential factors

are usually not uniformly bounded, and one needs to restrict integration paths to

certain domains in which useful estimates can be obtained.

One defines a dissipative domain for index j , Dj ⊂ ρY \� associated with the

initial condition (4.1), by the following conditions:

• Dj ⊂ ρY \� and supz∈Dj
Re z = ∞, infz∈Dj

Re z = −∞.
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• For any z ∈ Dj and any index k ∈ {1, . . . ,md}, there exists a path γ k ⊂
Dj , parametrized by u ∈ (−∞, t], which satisfies the regularity properties

lim
u→−∞

Re γ k(u) = −∞, γ k(t) = z, and sup
z∈Dj

sup
u∈(−∞,t]

|∂uγ
k(u)| < ∞.

• γ k satisfies the monotonicity property

u 7→ Im 1̃jk(γ
k(u)) is nondecreasing on (−∞, t].

Again, as is well-known, the existence of paths from −∞ to +∞ passing above

(or below) points in � and along which the exponentials can be controlled is dif-

ficult to check in general. We can overcome these complications by restricting

attention to avoided crossing situations where the existence of dissipative domains

for all indices has been proven in [22]; see hypothesis (AC) below. The interest of

the definition above lies in the following property:

When a dissipative domain exists for the index j , (4.5) and (4.8) imply

(4.9) cπ0( j)(∞, E, ε) = e
i
∫
ζ0

kj (u,E)du/ε
e−iθj (ζ0,E)(1 + OE(ε)),

where the OE(ε) estimate is uniform for E ∈ 10. This is the main result of

proposition 4.1 in [22] for our purpose, under the assumption that a dissipative

domain Dj exists.

In our context, all quantities depend on E ∈ 10. However, by carefully follow-

ing the proof of proposition 4.1 of [22], it is not difficult to check that the estimate

(4.8) is uniform for E ∈ 10. For later purposes we also note here that under the

same hypotheses on the exponential factors, ∂
∂E

c̃m(z, E, ε) is uniformly bounded

for 0 < ε < ε0 and E ∈ 10 for some fixed ε0 by differentiation of (4.7). See the

proof of Lemma 3.5 for this property on the real axis.

4.3 Avoided Crossings

We now make use of the avoided crossing situation, which allows us to prove

the existence of dissipative domains. We thus restore the parameter δ in the no-

tation. We therefore work under (H3) and under the following assumption on the

patterns of crossings for the modes {kj (x, E, 0)}:
(AC) • For all x < x1(E),

k1(x, E, 0) < k2(x, E, 0) < · · · < kmd(x, E, 0).

• For all j < l ∈ {1, 2, . . . ,md}, there exists at most one xr (E) with

kj (xr (E), E, 0)− kl(xr (E), E, 0) = 0,

and if such an xr (E) exists, we have

(4.10)
∂

∂x

(
kj (xr (E), E, 0)− kl(xr (E), E, 0)

)
> 0.

• For all j ∈ {1, 2, . . . ,md}, the mode kj (x, E, 0) crosses modes whose indices

are all superior to j or all inferior to j .
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To any given pattern of real crossings for the group {kj (x, E, 0)} with E ∈ 10,

we associate a permutation π as follows: The modes {kj (x, E, 0)} are labeled in

ascending order at x ≃ −∞, by (H3). Since there are no real crossings for E ∈ 1
and as x → +∞, the values {kj (x, E, 0)} are ordered uniformly in E ∈ 1 at

x = +∞. If kj (+∞, E, 0) is the k th eigenvalue in ascending order at x = +∞,

the permutation π is defined by

(4.11) π( j) = k.

Let E be in a sufficiently small interval 10. For a loop ζ0 that surrounds all the

complex crossing points and π0 the associated permutation (see (4.5)), π0 corre-

sponds to the permutation π .

We can now restate the main result of [22] that describes the asymptotics of

the coefficients defined in (4.7). We only have to check that, for small δ > 0,

dissipative domains exist and do not depend on E ∈ 10. We refer to [22] for the

details. The construction of these dissipative domains is based on a perturbation

of the case δ = 0. By mimicking the arguments of [22], as in [20] we obtain that

estimates of the type (4.9) are true for certain indices j and n, determined by the

permutation (4.11):

THEOREM 4.3 Assume that (H1) to (H3) are satisfied and that (AC) holds. If δ > 0

and 10 are small enough, the π( j), j elements of the matrix S(E, ε), with π( j)

defined in (4.11) have small-ε asymptotics for all j = 1, . . . ,md given by

Sπ( j), j (E, ε) =
π( j)∓1∏

l= j

e−iθl (ζl ,E,δ)e
i
∫
ζl

kl (z,E,δ)dz/ε
(1 + OE,δ(ε)), π( j)

{
> j

< j

where, for π( j) > j (respectively, π( j) < j), ζl , l = j, . . . , π( j) − 1 (respec-

tively, l = j, . . . , π( j)+ 1) denotes a negatively (respectively, positively) oriented

loop based at the origin that encircles the complex domain �r (respectively, �r )

corresponding to the avoided crossing between kl(x, E, δ) and kl+1(x, E, δ) (re-

spectively, kl−1(x, E, δ)). The
∫
ζl

kl(z, E, δ)dz denotes the integral along ζl of the

analytic continuation of kl(0, E, δ), and θl(ζl, E, δ) is the corresponding factor

defined by (4.4).

Remark. Under our regularity hypotheses in δ, it is easy to get the following prop-

erty (see [21]):

lim
δ→0

∫

ζl

kl(z, E, δ)dz = 0.

Let us emphasize here that we do not have access to all off-diagonal elements of

the S-matrix; those we can asymptotically compute are determined by the pattern

of avoided crossings. Moreover, there are cases in which one can compute all

elements of the S-matrix, due to supplementary symmetries in the problem; see

[26]. Sometimes the coefficients to which we have access are not even the largest

ones in the avoided crossing situation, as shown in [26].
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On the basis of steepest-descent arguments, transitions between modes that do

not display avoided crossings, that is, those that are separated by a gap of order 1 as

δ → 0, are expected to be exponentially smaller than the transitions we control by

means of Theorem 4.3, as δ shrinks to 0. Since the coefficients in the exponential

decay rates given by the theorem vanish in the limit δ → 0, it is enough to show

that the decay rates of the exponentially small transitions between well separated

levels are independent of δ.

That is the meaning of the following proposition, which is proven in [20]:

PROPOSITION 4.4 We assume that (H3) is satisfied. Further assume that the eigen-

values of H(x, E, δ) can be separated into two distinct groups σ1(x, E, δ) and

σ2(x, E, δ) that display no avoided crossing for E ∈ 1, that is, such that

inf
δ≥0,E∈1

x∈ρY ∪{±∞}

dist(σ1(x, E, δ), σ2(x, E, δ)) ≥ g > 0.

Let P(x, E, δ) and Q(x, E, δ) = I − P(x, E, δ) be the projectors onto the spec-

tral subspaces corresponding to σ1(x, E, δ) and σ2(x, E, δ), respectively, and let

Uε(x, x0, E, δ) be the (space) evolution operator corresponding to the equation

(4.12) iε
d

dx
Uε(x, x0, E, δ) = H(x, E, δ)Uε(x, x0, E, δ)

with Uε(x0, x0, E, δ) = I.

Then, for any δ > 0, there exists ε0(δ), C(δ) > 0 depending on δ, and Ŵ > 0

independent of δ such that for all ε ≤ ε0(δ),

lim
x→∞

x0→−∞
‖P(x, E, δ)Uε(x, x0, E, δ)Q(x0, E, δ)‖ ≤ C(δ)e−Ŵ/ε.

This proposition implies that the stationary transitions between modes without

an avoided crossing are exponentially smaller than transitions between modes dis-

playing an avoided crossing. It also shows that in any case, these transitions are all

exponentially small.

Let us end this section by remarking that we have always specified initial con-

ditions at x = −∞. Obviously, the BKW analysis can be equally performed for

coefficients whose initial conditions are specified at x = +∞ mutatis mutandis.

5 Exact Solutions to the Time-Dependent Equation

In this section, we construct solutions to

(5.1) R(x, iε∂t , iε∂x)φ(x, t, ε) = 0, x ∈ R,

by taking time-dependent superpositions of the generalized eigenvectors ψε(x, E)

for E ∈ 1, studied in Section 3. We investigate particularly these exact solutions

in the scattering regime of large but finite times t and for any fixed ε > 0, not

necessarily small.
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The superpositions of generalized eigenvectors depend on an energy density

Q(E, ε) that might be complex valued. We assume that the following regularity

conditions hold:

(C0) The density E 7→ Q(E, ε) is supported on 1 and is C1 on 1 for any

fixed ε. Moreover, (3.25) is true.

In this section, the parameter δ is fixed and we omit it in the notation. We work

under the hypotheses (H1), (H2), and (H3) and we define

(5.2) φ(x, t, ε) =
∫

1

ψε(x, E)e
−i t E
ε Q(E, ε)d E =

md∑

j=1

φj (x, t, ε),

where

(5.3) φj (x, t, ε) =
∫

1

cj (x, E, ε)e
−i

∫ x
0

kj (y,E)dy

ε ϕj (x, E)e
−i t E
ε Q(E, ε)d E .

Since the integrand is smooth and 1 is compact, φ(x, t, ε) is an exact solution

of (1.2).

We also get from the decomposition (3.10) for all l = 0, . . . ,m − 1,

(iε∂x)
lφ(x, t, ε)

=
md∑

j=1

∫

1

cj (x, E, ε)e
−i

∫ x
0

kj (y,E)dy

ε kl
j (x, E)ϕj (x, E)e

−i t E
ε Q(E, ε)d E

≡
md∑

j=1

φ
[l]
j (x, t, ε),(5.4)

with the convention φ
[0]
j (x, t, ε) = φj (x, t, ε). Note, however, that in general we

have (iε∂x)
lφj (x, t, ε) 6= φ

[l]
j (x, t, ε).

The behavior of φj (x, t, ε) for large x can be understood under the following

supplementary assumption:

(GV)

(5.5) ∀ j ∈ {1, . . . ,md}, ∀E ∈ 1, ∂E kj (±∞, E) 6= 0.

Let us note that condition (GV) is quite natural. Indeed, with our sign conventions,

−1/∂E kj is the group velocity of the asymptotic waves (5.9). Our condition says

that we want to describe waves with finite asymptotic velocity. Moreover, (GV)

also imposes the presence of at least one time derivative in the definition of the

differential operator R(x, iε∂t , iε∂x , δ).

We have the following:
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LEMMA 5.1 Assume that (H1), (H2), (H3), (C0), and (GV) are satisfied. Let

K+ = sup
E∈1

j∈{1,...,md}

1

|∂E kj (±∞, E)| > 0

and

K− = inf
E∈1

j∈{1,...,md}

1

|∂E kj (±∞, E)| > 0.

Fix α ∈ (0, 1). Then, there exists Cε > 0 such that, for x large enough and for

either t = 0 or any t 6= 0 and x satisfying
∣∣∣∣
x

t

∣∣∣∣ >
K+

1 − α
or

∣∣∣∣
x

t

∣∣∣∣ <
K−

1 + α
,

we have for all j = 1, . . . ,md:

‖φj (x, t, ε)‖ < Cε

|x | and ‖φ[l]
j (x, t, ε)‖ < Cε

|x | ,

where l ∈ [0, . . . ,m − 1] and ‖ · ‖ is the norm in C
m .

Specializing to the j th mode, there exist x±
0 ( j) ∈ R

± and Cε( j), independent

of time, such that for any β ∈ (0, 1) and any l ∈ [0, . . . ,m − 1], if |t | > 1 with

sign(t) = ± sign(∂E kj (±∞, E)) and ±x ≥ ±x±
0 ( j), then

(5.6) ‖φ[l]
j (x, t, ε)‖ < Cε( j)

|t |β |x |(1−β) .

Remarks.

(i) As direct corollaries, we get that φ
[l]
j ( · , t, ε) and thus (ε∂x)

lφ( · , t, ε) be-

long to L2(R) for any t ∈ R and any l = 0, . . . ,m − 1. Moreover,

(5.7) sup
|t |≤1

‖(ε∂x)
lφ( · , t, ε)‖L2(R) = O(Cε).

(ii) The behavior in ε of Cε and Cε( j) cannot be estimated under hypothesis

(C0) only. However, anticipating on our eventual choice of Q(E, ε) (see (6.1)

below), if the energy density satisfies

(5.8) sup
E∈1
ε>0

(|Q(E, ε)| + |ε∂E Q(E, ε)|) < ∞,

and if we assume (3.24), then the constants Cε and Cε( j) are actually uniform in

ε → 0, as easily checked from the proof and Lemma 3.5.

(iii) The complicated-looking second statement simply says the following for

0 < β < 1
2
: In the asymptotic regions where φ

[l]
j is driven by the asymptotic

group velocity −1/∂E kj (±∞, E), if time flows in the wrong direction, in the sense

that the wave is driven out of these regions, then the L2 norm over those regions

decreases.

(iv) We prove this lemma in Section 8.
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In a scattering regime, we expect our solutions to behave as freely propagat-

ing waves along independent modes. Let us introduce such asymptotic waves

φ(x, t, ε,±∞):

φ(x, t, ε,±∞) =
md∑

j=1

φj (x, t, ε,±∞),

with

φj (x, t, ε,±∞)

=
∫

1

cj (±∞, E, ε)e
−i(kj (±∞,E)x+ωj (±∞,E))

ε ϕj (±∞, E)e
−i t E
ε Q(E, ε)d E .(5.9)

With respect to (5.3), the only dependence left in the space variable in the inte-

grand is in the exponent. The index ±∞ refers to the choice of asymptotic mode

kj (±∞, E) and polarization ϕj (±∞, E) taken in the definition. Note the relation

(iε∂x)
lφj (x, t, ε,±∞)

=
∫

1

cj (±∞, E, ε)e
−i(kj (±∞,E)x+ωj (±∞,E))

ε kl
j (±∞, E)ϕj (±∞, E)

× e−i t E/εQ(E, ε)d E

≡ φ
[l]
j (x, t, ε,±∞).(5.10)

We also remark that since φ
[l]
j (x, t, ε,±∞) are constructed as integrals in the

same way as φ
[l]
j (x, t, ε) are, only with simpler integrands, then they also satisfy

the estimates based on this structure. In particular, (5.6) holds without restriction

on the boundary of the x-region: For any x0 ∈ R, there exists a constant C±
ε ( j, x0)

such that for any β ∈ (0, 1) and any l ∈ [0, . . . ,m − 1], if |t | > 1 with sign(t) =
± sign(∂E kj (±∞, E)) and ±x ≥ x0, then

(5.11)
∥∥φ[l]

j (x, t, ε,±∞)
∥∥ < C±

ε ( j, x0)

|t |β(1 + |x |)(1−β) .

Again, assuming (3.24) and (5.8), C±
ε ( j, x0) can be chosen uniformly as ε → 0.

Finally, φ
[l]
j (x, 0, ε,−∞) determines φ

[l]
j (x, 0, ε,+∞) by means of (3.7).

While the waves φj (x, t, ε,±∞) are not localized in space, we expect them to

be approximations of solutions to (5.1) in neighborhoods of x = ±∞ only. Hence

the following construction:

Let x 7→ ω(x) ∈ [0, 1] be a function such that ω(x) = 1 if x ≥ 1 and ω(x) = 0

if x ≤ −1. We define asymptotic waves corresponding to φj (x, t, ε,+∞) for
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x > 1 and to φj (x, t, ε,−∞) for x < −1 as follows:

(5.12)

φ
[l]
j (x, t, ε, a) = ω(x)φ

[l]
j (x, t, ε,+∞)+ (1 − ω(x))φ

[l]
j (x, t, ε,−∞),

φ[l](x, t, ε, a) =
md∑

j=1

φ
[l]
j (x, t, ε, a).

Under our hypotheses, it is easy to compute the L2 norm of these different

asymptotic states by means of the rescaled Fourier transform Fε defined as

(5.13) (Fεg( · ))(x) = 1√
2πε

∫

R

g(k)e−ikx/ε dk.

LEMMA 5.2 Assume (H1), (H2), (H3), (C0), and (GV). Then there exists Dε such

that for all j = 1, . . . ,md, all l = 0, . . . ,m − 1, and all t ∈ R

‖(iε∂x)
lφj ( · , t, ε,±∞)‖L2(R) ≤ Dε.

Remarks.

(i) As a direct corollary, ‖(iε∂x)
lφ( · , t, ε,±∞)‖ = O(Dε). Moreover, we

can write ‖φ[l]
j ( · , t, ε, a)‖L2(R) = O(Dε) and therefore ‖φ[l]( · , t, ε, a)‖L2(R) =

O(Dε).

(ii) Again, further assuming (5.8) and (3.24), we get Dε = ε1/4 D, with D

uniform in ε.

PROOF: Under (GV), the reciprocal functions of E 7→ kj (±∞, E) all exist

on 1, and we denote them by k 7→ E±
j (k), j = 1, . . . ,md. Hence, using (5.10)

and a change of variables, we can write

(iε∂x)
lφj (x, t, ε,±∞) = φ

[l]
j (x, t, ε,±∞) =

√
2πε

(
Fεφ̂

[l]
j ( · , t, ε,±∞)

)
(x),

where

φ̂
[l]
j (k, t, ε,±∞) = cj (±∞, E±

j (k), ε)e
−iωj (±∞,E±

j (k))/εklϕj (±∞, E±
j (k))

× e
−i t E±

j (k)/εQ(E±
j (k), ε)∂k E±

j (k).

By the Plancherel formula,

‖(iε∂x)
lφj ( · , t, ε,±∞)‖L2(R) =

√
2πε

∥∥φ̂[l]
j ( · , t, ε,±∞)

∥∥
L2(R)

≡ Dε,

where Dε is uniform in t ∈ R. �

Finally, as expected, we show that the exact solutions (5.2) behave more and

more like the corresponding free asymptotic waves (5.12) in the L2 norm as time

gets large. Furthermore, we show that (5.2) cannot get trapped on a compact set of

R as time goes to infinity, since its L2 norm vanishes for |t | → ∞ on such sets:
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PROPOSITION 5.3 Assume that (H1), (H2), (H3), (GV), and (C0) are satisfied.

Then there exists Cε > 0 such that we have for any |t | > 0, ∀ j ∈ {1, . . . ,md}, and

∀l ∈ {0, . . . ,m − 1},
∥∥φ[l]

j ( · , t, ε)− φ
[l]
j ( · , t, ε, a)

∥∥
L2(R)

<
Cε

|t | .

Moreover, for any bounded interval I ∈ R,

∥∥φ[l]
j ( · , t, ε)

∥∥
L2(I )

<
C̃ε

|t |
for some C̃ε depending on I .

Remarks.

(i) As a direct corollary, we have ∀l ∈ {0, . . . ,m − 1},

‖(iε∂x)
lφ( · , t, ε)− φ[l]( · , t, ε, a)‖L2(R) = O

(
Cε

|t |

)
.

(ii) Further assuming (5.8) and (3.24), we can take Cε = C and C̃ε = C̃

uniformly as ε → 0; see the proof.

(iii) The estimate is independent of the signs of t and of the asymptotic group

velocities, because the definition of φ[l]( · , t, ε, a) takes into account the asymp-

totic waves traveling in both asymptotic regions. See the example below for an

illustration.

(iv) We prove this proposition in Section 8.

In order to have a better understanding of the localization properties for large

times of the asymptotic approximation φ
[l]
j ( · , t, ε, a), we need to look at the signs

of the group velocities −1/∂E kj (±∞, E) of its components (5.9). Different cases

occur, which we list below.

COROLLARY 5.4 Assume (H1), (H2), (H3), (GV), and (C0) are satisfied. Then

there exists a constant Hε such that for any 0 < β < 1
2

and |t | ≥ 1,
{
∂E kj (−∞, E)∂E kj (+∞, E) < 0 and t∂E kj (+∞, E) < 0

}

⇒
∥∥φ[l]

j ( · , t, ε, a)−
(
φ

[l]
j ( · , t, ε,−∞)+ φ

[l]
j ( · , t, ε,+∞)

)∥∥
L2(R)

≤ Hε

|t |β ,{
∂E kj (−∞, E)∂E kj (+∞, E) > 0 and t∂E kj (+∞, E) > 0

}

⇒
∥∥φ[l]

j ( · , t, ε, a)− φ
[l]
j ( · , t, ε,−∞)

∥∥
L2(R)

≤ Hε

|t |β ,{
∂E kj (−∞, E)∂E kj (+∞, E) > 0 and t∂E kj (+∞, E) < 0

}

⇒
∥∥φ[l]

j ( · , t, ε, a)− φ
[l]
j ( · , t, ε,+∞)

∥∥
L2(R)

≤ Hε

|t |β ,
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{
∂E kj (−∞, E)∂E kj (+∞, E) < 0 and t∂E kj (+∞, E) > 0

}

⇒
∥∥φ[l]

j ( · , t, ε, a)
∥∥

L2(R)
≤ Hε

|t |β .

PROOF: Just make use of Definition (5.12), (5.11), and the support properties

of ω. �

Remark. Again, if (5.8) and (3.24) are true, the constant Hε is uniform in ε.

Another consequence of Lemmas 5.1 and 5.2, equation (5.7), and Proposition

5.3 is the following estimate:

COROLLARY 5.5 Assume (H1), (H2), (H3), and (C0) are satisfied. Then, there

exists Fε > 0 such that for all l = 0, . . . ,m − 1,

sup
t∈R

‖(ε∂x)
lφ(x, t, ε)‖L2(R) ≤ Fε.

If, furthermore, (5.8) and (3.24) are true, Fε can be chosen as F, uniform in ε → 0.

Hence, if the L2 norm is not conserved under the time evolution (1.2), it remains

uniformly bounded in time. Moreover, it is also uniformly bounded in ε for the type

of energy densities that we will use below (see (6.1)) with (5.8) and (3.24). Hence,

in that case, the L2 norm of our solutions at any time is proportional to that which

they had at any initial time t0:

(5.14) ‖φ( · , t, ε)‖L2(R) ≤ F‖φ( · , t0, ε)‖L2(R).

Let us illustrate some of the notions of this section by means of an explicitly

solvable example. Consider the following scalar linear PDE:

(5.15) (tanh(x)iǫ∂t − iǫ∂x)φ(x, t, ǫ) = 0.

The corresponding dispersion relation yields k(x, E) = E tanh(x) as a unique

mode, which satisfies (GV). As the equation is ε-independent, we take ε = 1. The

general solution reads φ(x, t, 1) = f (t + ln(cosh(x))), where f is any regular

function. To have a solution obtained by means of a superposition of generalized

eigenvectors e−i E
∫ x

0 tanh(y)dy according to some compactly supported energy den-

sity, we must have

f (t + ln(cosh(x))) =
∫

1

e−i E
∫ x

0 tanh(y)dy e−i Et Q(E, 1)d E

=
∫

1

e−i E(t+ln(cosh(x))) Q(E, 1)d E .

Hence, f =
√

2π(F1 Q( · , 1)) and is therefore L2 and analytic and goes to zero at

infinity.

That the L2 norm is not conserved in general under our hypotheses is now easily

seen: Since 0 ≤ ln(cosh(x)) is even and behaves as |x | for x large, one checks
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that we have on the one hand limt→−∞ ‖φ( · , t, 1)‖L2(R) = O(‖ f (·)‖L2(R)) > 0,

whereas, on the other hand, limt→+∞ ‖φ( · , t, 1)‖L2(R) = 0.

Let us investigate the asymptotic waves corresponding to (5.15). Using the

identity k(±∞, E) = ±E , we find

φ(x, t, 1,±∞) =
∫

1

e∓i x E e−i Et Q(E, 1)d E =
√

2π(F1 Q( · , 1))(t ± x).

Hence,

φ(x, t, 1, a) = ω(x)
√

2π(F1 Q( · , 1))(t+x)+(1−ω(x))
√

2π(F1 Q( · , 1))(t−x),

which, as t → −∞, is significant at both large and positive values of x and large

and negative values of x . Accordingly, for t ≃ −∞, f (t + ln(cosh(x))) is signif-

icant at values of ln(cosh(x)) ≃ |x | ≃ |t |, i.e., for x ≃ ±|t |. The picture is that

of two bumps at plus and minus infinity in space that travel towards one another

with unit velocity and disappear as they collide. This is correctly captured by the

approximation φ(x, t, 1, a) for large times.

6 Asymptotics of Semiclassical Transitions

6.1 The Transition Integral

We assume here that we are in an avoided crossing situation, and we do not

make explicit the dependence in the variable δ > 0 in the notation. We have

obtained the asymptotics of the scattering matrix S(E, ε) in Section 4. We now

compute the small ε-asymptotics of the integrals that describe the asymptotic states

φj (x, t, ε,±∞) given by (5.9) as |t | → ∞ for the different channels.

We assume that j is such that (4.1) holds and let n = π( j) be given by (4.11).

We choose our energy density Q(E, ε) to be more and more sharply peaked

near a specific value E0 ∈ 1 \ ∂1 as ε → 0. As a result, we obtain semiclassical

wave packets that are well localized in phase space. This is a physically reasonable

choice that allows for a complete semiclassical treatment.

More precisely, we consider

(6.1) Q(E, ε) = e− G(E)/ε e− i J (E)/ε P(E, ε),

where the following hold:

(C1) The real-valued function G ≥ 0 is in C3(1), is independent of δ, and has

a unique nondegenerate absolute minimum value of 0 at E0 in the interior of 1.

This implies that

G(E) = g(E − E0)
2

2
+ O(E − E0)

3 where g > 0.

(C2) The real-valued function J is in C3(1).
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(C3) The complex-valued function P(E, ε) is in C1(1) and satisfies

(6.2) sup
E∈1
ε≥0

∣∣∣∣
∂n

∂En
P(E, ε)

∣∣∣∣ ≤ Cn for n = 0, 1.

Remarks.

(i) Typical interesting choices of Q are G = g(E − E0)
2, J = 0, and P an

ε-dependent multiple (equation (1.2) is linear) of a smooth function with at most

polynomial growth in (E − E0)/ε.

(ii) We want to emphasize the fact that a Gaussian energy density does not

give rise in general to a Gaussian solution. See the discussion in the introduction

and [20, sec. 6].

The leading intermodes transitions are described by the asymptotics of those

coefficients {cl(±∞, E, ε)} that satisfy

ck(−∞, E, ε) = δj,k,(6.3)

cn(+∞, E, ε) = e−iθj (ζ,E) e
i
∫
ζ kj (z,E)dz/ε

(1 + OE(ε)),(6.4)

where n = π( j) = j ±1. We recall that the error term OE(ε) depends analytically

on the energy E in a neighborhood of the compact set 1. We have already noted

in the comments after Theorem 4.3 that the term OE(ε) satisfies (6.2).

THEOREM 6.1 Assume (H1), (H2), (H3), (AC), and (GV). Let Q( · , ǫ) be the

energy density supported on the interval1 defined in (6.1) that satisfies (C1), (C2),

and (C3). Let φ(x, t, ε) be a solution of equation (5.1) of the form (5.2). Assume

∂E kj (−∞, E) < 0 on 1 for some j and suppose that the solution is characterized

in the past by

lim
t→−∞

‖φ( · , t, ε)− φ( · , t, ε, a)‖L2(R) = 0,

where, as t → −∞,

(1 − ω(x))φ(x, t, ε, a)

=
∫

1

Q(E, ε)e−i t E/εe−i(xkj (−∞,E)+ωj (−∞,E))/εϕj (−∞, E)d E + O(1/|t |β).

Let n = π( j) be given by (4.11), and let

α(E) = G(E)+ Im

( ∫

ζ

kj (z, E)dz

)
,(6.5)

κ(E) = J (E)− Re

( ∫

ζ

kj (z, E)dz)+ ωn(+∞, E

)
.(6.6)

Further assume there exists a unique absolute nondegenerate minimum E∗ of α(·)
in Int1 and define k∗ = kn(+∞, E∗). Let k 7→ E±

n (k) be the inverse function of

E 7→ kn(±∞, E) on 1.
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Then there exist δ0 > 0, p > 0 arbitrarily close to 5
4
, and a function ε0 :

(0, δ0) → R
+ such that for all 0 < β < 1

2
, δ < δ0, and ε < ε0(δ), the following

asymptotics hold as t → − sign(∂k E+
n (k

∗))∞ in the L2(R) norm:

φn(x, t, ε)

=
√

2πε P(E∗, ε)e−α(E∗)/εe−iκ(E∗)/εϕn(+∞, E∗)e− i θj (ζ,E
∗)∂k E+

n (k
∗)

× Fε(e
−i t E+

n (·)/εe−3(·)/εχkn(+∞,1))(x)+ O(e−α(E∗)/εε p)+ O(1/|t |β),

(6.7)

where

3(k) = λ2

2
(k − k∗)2 + iλ1(k − k∗) with λ1 = ∂k E+

n (k
∗)κ ′(E∗),

λ2 = [∂k E+
n (k

∗)]2α"(E∗)+ i
[
κ"(E∗)[∂k E+

n (k
∗)]2 + κ ′(E∗)∂2

k E+
n (k

∗)
]
,

and χkn(+∞,1) is the characteristic function of the set kn(+∞,1). Moreover, if

t → sign(∂k E+
n (k

∗))∞, then ‖φn(x, t, ε)‖L2(R) = O(1/|t |β).
Remarks.

(i) The first error term is uniform in t , whereas the second error term is uni-

form in ε.

(ii) The same result holds for φ and φn(+∞) if they are replaced by (iε∂)lφ

and (iε∂)lφn(+∞), respectively, with {l = 0, . . . ,m − 1}, at the expense of a

multiplication of the prefactor by kn(+∞, E∗)l .

(iii) As will be made explicit in Section 7 below, the L2 norm of the leading

term expressed as a Fourier transform is positive, of order ε1/4, and independent

of time. The leading term hence becomes meaningful for times t that are of order

|t | ≃ ec/ε for some c > 0 at least. We get control over this time scale far beyond

the Ehrenfest or Heisenberg times of quantum semiclassical analysis thanks to our

scattering setup.

(iv) The leading term clearly satisfies the asymptotic PDE (1.16).

(v) The energy E∗ depends explicitly on the properties of the involved modes

and on the energy density Q(E, ε) as well.

(vi) The spacetime localization properties of the leading term are further dis-

cussed in Section 7.

(vii) Also, as mentioned earlier, we can specify the coefficients cl at x = +∞
instead.

(viii) The proof of the theorem is given in the last section of the paper.

Let us finally discuss our hypotheses and interpret our result. The condition

on the sign of ∂E(kj (−∞, E)) says that the group velocity of φj (x, t, ε,−∞) is

positive, so that φ(x, t, ε, a) is nontrivial as t → −∞ for negative x and describes

an ingoing wave. If the asymptotic group velocity of the mode kn(x, E) is positive

as x → +∞, our results describe an outgoing transmitted wave for large positive
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times, as discussed in the introduction. If the asymptotic group velocity −∂k E+
n (k)

is negative, we describe another ingoing wave along mode n, for large negative

times and large positive x , arising during the evolution, which, as time goes to

+∞, goes to 0. Note also that if the asymptotic group velocity of mode kj (x, E)

at x = +∞ is positive, then an order-1 wave, in the sense that cj (+∞, E, ε) =
1 + O(ε), propagates along positive x for positive times. If the asymptotic group

velocity of mode kj (x, E) at x = +∞ is negative, there is no wave propagating

along positive x to the right for large positive times, but another ingoing wave from

large positive x and large negative times.

Therefore, in case −∂k E+
n (k) is negative and both −∂k E−

j (k) and −∂k E+
j (k)

are positive, running the evolution backwards in time, we have an ingoing wave

(of order 1 in the sense above) on mode j , for x → +∞ and t → +∞, and,

as t → −∞, we have an outgoing wave on mode j for x → −∞ and another

exponentially small outgoing wave on mode n for x → +∞ whose asymptotics

is determined by our theorem. Hence, we describe the asymptotics of a reflected

wave in mode n. Note that reflected waves on other modes may be present as well.

In any case, they are exponentially small.

Finally, in case −∂k E+
n (k) and −∂k E+

j (k) are both negative, we describe a scat-

tering process in which we have ingoing solutions on the modes j and n that all

disappear as time goes to +∞, in a similar way to what happens in the illustration

at the end of the previous section.

6.2 Perturbative Results in δ

We assume that (H4) is also satisfied and restore δ in the notation. We have

the following sharper result concerning the behavior as δ → 0 of the quantities

involved in the description of the asymptotic wave:

PROPOSITION 6.2 Further assuming (H4), we have the following as δ → 0 for

E ∈ 1:

Im

∫

ζ

(ki − kj )(z, E, δ)dz = D(E)δ2 + O(δ3)

with

D(E) = π

4

a2(E)b2(E)− c2(E)

a3(E)
.

This implies that (E, δ) 7→ Im
∫
ζ
(ki − kj )(z, E, δ)dz is a positive function.

Let α(E, δ) = G(E)+ Im
∫
ζ
(ki − kj )(E, δ). There exists E∗(δ) such that

∂Eα(E
∗(δ), δ) = 0.

It satisfies

E∗(δ) = E0 − D′(E0)

g
δ2 + O(δ3).
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The results above hold provided one knows E∗(δ) is the unique absolute mini-

mum of α in the set1, which is generically true. Again, if there are several minima,

one simply adds the corresponding contributions. Note also that if the constant g

characteristic of the energy density is of order δ2, the difference E0 − E∗ is of or-

der 1 as δ shrinks to 0. This corresponds to a “wide” energy density of width ε/δ2

around E0. This result is a straightforward consequence of the implicit function

theorem, the proof of which we omit.

6.3 Explicit Computation for E+

n (k) Quadratic

In this paragraph, we assume that k 7→ E+
n (k) is quadratic:

(6.8) ∀k ∈ kn(1,+∞) ∂3
k E+

n (k) = 0.

This is true for all modes in the study of the Born-Oppenheimer approximation;

see [20]. This situation allows for an explicit determination of the leading term in

the asymptotic wave. We also assume that the function α has a unique absolute

minimum E∗(δ). For sufficiently small δ, this minimum is nondegenerate and

satisfies E∗(δ) ∈ Int1.

The following result is proven in Section 8:

LEMMA 6.3 Assume that k 7→ E+
n (k) is quadratic and that α has a unique absolute

minimum E∗(δ) ∈ Int1. There exists p ∈ ] 3
4
, 5

4
[ such that, as ε → 0 and in the

L2 norm:

φn(x, t, ε,+∞)

= e−α(E∗)/εe−iκ(E∗)/εϕn(+∞, E∗)e−iθj (ζ,E
∗)P(E∗, ε)∂k E+

n (k
∗)

×
√

2πεe−i(k∗x+t E∗)/ε

[λ2 + i∂2
k E+

n (k
∗)t]1/2

e
− (λ1+∂k E

+
n (k

∗)t+x)2

2ε(λ2+i∂2
k

E
+
n (k

∗)t) + O(e−α(E∗)/εε p).

(6.9)

Remarks.

(i) The leading term in that case is a freely propagating Gaussian, i.e., an exact

solution to

iε∂t g(x, t, ε)

=
(

E∗ + ∂k E+
n (k

∗)(iε∂x − k∗)+ ∂2
k E+

n (k
∗)

2
(iε∂x − k∗)2

)
g(x, t, ε),

centered at xc(t) = −∂k E+
n (k

∗)t − λ1, of width
√
εt , and of L2 norm of order ε3/4.

(ii) In the general case, the error terms involved in the course of the computa-

tion are not uniform in time, which prevents us from getting such an explicit form

for the asymptotic wave. Nevertheless, we show in the next section that we can get

a fairly accurate description of such asymptotic waves for large times and small ε.
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7 Spacetime Properties of the Asymptotic Waves

As seen above, the interpretation of our results makes use of the spacetime

properties of the different asymptotic waves φj (x, t, ε,±∞) in terms of which the

time-dependent scattering processes are expressed. The present section thoroughly

describes the spacetime properties of the leading term of these waves as ε → 0 and

|t | → ∞.

We first note that Theorem 6.1 also holds for the wave φj (x, t, ε,±∞) that is

characterized by the asymptotics cj (±∞, E, ε) = 1+ OE(ε). It suffices to replace

the index n by j , the values E∗ and k∗ by E0 and k0, and to set α(E) = G(E) and

θj (ζ, E) ≡ 0. Note in particular that α(E0) = 0, as it should.

Therefore, the spacetime properties of the asymptotic waves along modes j and

π( j) = n are encoded in the Fourier transform

Fε(e
−i t Eσl (·)/εe−3(·)/εχkl (+∞,1))(x)

= 1√
2πε

∫

kl (σ,1)

e−i(kx+t Eσl (k))/εe−3(k)/ε dk,(7.1)

where the index l stands for j or n, and σ for + or −. We will also denote k∗ or

k0, respectively, E∗ or E0, depending on the context, by k̃, respectively, Ẽ . We can

make use of the positivity of the real part of the function 3(k) and of Parseval’s

formula to regularize and localize the integrand as follows: Let η ∈ C∞
0 (R) with

support in [−1, 1] and η(k) ≡ 1 in a neighborhood of k = 0. Set ηε(k) :=
η((k − k̃)/ετ ), with 0 < τ < 1

2
. Then, if k 6∈ supp(ηε), |e−3(k)/ε| = O(ε∞).

Therefore, we have in the L2 norm,

Fε(e
−i t Eσl (·)/εe−3(·)/εχkl (+∞,1))(x)

= 1√
2πε

∫

R

e−i(kx+t Eσl (k))/εe−3(k)/εηε(k)dk + O(ε∞)

= Fε

(
e−i t Eσl (·)/εe−3(·)/εηε(·)

)
(x)+ O(ε∞),(7.2)

where the error term is uniform in t . Note also that by Parseval again,

∥∥Fε(e−i t Eσl (·)/εe−3(·)/εηε(·))
∥∥2

L2(Rx )
=

√
ε

∫

R

e− Re λ2z2

dz + O(ε∞)

=
√

ε2π

[∂k Eσ
l (k̃)]2α"(Ẽ)

+ O(ε∞),(7.3)

uniformly in t . Hence, the L2 norm of the asymptotic state in Theorem 6.1 is

positive, independent of time, and of order ε3/4.

Now, as kl(σ∞, · ) is analytic in E ∈ 1, the same is true for the inverse function

Eσ
l (·) in k ∈ kl(+∞,1). Moreover, e−3(·)/εηε(·) is in C∞

0 , so that we can apply

stationary phase methods to describe the large-t and -x behavior of (7.2).
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PROPOSITION 7.1 Let ηε be as above and 1 > α > 1
2

and assume ∂k Eσ
l (k̃) 6= 0.

Define for all |t | ≥ 1,

Ct(ε) =
⋃

|k−k̃|≤ετ

{
x ∈ R : |x + ∂k Eσ

l (k)t | ≤ |t |α
}

Then there exist ε0 > 0 and c(n) > 0 such that for all ε < ε0, all n ∈ N, and all

|t | ≥ 1/ε1/(1−α),
∥∥∥∥

1√
2πε

∫

R

e−i(kx+t Eσl (k))/εe−3(k)/εηε(k)dk

∥∥∥∥
L2(R\Ct (ε))

≤ c(n)
ε1/2+τ

|t |3α/2−1

(
ε

|t |2α−1

)n

= O

((
ε

|t |2α−1

)∞)
.

(7.4)

Remarks.

(i) The proposition essentially says that the whole L2 mass of the asymptotic

wave in Theorem 6.1 is located at time t in a (slightly larger) neighborhood of size√
|t | of the point propagating with the group velocity −∂k Eσ

l (k̃), up to arbitrarily

small corrections as ε/|t |2α−1 → 0.

(ii) The proposition actually also holds if ε = 1 if one is not interested in the

small-ε behavior.

(iii) The condition |t | ≥ 1/ε1/(1−α) actually represents no restriction in our

case, since we need to work with exponentially large times in ε in order to have a

meaningful leading-order term in Theorem 6.1.

(iv) The proof is given in the last section.

While we don’t need to assume anything on the direction of propagation of

the involved waves for Theorem 6.1 to hold, its usefulness in describing time-

dependent scattering processes is revealed by the above interpretation based on

these directions of propagation.

8 Technicalities

PROOF OF LEMMA 2.1: We first prove that if 1 is small enough, p is inde-

pendent of E . Fix E0 ∈ 1 and x0 such that (ki − kj )(x0, E0) = 0. By hypothe-

sis ki − kj is continuous; then, by the Cauchy formula, ∂x(ki − kj ) is continuous

and ∂x(ki − kj ) 6= 0 in a neighborhood of (x0, E0). By local inversion, the set

{E ∈ 1 : p(E) = p(E0)} is open. Thus, for any E ∈ 1, p(E) is constant.

By linear perturbation theory, there exists Y > 0 such that there are no nonreal

crossings in ρY for any E ∈ 1.

We have the following:

LEMMA 8.1 Fix i 6= j . The functions ki and kj have the following properties:

(i) The function (z, E) 7→ ki (z, E, 0)+ kj (z, E, 0) is analytic on ρY ×1.
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(ii) The function (z, E) 7→ (ki (z, E, 0)− kj (z, E, 0))2 is analytic on ρY ×1.

PROOF: According to [27], we know that we only have to check the analyt-

icity of ki + kj and (ki − kj )
2 in a neighborhood of a crossing, actually a branch

point (x0, E0). Let P(z, E) be the two-dimensional projector on the λ-group cor-

responding to the eigenvalues ki (z, E, 0) and kj (z, E, 0). Let Ŵ be a small closed

path in C surrounding ki (x0, E0). For (z, E) in a neighborhood of (x0, E0), we can

write

P(z, E) = 1

2iπ

∫

Ŵ

(H(z, E, 0)− λ)−1 dλ.

Because H and thus its resolvent on Ŵ are analytic in (z, E), this implies that

(z, E) 7→ P(z, E) is analytic in a neighborhood of (x0, E0). We consider

{ϕ1(x0, E0), ϕ2(x0, E0)}
a basis of P(x0, E0)C

md and we define

ϕ1(z, E) = P(z, E)ϕ1(x0, E0), ϕ2(z, E) = P(z, E)ϕ2(x0, E0).

Then, in a neighborhood of (x0, E0), {ϕ1(z, E), ϕ2(z, E)} is an analytic basis of

P(z, E)Cmd . The matrix M(z, E) of P(z, E)H(z, E, 0)|P(z,E)Cmd expressed in

the basis {ϕ1(z, E), ϕ2(z, E)} has analytic coefficients. Moreover, we can write

that σ(P(z, E)H(z, E, 0)|P(z,E)Cmd ) = {ki (z, E, 0), kj (z, E, 0)}. This implies in

turn that det M(z, E) = ki (z, E, 0)kj (z, E, 0) and tr M(z, E) = ki (z, E, 0) +
kj (z, E, 0). We finish the proof with the identity (ki − kj )

2 = (ki + kj )
2 − 4ki kj .

This ends the proof of Lemma 8.1. �

We define

3 = {(z, E) such that ∃i 6= j with (ki − kj )(z, E, 0) = 0} ⊂ R ×1.

According to [27], it suffices to prove that the functions {kj }j=1,...,md are analytic

in a neighborhood of any (x0, E0) ∈ 3. Fix (x0, E0) ∈ 3. There exist i and j

such that ki (x0, E0, 0) = kj (x0, E0, 0). For l 6= j and l 6= i , kl is analytic in a

neighborhood of (x0, E0). By using Lemma 8.1, it suffices to prove that (z, E) 7→
(ki (z, E, 0)− kj (z, E, 0)) is analytic at (x0, E0). The function

g(z, E) = (ki − kj )
2(z, E, 0)

is analytic in a neighborhood V of (x0, E0). Besides, since ki − kj is real for any

(x, E) in V ∩ R
2, we have

g(x, E) ≥ 0 ∀(x, E) ∈ V ∩ R
2.

We write the Taylor expansion of (z, E) 7→ g(z, E). There exist (α, β, γ ) ∈ R
3

such that

g(z, E) = [α(z − x0)]2 + [β(z − x0)+ γ (E − E0)]2

+ o((z − x0)
2 + (E − E0)

2).
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We start with proving that there exist (β̃, γ̃ ) ∈ R
2 such that

g(z, E) = [β̃(z − x0)+ γ̃ (E − E0)]2 + o((z − x0)
2 + (E − E0)

2).

We know that, for any E ∈ 1, the function z 7→
√

g(z, E) is analytic. For |E − E0|
and |z − x0| small enough, we have that

√
g(z, E) =

(
(α2 + β2)

(
z − x0 + γβ(E − E0)

α2 + β2

)2

+ γ 2α2(E − E0)
2

α2 + β2

+ o((z − x0)
2 + (E − E0)

2)

)1/2

.

The function z 7→
√

g(z, E) can be analytically continued in a neighborhood of

x0 only if γα = 0. This proves the announced result, with (β̃, γ̃ ) = (β, γ ) or

(β̃, γ̃ ) = (
√
α2 + β2, 0).

We notice that we have the following relations:

|∂x(ki − kj )(x0, E0)| = |β̃| 6= 0,

|∂E(ki − kj )(x0, E0)| = |γ̃ |.

To end the proof, it remains to show that

g(z, E) = [β̃(z − x0)+ γ̃ (E − E0)]2

+ O
(
|β̃(z − x0)+ γ̃ (E − E0)|3

+ |E − E0|[β̃(z − x0)+ γ̃ (E − E0)]2
)
.

We change variables for u = β̃(z − x0)+ γ̃ (E − E0) and e = (E − E0).

Since β̃ 6= 0, this map is bijective and we consider the function g̃:

g̃(u, e) = g

(
u − γ̃ e

β̃
+ x0, e + E0

)
.

We write the Taylor expansion of g̃ near (0, 0):

g̃(u, e) = u2 +
∑

l+q≥3

alquleq .

Since g̃ is real positive on a neighborhood of (0, 0), we obtain that a1q = 0 for any

q ≥ 2. This implies

g̃(u, e) = u2

(
1 +

∑

l≥2
q≥1

alqul−2eq

)
= u2(1 + O(|e| + |ue|)).

Point (iii) is an immediate consequence of (ii) and of Rouché’s theorem. It ends

the proof of Lemma 2.1. �
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PROOF OF LEMMA 2.2: A proof similar to the proof of Lemma 8.1 shows that

the function (z, E) 7→ (ki − kj )
2(z, E, δ) is analytic for δ small enough and that

the function (z, E, δ) 7→ (ki − kj )
2(z, E, δ) is C3.

For δ = 0, Lemma 2.1 implies that a(E) = |∂z(ki −kj )(x0(E), E, 0)| is analytic

in E ∈ 1. For δ > 0, we define

r1(z, E, δ) = (ki − kj )
2(z, E, δ)− a2(E)(z − x0(E))

2

2δ
.

The function E 7→ ∂zr1(x0(E), E, δ) = c(E) + O(δ) is analytic and O(δ) is

uniform in E . Thus we can apply Weierstrass’s theorem to get that the function c

satisfies c(E) = limδ→0 ∂zr1(x0(E), E, δ) and is analytic in E ∈ 1. We also define

r2(z, E, δ) = (ki − kj )
2(z, E, δ)− a2(E)(z − x0(E))

2 − 2c(E)(z − x0(E))δ

δ2
.

Similarly, the function b2 such that b2(E) = limδ→0 r2(x0(E), E, δ) is analytic.

�

PROOF OF LEMMA 3.4: We fix δ > 0 and drop it from the notation. For ρ >

0, we denote by Vρ(1) = {E ∈ C : dist(E,1) < ρ}.
By perturbation theory, there exists Y > 0 and ρ > 0, depending on δ, such

that (z, E) 7→ kj (z, E) is analytic on ρY × Vρ(1) and

inf
i 6= j

(z,E)∈ρY ×Vρ (1)

(ki (z, E)− kj (z, E)) > 0.

Hence, for a > 0 small enough, we can write the eigenprojector Pj (z, E) as

Pj (z, E) = 1

2iπ

∫

|λ−kj (z,E)|=a

[H(z, E)− λ]−1 dλ.

We recall the identity

[H(z, E)− λ]−1 − [H(∞, E)− λ]−1

= [H(z, E)− λ]−1[H(∞, E)− H(z, E)][H(∞, E)− λ]−1

and the fact that H( · , E) and its derivatives with respect to E satisfy the analogue

of (H2) uniformly in E ∈ Vρ(1). This implies that for any j ∈ {1, . . . ,md}, for

any l ∈ N, and uniformly in E ∈ Vρ(1):

(8.1) sup
Re z>0
Re z<0

|Re z|2+ν∥∥∂ l
E(Pj (z, E)− Pj (±∞, E))

∥∥ < ∞.

We consider the vector 8j (0, E) satisfying (3.14) for z = 0 and which is analytic

in E . Consider the identities

kj (z, E) = tr(Pj (z, E)H(z, E)), 8j (z, E) = W (z, E)8j (0, E),
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and the Cauchy formula

∂ l
E∂

p
x [kj (x, E)− kj (±∞, E)]

= p! l!
(2iπ)2

∮

|E−E |=r

∮

|z−x |=r ′

[kj (z, E)− kj (±∞, E)]
(E − E)l+1(z − x)p+1

dz dE

for r and r ′ small enough. Then (3.17) follows. To get (3.19), we also make use

of the differential equation satisfied by W ( · , E) and the estimate (8.1), and we

consider only the first d components of 8j (z, E).

The explicit formula (3.9) and the decay of ∂x kj and ∂xϕj yields formula (3.20).

Finally, estimate (3.23) is a direct consequence of the definitions (3.21) and

(3.22) and of (3.17). �

PROOF OF LEMMA 3.5: The proof of Lemma 3.5 is virtually identical to the

one of lemma 3.1 in [20] once the properties of the matrix M(x, E, ε) have been

established. Therefore, we give here just the main steps of the first part of the

argument for the reader’s convenience.

Because of (3.20), we know that there exists C such that, uniformly in E and ε,
∫ ∞

0

‖M(y, E, ε)‖dy < C.

Expressing the solutions of equation (3.7) as a Dyson series, we have

c(x, E, ε)

=
∞∑

n=0

∫ x

0

∫ x1

0

. . .

∫ xn−1

0

× M(x1, E, ε)M(x2, E, ε) . . .M(xn, E, ε)dx1 · · · dxn c(0, E, ε),

(8.2)

and we obtain the usual bound

‖c(x, E, ε)‖ ≤ e
∫ ∞

0 ‖M(y,E,ε)‖dy‖c(0, E, ε)‖.
Thus, we get from (8.2) that c(x, E, ε) is bounded as x → ±∞.

Next we show that ‖c(x, E, ε)− c(y, E, ε)‖ is arbitrarily small for large x and

y, so that

lim
x→∞

c(x, E, ε) = c(∞, E, ε)

exists. It is enough to consider

c(x, E, ε)− c(y, E, ε) = −
∫ y

x

M(z, E, ε)c(z, E, ε)dz.

The expression above with y = ±∞ and the properties of M and c just proven

yield the bound

c(x, E, ε)− c(±∞, E, ε) = O(〈x〉−(1+ν)).
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Finally, if ‖c(±∞, E, ε)‖ is further assumed to be uniformly bounded in E ∈ 1

and ε → 0, it is enough to consider the initial conditions (4.1) by linearity. Then,

by integration by parts (see (4.7) and (4.8)), we get

c(x, E, ε) = O(1),

uniformly in E ∈ 1, ε → 0, and x ∈ R. Hence all bounds above are uniform in

E ∈ 1 and ε → 0.

Getting similar bounds on the derivatives of c with respect to E that are uniform

in ε and E ∈ 1 requires a little more work. The argument is identical to that used

in [20]. We resort again to integration by parts in (4.6) with x0 = −∞, differentiate

with respect to E , and make use of the Gronwall lemma to get bounds. We do not

give the details and refer to section 7 of [20]. �

PROOF OF LEMMA 5.1: Again, we mimic the proof of lemma 4.1 in [20]. It

suffices to rewrite

e−i(
∫ x

0 kj (y,E)dy+t E)/ǫ = iǫ

∂
∂E

e−i(
∫ x

0 kj (y,E)dy+t E)/ǫ

(
t +

∫ x

0
∂
∂E

kj (y, E)dy
) .

We compute

(8.3)

φj (x, t, ε)

= iε

[
cj (x, E, ε)Q(E, ε)ϕj (x, E, ε)

t +
∫ x

0
∂E kj (y, E)dy

e−i(
∫ x

0 kj (y,E)dy+t E)/ε

]

∂1

− iε

∫

1

∂E [cj (x, E, ε)Q(E, ε)ϕj (x, E, ε)]
t +

∫ x

0
∂E kj (y, E)dy

e−i(
∫ x

0 kj (y,E)dy+t E)/εd E

+ iε

∫

1

cj (x, E, ε)Q(E, ε)ϕj (x, E, ε)e−i(
∫ x

0 kj (y,E)dy+t E)/ε

[t +
∫ x

0
∂E kj (y, E)dy]2

×
∫ x

0

∂2
E kj (y, E)dy d E .

By Lemma 3.4 we have for x large enough

t +
∫ x

0

∂E kj (y, E)dy = x

[
∂E kj (±∞, E)+ t

x
+ O

(
1

x

)]
.

Under the restrictions put on x/t , we obtain that for a constant Cε independent of t :

‖φj (x, t, ε)‖ ≤ Cε

|x | .

Now, for any l ∈ {0, . . . ,m − 1}, we have

φ
[l]
j (x, t, ε) =

∫

1

cj (x, E, ε)kl
j (x, E)ϕj (x, E)e

−i(
∫ x
0

kj (y,E)dy+Et)

ε Q(E, ε)d E,

so that a similar computation gives the result.
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The last estimate makes use of the fact that under the given conditions stated on

the signs of x and t , and for |x | large enough, uniformly in time and energy,

(8.4)
∣∣t +

∫ x

0

∂E kj (y, E)dy
∣∣ ≥ |t + x∂E kj (±∞, E)|

2
≥ (|t | + |x |)c

for some c > 0. The result follows from the elementary inequality (x + y) ≥
xβ y1−β for any x, y ≥ 0 and any β ∈ (0, 1) and from the arguments used above.

�

PROOF OF PROPOSITION 5.3: We adapt the proof of proposition 4.1 in [20]

and give only the main steps.

Step 1. We rewrite:

(8.5) φ
[l]
j (x, t, ε)− φ

[l]
j (x, t, ε,±∞) =

∫

1

{I (x, E, ε)}Q(E, ε)e−i t E/ε,

where the integrand I (x, E, ε) is given by

[
kl

j (x, E)ϕj (x, E)− kl
j (±∞, E)ϕj (±∞, E)

]
e

−i
∫ x
0

kj (y,E)dy

ε cj (x, E, ε)

+ kl
j (±∞, E)ϕj (±∞, E)e

−i(kj (±∞,E)x+ωj (±∞,E))

ε [e−ir±
j (x,E)/ε − 1]cj (x, E, ε)

+ kl
j (±∞, E)ϕj (±∞, E)e

−i(kj (±∞,E)x+ωj (±∞,E))

ε [cj (x, E, ε)− cj (±∞, E, ε)].

(8.6)

Step 2. To obtain a factor 1/t , we integrate by parts. For any regular func-

tion f , we have
∫

1

f (x, E, ε)e−i t E/εd E

=
[

iε

t
f (x, E, ε)e−i t E/ε

]

∂1

− iε

t

∫

1

∂E f (x, E, ε)e−i t E/ε d E .

(8.7)

Step 3. We apply equation (8.7) for the three terms in (8.6).

Step 4. The estimates of Lemma 3.4 and Lemma 3.5 prove that there exists

Cε > 0 such that

sup
x→±∞

|x |ν
∥∥[
φ

[l]
j (x, t, ε)− φ

[l]
j (x, t, ε,±∞)

]∥∥ < Cε

|t | .

Step 5. The identity φ
[l]
j (x, t, ε) = ω(x)φ

[l]
j (x, t, ε)+(1−ω(x))φ[l]

j (x, t, ε)

and support considerations on the definition of φ
[l]
j (x, t, ε, a) yield the first result.

Step 6. The second estimate follows from (8.7) applied to the definition of

φ
[l]
j (x, t, ε). �
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PROOF OF THEOREM 6.1: Taking into account the results of Section 5, we are

left with the computation of the following integral:

T (ε, x, t) =
∫

1

P̃(E, ε)e−α(E)/εe−iκ(E)/εe−i t E/εe−i xkn(+∞,E)/εϕn(+∞, E)d E,

with P̃(E, ε) = P(E, ε)e−iθj (ζ,E)(1 + OE(ε)), where OE(ε) is defined in (6.4).

We already remarked that P̃(E, ε) satisfies (C3) as well. Again, we adapt the

arguments of [20].

In terms of the variable k = kn(+∞, E), we rewrite T as

∫

kn(1,+∞)

P̃(E+
n (k), ε)e

−α(E+
n (k))/εe−iκ(E+

n (k))/εe−i t E+
n (k)/εe−i xk/ε

× ϕn(+∞, E+
n (k))(∂k E+

n )(k)dk.

We can see T as the rescaled Fourier transform (see (5.13)) of the function:

S(ε, k, t) =
√

2πε P̃(E+
n (k), ε)e

−α(En(+∞,k))/εe−iκ(E+
n (k))/εe−i t E+

n (k)/ε

× ϕn(+∞, E+
n (k))(∂k E+

n )(k).

We follow the analysis done in [20] and expand S around k∗

α(E+
n (k)) = α(E∗)+ [∂k E+

n (k
∗)]2α′′(E∗)

(k − k∗)2

2
+ O((k − k∗)3),

where α′′(E∗) > 0. We define

κ̃(k) = κ(E+
n (k)),

κ̃(k) = κ̃(k∗)+ κ̃ ′(k∗)(k − k∗)+ κ̃ ′′(k∗)
(k − k∗)2

2
+ O((k − k∗)3).

We also have

P̃(E+
n (k), ε) = P(E+

n (k
∗), ε)e−iθj (ζ,E

+
n (k

∗) + O((k − k∗))+ O(ε),

(∂k E+
n )(k)ϕn(+∞, E+

n (k)) = (∂k E+
n )(k

∗)ϕn(+∞, E+
n (k

∗))+ O((k − k∗)).

We can then follow the computations of [20]. We set µ(ε) = εs , with 1
3
< s < 1

2
,

so that µ(ε)3/ε ≪ 1 ≪ µ(ε)/
√
ε as ε → 0. Using the Parseval formula and

thanks to the properties of α, the restriction of the integration set to the interval

[k∗ − µ(ε), k∗ + µ(ε)] causes an error, in the L2 sense, of order e−α(E∗)/εε∞.

On that set, the overall error err(ε) stemming from the expansion around k∗ is
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err(ε) = O(ε + εs + ε3s−1) = O(ε3s−1) with our values of s. The L2 norm of the

error term can thus be estimated by the Parseval formula to yield
∥∥∥∥

∫

[k∗−µ(ε),k∗+µ(ε)]

err(ε)e−α(E∗)/εe−3(k)/εe−i t E+
n (k)/εe−i xk/ε dk

∥∥∥∥

= O(err(ε)e−α(E∗)/εε3/4)

uniformly in t . The interval of integration can then be restored to its initial value

kn(+∞,1) at the expense of another error of order e−α(E∗)/εε∞. Therefore, we

obtain that there exists 3
4
< p < 5

4
so that in the L2 norm and with an error term

that is uniform in t :

(8.8)

T (ε, x, t) = e−α(E∗)/εP(E∗, ε)e−iθj (ζ,E
∗)e−i κ̃(E∗)/εϕn(+∞, E∗)∂k E+

n (k
∗)

×
∫

kn(+∞,1)

e−3(k)/εe−i t E+
n (k)/εe−ikx/ε dk + O(e−α(E∗)/εε p).

�

PROOF OF LEMMA 6.3: To prove Lemma 6.3, it suffices to compute
∫

kn(+∞,1)

e−3(k)/εe−i t E+
n (k)/εe−ikx/ε dk.

According to (6.8), we have

E+
n (k) = E+

n (k
∗)+ ∂k E+

n (k
∗)(k − k∗)+ ∂2

k E+
n (k

∗)

2
(k − k∗)2.

With the same arguments as in [20], we can expand the interval of integration to

the whole line at the expense of an error that is uniform in t and in the L2 sense:
∫

kn(+∞,1)

e−3(k)/εe−i t E+
n (k)/εe−ikx/ε dk

=
∫ +∞

−∞
e−3(k)/εe−i t E+

n (k)/εe−ikx/εdk + O(ε∞).

The rest of the proof follows from the formula

∫ ∞

−∞
e−(M(k−k∗)2/2+i N (k−k∗))/ε dk =

√
ε2π

M
e− N2

2εM ,

with

M = λ2 + i∂2
k E+

n (k
∗)t, N = λ1 + ∂k E+

n (k
∗)t + x .

�

PROOF OF PROPOSITION 7.1: We make use of the following lemma; we omit

the proof.
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LEMMA 8.2 Let f and uε be C∞
0 (R,R). Provided f ′(k) 6= 0 on supp uε, we have

for any n ∈ N

∫

R

e−i f (k)/εuε(k)dk

= (−iε)n
∫

R

e−i f (k)/ε

((
. . .

((
uε(k)

f ′(k)

)′
1

f ′(k)

)′
. . .

)′
1

f ′(k)

)′
dk,

where there are n factors 1/ f ′(k). Moreover, setting g = 1/ f ′, there exist constants

c( j, r1, . . . , rn) ∈ R such that

((
. . .

((
uεg

)′
g

)′
. . .

)′
g

)′

=
n∑

j=0

∑

r1,...,rn∑n
i=1 ri = j

c( j, r1, . . . , rn)u
(n− j)
ε g(r1)g(r2) · · · g(rn),

where h(k) denotes the k th derivative of h.

In our case, f ′(k) = x + ∂k Eσ
l (k)t , so that explicit computations show the

existence of smooth functions k 7→ cj,n(k) on Sǫ , the support of uǫ = e−3(k)/εηε.
These functions are independent of x and t and such that

(8.9)

(
1

f ′(k)

)(n)
=

n∑

j=0

cj,n(k)
t j

(x + ∂k Eσ
l (k)t)

j+1
.

Then, we get from the above the following:

LEMMA 8.3 Assume ∂k Eσ
l (k̃) 6= 0 and consider (x, t) such that

inf
k∈Sε

|x + ∂k Eσ
l (k)t | > 0.

For any n ∈ N, there exists a positive constant C(n), uniform in (x, t) and ε, such

that
∣∣∣∣
∫

R

e−i(kx+t Eσl (k))/εe−3(k)/εηε(k)dk

∣∣∣∣

≤ C(n)ετ
n∑

r=0

(ε|t |)r
(infk∈Sε |x + ∂k Eσ

l (k)t |)r+n

(8.10)

for all ε < ε0, where ε0 is uniform in n and (x, t).

Remark. The lemma actually holds for any value of ε if one is not interested in the

behavior in that parameter.
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PROOF: We first note that by scaling and by our choice of τ the successive

derivatives of uε = e−3(k)/εηε satisfy supk∈R
u( j)
ε (k) = O(1/ε j ) if ε is small

enough. Then, formula (8.9) and the restriction
∑n

i=1 ri = j in the second point of

Lemma 8.2 give the possible number of factors

t j

(x + ∂k Eσ
l (k)t)

j+1

in the integrand. Finally, the fact that all functions of k involved are smooth, to-

gether with |Sε| = ετ , yields the result. �

To end the proof of the proposition, we note that on the complement of Ct(ε),

the right-hand side of (8.10) is bounded above by

C(n)ετε|t |1−α

infk∈Sε |x + ∂k Eσ
l (k)t |

(
ε

|t |2α−1

)n−1

,

using the fact that ε|t |1−α > 1. Explicit computation of the L2 norm of

( inf
k∈Sε

|x + ∂k Eσ
l (k)t |)

on the complement of Ct(ε) yields the result. �
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