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Abstract. We describe and extend our recent proposal to model mathemat-
ically the vibrational levels associated with hydrogen bonds in symmetric tri-
atomic molecules. Our approach is based on modification of the usual Born-
Oppenheimer approximation to take into account the lighter mass of the hy-
drogen nucleus and the weakness of the hydrogen bond, using special features
of the electron energy level surface associated with the hydrogen bond. Ne-
glecting bending of the molecule for simplicity, we achieve this by scaling the
mass of the hydrogen atoms differently from the heavier atoms, and by using
a modified form for the electronic energy surface.

As a result, anharmonic effects play a role at leading order in the limit
where the nuclear masses go to infinity. Our analysis is based on close exam-
ination of the numerical data available for the ground state energy surface of
the FHF− ion, and we make a comparison with experimental data for the
vibrational levels of that ion.

The theory we propose is, however, quite general and can accomodate
asymmetric tri-atomic molecules. Moreover, we provide an extension of our
results to molecules with nuclei of several different species, where we assume
that each of the masses scales differently. Considering an adapted ground
state energy surface, we compute the leading term of the corresponding vibra-
tional levels in the limit of large nuclear masses by means of a normal form
Hamiltonian.

1. Introduction

The standard time–independent Born–Oppenheimer approximation [1] takes ad-
vantage of the large masses of the nuclei relative to the mass of an electron. It
allows one to compute the low-lying vibrational states of the nuclear motion from
knowledge of the ground state electron energy level surface near its minimum un-
der the assumption that the minimum is non-degenerate. To leading order, the
vibrational energy levels are those of a harmonic oscillator associated with the
non-degenerate minimum.
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More precisely, consider a molecular system whose nuclear configuration space
modulo rotations is Rd, and denote the ratio of mean of the nuclear masses to the
electron mass by ε−4. For small ε, there exists a molecular energy level E(ε) that
satisfies,

(1.1) E(ε) = E0 + ε2
(

(n1 +
1
2
) ω1 + · · · (nd +

1
2
) ωd

)
+ O(ε4),

where E0 is the minimum of the ground state electronic energy level. The numbers
nj ∈ N, and ωj > 0, for j = 1, · · · , d, characterize the d-dimensional harmonic
oscillator. Under quite general hypotheses, (1.1) represents the first few terms in a
complete asymptotic expansion of E(ε) in powers of ε. See the recent review [4] for
more details and results.

For many molecules, this approximation is very successful, but it may fail to
give accurate results when applied to some molecules that contain hydrogen bonds.
The binding energy of hydrogen bonds is typically very small, and the mass of the
hydrogen nucleus is an order of magnitude smaller than that of other nuclei such
as carbon. Moreover, the experimental vibrational spectra of symmetric tri-atomic
molecules with hydrogen bonds display significant deviations from the approximate
harmonic spectrum (1.1). See [2] for an account of these properties.

In [3] we propose an alternative to the Born–Oppenheimer approximation that
is specifically designed to describe molecules with symmetrical hydrogen bonds.
There are two main differences between our approach and the standard Born-
Oppenheimer analysis. First, we scale the masses of the hydrogen nuclei as ε−3

while keeping the heavier nuclei scale as ε−4. Although our analysis applies only
for small values of ε, the mass of a hydrogen nucleus is 1.015 ε−3 if ε is defined by
taking the mass of a carbon atom to be ε−4. This value of ε is roughly ε ' 0.082.
Second, we model the electron energy level surface in a special way that depends on
ε. This takes into account the smallness of a coefficient in the harmonic potential
associated with the hydrogen bond. That coefficient is weaker than the others,
roughly by a factor ε. Consequently, in our model, anharmonic effects contribute
to the leading order calculations of vibrational levels, as ε → 0.

Our approach gives rise to an ε–independent normal form Hamiltonian HNF

(described below) which is not a harmonic oscillator. This Hamiltonian describes
the vibrational levels: For small ε, there exists a molecular level E(ε) that satisfies

(1.2) E(ε) = E0 + ε2 E2 + O(ε2+ξ),

for some ξ > 0, where E2 is an element of the spectrum of HNF . Note that the
index 2 refers here to the power of ε appearing as the leading term. Again, under
appropriate hypotheses, our analysis yields a complete expansion of E(ε) in powers
of ε1/2.

Our model leads to a different expansion from the usual Born–Oppenheimer
approximation. For hydrogen nuclei not involved in hydrogen bonding, the vibra-
tional energies are of order ε3/2, while the vibrational energies for the other nuclei
and the hydrogen nuclei involved in the symmetric hydrogen bonding are of order
ε2. Furthermore, anharmonic effects must be taken into account for a hydrogen
nucleus involved in hydrogen bonding at the leading order, ε2. In the standard
Born–Oppenheimer model, all vibrational energies appear at order ε2 and are har-
monic at that order. Anharmonic corrections first enter at order ε4.



HYDROGEN BONDS AND SEMICLASSICAL NORMAL FORMS 3

Our analysis is motivated by an examination of symmetric bihalide ions, such
as FHF− or ClHCl−, and we work under the simplifying hypothesis that bending
of the molecule is absent. Although symmetric bihalide ions are quite special, our
approach is flexible enough to describe more general phenomena. For example, the
lowest electron energy surface for FHF− has a single minimum with the hydrogen
nucleus mid–way between the two fluorines. Our general theory can handle situa-
tions with single or closely spaced double wells in the coordinates for a hydrogen
nucleus that participates in hydrogen bonding.

In this note, we further generalize our approach to molecules with nuclei of
several different species, where we assume that each of the masses scales with a
different inverse power of ε. We allow the ground state energy surface to depend on
ε in a similar fashion as in the tri-atomic case, and we determine a corresponding
normal form HNF . Then, we prove that the leading term of the vibrational levels
E(ε) is described by HNF :

(1.3) E(ε) = εσ Eσ + O(εσ+ξ),

for small ε, where
Eσ ∈ σ(HNF ), σ > 0, and ξ > 0.

Here, the index σ refers to the power of ε in the leading term.
From a mathematical point view, our analysis consists of constructing and

studying quasimodes for the full molecular Hamiltonian in the singular limit ε → 0.
To do this, we use a multiscale analysis technique. We identify different relevant
length scales in the system and treat them independently in the first stage of the
analysis. This leads to a formal algorithm to construct an Ansatz for the quasimode
in more variables. We then prove that this yields a bona fide quasimode for the
original problem by re-introducing the coupling between the length scales. This is
a traditional, successful route for getting information on the vibrational spectrum
of the molecule. See e.g., [4]. In the present circumstances, when using the same
strategy, we face a new problem: The spectrum of the normal form Hamiltonian
HNF is not known explicitly, and we have to show that the eigenfunctions of HNF

and their derivatives have sufficient decay properties. For the harmonic oscillator
of the standard Born–Oppenheimer theory, everything required is well-known.

2. The Tri–Atomic Model

We consider a molecule that consists of two types of atoms. Two identical
nuclei are heavier and have masses ε−4, where the mass of an electron is 1. The
third nucleus is lighter and has mass ε−3. We consider a simplified model in which
bending and rotational motions are absent, i.e., all three nuclei lie on a fixed line.
The two heavier nuclei have coordinates q1 and q2 whereas the coordinate of the
lighter nucleus is q3. Then we pass to Jacobi coordinates and discard the kinetic
energy of the center of mass. For convenience, we also rescale coordinates by
constant numerical factors and neglect some harmless ε dependent mass correction,
(See [3]), to get a molecular Hamiltonian of the form,

Hmol(ε) = − ε4

2
∂2

x1
− ε3

2
∂2

x2
+ h(x1, x2),

where x1 = (q2−q1)/
√

2 denotes (essentially) the distance between the two identical
nuclei, and x2 = q3− (q1 + q2)/2 is the dispacement of the lighter nucleus from the
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center of mass of the identical nuclei. Further technical hypotheses are provided
below in Assumption 3.1.

The electronic Hamiltonian h(x1, x2) depends parametrically on the positions
of the nuclei. It is a self-adjoint operator on the electronic Hilbert space Hel. We
assume h(x1, x2) has a non-degenerate ground state electronic surface E(x1, x2)
with corresponding normalized eigenvector Φ(x1, x2). We further assume that the
molecule actually binds, in the sense that that there exists a nuclear configuration
(xeq

1 , xeq
2 ) that is an isolated minimum of E(x1, x2). We assume xeq

1 6= 0. (The
heavy nuclei are not at the same point!) In the symmetrical case which we study
here, the equilibrium position of the lighter nucleus lies at the center of mass of the
heavy nuclei (xeq

2 = 0). The non-symmetrical case would have xeq
2 6= 0.

Thus far, we have only altered the standard Born-Oppenheimer approximation
by introducing two nuclear mass scales, instead of one. We now make a second
modification to reflect the structure of the electron energy level surface associated
with hydrogen bonding. (See [2].) We introduce an artificial dependence in the
ground state electronic surface on ε. After a shift of the variable x1 by xeq

1 , we
assume that the ground state has an expansion of the form

(2.1) E(ε, x1, x2) = E0 + a1 x2
1 + a2 ε x2

2 − a3 x1 x2
2 + a4 x4

2 + O(xν1
1 x2ν2

2 ),

where ν1, ν2 ∈ N and ν1 + ν2 ≥ 3. The Taylor series only contains even powers
of x2, due to the symmetry of the molecule. The factor ε in the harmonic term
a2 ε x2

2 expresses the weaker binding of the hydrogen atom. The smallness of this
coefficient makes it necessary to consider terms of order higher than quadratic in the
expansion. We assume that a1, a3 and a4 are positive, but a2 can take any value.
When a2 is negative, E(ε, x1, x2) has a closely spaced double well near (xeq

1 , 0),
instead of a single local minimum. Note that a3 = 0 leads to two decoupled one-
dimensional systems, to leading order. We define then a scalar normal form by
keeping the leading order terms only in (2.1),

− ε4

2
∂2

x1
− ε3

2
∂2

x1
+ E0 + a1 x2

1 + a2 ε x2
2 − a3 x1 x2

2 + a4 x4
2.(2.2)

The Schrödinger operator (2.2) plays the role the Harmonic oscillator plays in
the standard Born-Oppenheimer approximation. By rescaling with (y1, y2) =
(x1/ε, x2/ε1/2), we see that (2.2) minus the constant term E0 is unitarily equivalent
to ε2 times the normal form Hamiltonian HNF ,

(2.3) HNF = − 1
2

∂2
y1
− 1

2
∂2

y2
+ ENF (y1, y2)

with
ENF (y1, y2) = a1 y2

1 + a2 y2
2 − a3 y1 y2

2 + a4 y4
2 .

We further assume that the coefficients {aj} are such that the normal form potential
ENF is bounded below. More precisely, we require

Assumption 2.1.
a1, a3, a4 > 0,

and either
a2
3 < 4 a1 a4,

or

a2
3 = 4 a1 a4 and a2 ≥ 0.
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Anticipating the result of the analysis below, the normal form HNF (2.3) yields
the leading term asymptotics (1.2) for the vibrational levels.

The special form (2.1) is motivated by numerical data for the molecule FHF−.
By fitting numerical data for FHF− with the value ε = 0.0821, we get the following
quantities, where distances are expressed in Angströms and energies in Hartrees.

xeq
1 = 1.617, E0 = −200.215,

a1 = 0.52, a2 = 1.22, a3 = 1.82, a4 = 1.62 .(2.4)

The experimentally observed values [2] for the lowest symmetric stretch, asymmet-
ric stretch, and combined vibrational modes are, respectively,

583.05 cm−1, 1331.15 cm−1, and 1849 cm−1.

A mode is defined as the difference between an excited state eigenvalue and the
ground state eigenvalue. The first mode corresponds to the situation where the
heavy fluorine nuclei oscillate symmetrically whereas the hydrogen nuclei remains
fixed. The second mode corresponds to the situation where the lighter hydrogen
nucleus and the fluorine nuclei oscillate while the distance between the fluorine
nuclei remains fixed. The third mode corresponds to a mixture of these two types
of motion.

Note that the sum of the first two modes is significantly larger than the third
one. This is an expression of anharmonicity, since in the harmonic approximation,
these three modes would be given by ε2ω1, ε2ω2 and ε2(ω1 + ω2), respectively, see
(1.1).

By comparison, if we use the data (2.4) in HNF , and numerically determine
the vibrational levels using the first two terms of (1.2) with ε = 0.0821, i.e.

E(ε) ' E0 + ε2E2, with E2 ∈ σ(HNF ),

our model predicts the following values for these vibrational modes:

600 cm−1, 1399 cm−1, and 1942 cm−1.

To get these three modes, it is necessary to compute numerically the first six energy
levels of HNF as well as the corresponding eigenvectors in order to attribute the
levels to the relevant motions of the nuclei. More precisely, the modes correspond
successively to ε2(E1−E0), ε2(E3−E0) and ε2(E5−E0), where Ej is the jth level
of HNF .

Besides the relatively good agreement with the the experimental data, we also
point out that the anharmonic effect mentioned above is present in our leading term
computation.

Standard Born–Oppenheimer based software yields corresponding harmonic
modes

609 cm−1, 1118 cm−1, and 1727 cm−1.

Encouraged by this positive numerical test, we turn to the mathematical proof
of assertion (1.2). It is a special case of the generalization (1.3), which we describe
in the next section.
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3. More mass scales

The tri–atomic model presented in [3] and its mathematical analysis general-
ize naturally. Roughly speaking, we can consider molecules with nuclei of several
different species, where we assume that each of the masses scales with a distinct
inverse power of ε. The corresponding ground state energy surface depends on ε in
a similar way to the tri-atomic case.

We adopt this more general point of view here and prove the leading order
result (1.3) which generalizes (1.2). More precisely, we work under the following
general assumption.

Assumption 3.1. Let Hmol(ε) be a self-adjoint molecular Hamiltonian defined
on a domain of L2(Rn, Hel) by

(3.1) Hmol(ε) =
n∑

j=1

− εµj

2
∂2

xj
+ h(ε, x), µ1 ≥ µ2 ≥ · · · ≥ µn > 0.

Here, x ∈ Rn, and Hel is the electronic Hilbert space. The electron Hamiltonian
h(ε, x) is self-adjoint on an x–independent dense domain D ⊂ Hel. We assume
h(ε, x) is bounded below, uniformly for x ∈ Rn. Moreover, h(ε, x) is C∞ in the
strong resolvent sense and admits a non-degenerate ε–dependent ground state eigen-
value V (ε, x) with corresponding normalized eigenstate Φ(x), independent of ε. We
normalize the ground state energy surface so that

(3.2) V (ε, 0) = 0.

Remark 3.2. Our hypothesis that Φ(x) be independent of ε reflects the fact
that the phenomenon we discuss takes place on one electronic level only. In other
words, variations in the transitions between electronic levels are inessential since
they contribute to higher orders only. They are ignored here for simplicity and we
only put the ε dependence in the electron energy, not the electron state.

We denote the formal Taylor expansion of V (ε, x) by

V (ε, x) ∼
∑

0 6=β∈Nn

vβ(ε) xβ , β = (β1, · · · , βn) ∈ Nn, vβ(ε) ∈ R,

where the coefficients vβ(ε) are regular as ε → 0. We impose more restrictions on
these coefficients below.

The first step in analyzing the spectrum of (3.1) consists of defining a scalar
normal form Hamiltonian HNF . Let α ∈ (R+)n be a set of positive exponents.
We consider the kinetic energy and introduce rescaled variables (y1, · · · , yn) =
(x1/εα1 , · · · , xn/εαn), which we denote by y = x/εα.

n∑
j=1

− εµj

2
∂2

xj
= − εσ

2
∆y, for some σ > 0.

This enforces the relations

(3.3) µj − 2 αj = σ, ∀ j = 1, · · · , n.

To determine the normal form potential VNF , we consider the formal expression

(3.4) ε−σ V (ε, εαy) ∼
∑

0 6=β∈Nn

vβ(ε) (ε1/2)β·µ−σ(|β|+2) yβ ,
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where we use the notation β · µ =
∑n

j=1 βj µj and |β| =
∑n

j=1 βj . As in the
tri-atomic case, we want VNF to consist of the ε0 terms on the right hand side
of (3.4), and we want there to be only finitely may such terms. All other terms
should contain factors of εp with p positive. To make this more precise, we make
the following assumption:

Assumption 3.3. There exist σ > 0 and two non-empty finite sets of multi-
indices, β0 ⊂ Nn \ {0} and βF ⊂ Nn \ β0, such that for small |x| and ε,

(3.5)

∣∣∣∣∣∣V (ε, x) −
∑
β∈β0

vβ(ε) xβ

∣∣∣∣∣∣ ≤ c
∑

β∈βF

∣∣xβ
∣∣

for some c > 0. Furthermore, vβ(ε) (ε1/2)β·µ−σ(|β|+2) = cβ , ∀ β ∈ β0

β · µ − σ (|β|+ 2) > 0, ∀ β ∈ βF .
(3.6)

Remark 3.4. We address the question of existence of a suitable σ and the
corresponding sets β0 and βF for a given general potential at the end of this section.

Remark 3.5. The case of the tri-atomic molecule in R2 is characterized by the
parameters µ1 = 4, µ2 = 3, α1 = 1, α2 = 1/2, σ = 2, and the sets

β0 = {(2, 0), (0, 2), (1, 2), (0, 4)},

βF = {(3, 0), (2, 2), (1, 4), (0, 6)},
for which β · µ − σ (|β|+ 2) = 2 for all β ∈ βF .

Remark 3.6. For any 0 < σ < µn, the last condition in (3.6) is always satisfied
for large enough |β|, since by (3.1) and (3.3),

β · µ − σ (|β| + 2) ≥ (µn − σ)) |β| − 2 σ = 2 (αn|β| − σ).

The normal form potential is then defined as

(3.7) VNF (y) =
∑
β∈β0

cβ yβ ,

so that the scalar normal form Hamiltonian becomes

HNF = − 1
2

∆ + VNF .

Taking into account our normalization (3.2), we expect the spectrum of Hmol(ε) to
contain elements of the form

(3.8) E(ε) = εσ Eσ + O(εσ+ξ),

for small ε, where

(3.9) Eσ ∈ σ(HNF ) and ξ > 0.

The index σ refers to the power of ε in the leading term.

Let us briefly consider the existence of a suitable normal form for a given smooth
potential of the form (3.4) and, in particular, the definition of the exponent σ > 0.
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Consider the usual situation in which at least one monomial in the Taylor expansion
(3.4) whose coefficient is independent of ε appears in the normal form. Such terms
must define the exponent σ, because they contain no extra ε dependence, and after
rescaling, their contribution to the normal form cannot diverge. Thus, we introduce
the set

βN = {β ∈ Nn : vβ(ε) = cβ 6= 0}.
The dimensions corresponding to the minimal value µn of the exponents µj play
a special role. Let 0 ≤ k ≤ n be the integer such that µn = µn−1 = · · ·µn−k <
µn−k−1. We define

β‖ = {β ∈ Nn : β = (0, · · · , 0, βn−k, βn−k+1, · · · , βn) ≡ (0, · · · , 0, β′′)}.

Similarly, we write x′′ = (0, · · · , 0, xn−k, xn−k+1, · · · , xn). For simplicity, we as-
sume that there exists a non-zero term of the form x′′

β′′ in (3.4) with an ε-
independent coefficient. Note, however, that it is possible to prove results similar
to the following one in case this hypothesis does not hold.

The next proposition gives conditions on the ε–dependence of the coefficients
vβ(ε) (with β 6∈ βN ), ensuring that Assumption 3.3 holds, with an exponent σ
defined by means of the indices of the ε–independent non-zero coeffcients of (3.4).

Proposition 3.7. Assume βN ∩ β‖ 6= ∅. Then Assumption 3.3 holds with

σ = min
β∈βN

β · µ
2 + |β|

< µn,

β0 = {β ∈ Nn : β · µ − σ(2 + |β|) ≤ 0 }, and

βF = {β ∈ Nn \ β0 : |β| < F }

for some sufficiently large F > 0, provided

vβ(ε) (ε1/2)β·µ−σ(|β|+2) = cβ , ∀ β ∈ β0 \ βN .

Remark 3.8. Actually, F = max β∈β0 |β| + 1 will do.

Proof. Observe that for |β| fixed,

β · µ
2 + |β|

≥ |β|µn

2 + |β|

with equality if and only if β ∈ β‖. Since x 7→ xµn

2 + x
is strictly increasing, we have

µj ≥ µn > min
β′′∈βN∩β‖

|β′′|µn

2 + |β′′|
≥ σ.

Moreover, this shows that the minimum over βN is reached on the finite set {β ∈
Nn : |β| ≤ minβ′′∈β‖ |β′′| }. Then, Remark 3.6 implies that β0 is finite. Moreover,
for any β ∈ βN , β ·µ−σ(2+|β|) ≥ 0. Hence, the corresponding terms in the Taylor
series either contribute to the normal form, or they are of higher order and can be
neglected. The last condition ensures that the ε dependence of the coefficients is
strong enough to compensate for the negative exponents β · µ− σ(|β|+ 2). �
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4. Mathematical properties of HNF

The normal form Hamiltonian HNF plays the same role that the harmonic
oscillator plays in the standard Born–Oppenheimer approximation. However, in
contrast with the harmonic oscillator, we do not know the spectral properties of
HNF explicitly. In [3] we prove certain properties that we require for our analysis.
We now describe them.

We consider Schrödinger operators with potentials that satisfy the following
hypothesis.

Assumption 4.1. Let H = − 1
2 ∆ + V be self-adjoint on a suitable domain

in L2(Rn), where x 7→ V (x) is a polynomial and V ≥ 0.

The first concern is the spectrum of the normal form Hamiltonian. We want
purely discrete spectrum, which is not obvious with our polynomial potentials V
that may or may not be confining. Depending on the parameters, the set V −1({0})
may be unbounded. In order to exclude essential spectrum, we could use Persson’s
Theorem, as we did in [3] for the tri-atomic case. A more general criterion for the
absence of essential spectrum for Schrödinger operators with polynomial potentials
can be found in [7] 1. Within our framework, it states the following:

For a polynomial V ≥ 0, define

(4.1) m∗
V (x) = 1 +

∑
α∈Nn

|DαV (x)|,

where Dα = ∂α1
x1

∂α2
x2

· · · ∂αn
xn

. Note that the sum is finite.

Proposition 4.2 ([7], Thm (1.3)). Let H satisfy Assumption 4.1 and let m∗
V

be defined by (4.1). Then, the resolvent of H is compact if and only if

lim
|x|→∞

m∗
V (x) = ∞.

Remark 4.3. The proof of this result in [7] finds its roots in earlier work on
hypoelliptic operators. See e.g. [5].

The function m∗
NF corresponding to the normal form Hamiltonian for tri-atomic

molecules, i.e., to the potential ENF(x1, x2) given by

(4.2) ENF(x1, x2) = a1 x2
1 +

(
a2 − a3 x1

)
x2

2 + a4 x4
2,

is easily seen to tend to infinity as |x| tends to infinity if Assumption 2.1 holds
Hence, σ(HNF ) is discrete, for all allowed values of the parameters {aj}.

For the general normal form potential VNF (3.7), we assume that the corre-
sponding function m∗

NF diverges at infinity.

We also need to know that the eigenfunctions decay exponentially, in a L2

sense, together with their derivatives. This is the content of the next result which
is proven in [3].

1We thank B. Helffer for pointing this criterion out to us.
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Proposition 4.4. Let H satisfy Assumption 4.1, and assume that the spectrum
of H is discrete. Then, any eigenfunction x 7→ ϕ(x) ∈ L2(Rn) is C∞ and, for any
a > 0,

ϕ ∈ D(ea〈x〉), ∇ϕ ∈ D(ea〈x〉), and ∆ϕ ∈ D(ea〈x〉),
where 〈x〉 = (1 +

∑n
j=1 x2

j )1/2 , and D(ea〈x〉) denotes the domain of the operator
multiplication by ea〈x〉.

Proof. The smoothness of the eigenfunctions follows from elliptic regular-
ity arguments. Their exponential decay properties are consequences of classical
Combes–Thomas arguments. Since the potential is a polynomial, we immedi-
ately deduce the exponential decay of ∆ϕ by using the eigenvalue equation. That
∇ϕ ∈ D(ea〈x〉) is a consequence of the following lemma, with p(x) = ea〈x〉:

Lemma 4.5. Let x 7→ p(x) ∈ C1(Rn) be positive, and assume that there exists
a constant C < ∞, such that |(∇p(x))/p(x)| ≤ 2 C for all x ∈ Rn.

Then, for any f ∈
{

g :
∫

Rn

(
|g(x)|2 + |∆g(x)|2

)
p(x) dx < ∞

}
(4.3) ‖p1/2∇f‖ ≤ C ‖p1/2f‖ +

√
‖p1/2f‖ ‖p1/2∆f‖ + C2 ‖p1/2f‖2.

The rather technical proof of this lemma can be found in [3]. �

Remark 4.6. While Proposition 4.4 is sufficient to derive the leading contri-
bution (1.2) of the vibrational spectrum, the derivation of a complete asymptotic
expansion in powers of ε1/2 requires a generalization to arbitrary derivatives of the
eigenfunction:

Proposition 4.7. Let H satisfy Assumption 4.1 and have discrete spectrum.
Then any eigenfunction x 7→ ϕ(x) ∈ L2(Rn) is C∞ and, for any a > 0, and any
multi-index γ ∈ Nn, Dγϕ ∈ D(ea〈x〉).

This result is proved by induction on the order of γ. The initial step is provided
by Proposition 4.4. The induction step involves Paley–Wiener arguments. See [3].

Remark 4.8. We also note that while the exponential decay properties of
eigenfunctions of Schrödinger operators have been the object of many detailed and
refined investigations (See e.g., [6]), we could not find any published results that
dealt with the decay properties of their successive derivatives.

5. Leading order results

In this last section, we show how leading order results of the type (1.2), or more
generally, of the type (3.8) can be obtained by means of rather explicit quasimodes.
The following theorem is the main result of this note. It is the generalization of
Theorem 3.6 in [3] to the situation described in Section 3.

Theorem 5.1. Let Hmol(ε) be defined by (3.1) and satisfy Assumption 3.1.
Assume the ground state V (ε, x) satisfies Assumption 3.3, and let HNF be the
normal form Schrödinger operator HNF = − 1

2 ∆ + VNF , with VNF defined by
(3.7). Further assume that the polynomial VNF is bounded below, and that HNF

has compact resolvent.
Let f ∈ L2(Rn) be a normalized eigenvector corresponding to an eigenvalue Eσ

of HNF

(5.1)
(
− 1

2
∆y + VNF (y)

)
f(y) = Eσ f(y).
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Then, for small ε, there exists an element E(ε) of the spectrum of Hmol(ε) that
satisfies

E(ε) = εσ Eσ + O(εσ+ξ).
for some ξ > 0.

Remark 5.2. The tri-atomic results are direct consequences of this result, up
to a rescaling of the energy.

Remark 5.3. Theorem 5.1 applies in particular to scalar Schrödinger operators
with potential V (ε) satisfying Assumption 3.3.

Remark 5.4. In the case of the tri-atomic molecule, it is possible to go beyond
leading order results. Theorem 3.7 in [3] states the existence a complete asymptotic
expansion in powers of ε1/2 for E(ε).

Proof. We construct a quasimode based on the elements above. This quasi-
mode is supported close to the origin of the coordinates, and we introduce a cutoff
function F on Rn, defined as follows:

(5.2) F(z1, · · · , zn) = F(z1)F(z2) · · · F(zn)

where F(·) ∈ C∞(R, [0, 1]) is even, supported on [−2, 2], and equal to 1 on [−1, 1].
We introduce a set of exponents (δ1, · · · , δn) with

(5.3) 0 < δj < αj , ∀ j = 1, 2, · · · , n,

whose values will be determined in the course of the proof. We also use the short-
hand notation x/εδ = (x1/εδ1 , · · · , xn/εδn).

Our quasimode is then defined as

(5.4) ΨQ(ε, x) = Φ(x) f(x/εα)F(x/εδ),

where Φ(x) ∈ Hel is the normalized electronic eigenvector corresponding to V (ε, x).
Consider its norm,

(5.5) ‖ΨQ(ε)‖2 =
∫

Rn

|f(x/εα)|2 dx −
∫

Rn

(1−F2(x/εδ)) |f(x/εα)|2 dx.

The first term is equal to ε|α| by scaling. Using the exponential decay of f , Propo-
sition 4.4, and the constraint (5.3) on the exponents, we see that the negative of
the second term is bounded above by∫

|xj |≥εδj

|f(x/εα)|2 dx ≤ ε|α|
∫
|yj |≥εδj−αj

e−2a
Pn

j=1 |yj | e2a
Pn

j=1 |yj | |f(y)|2 dy

≤ ε|α| e−2a
Pn

j=1 1/εαj−δj ‖ea
Pn

j=1 |yj |f‖2

= O(ε∞).(5.6)

Altogether, this shows that ‖ΨQ(ε, x)‖ = ε|α|/2 (1 + O(ε∞)). Thus, to prove the
result, we need only show that

(5.7) ‖Hmol(ε) ΨQ(ε) − εσ Eσ ΨQ(ε)‖ = O(ε|α|/2+σ+ξ),

for some ξ > 0. Using (3.1) and the definitions (3.7), (5.1), we see that

Hmol(ε) ΨQ(ε) − εσ Eσ ΨQ(ε) = (V (ε, x) − εσ VNF (x/εα)) ΨQ(ε, x)
− R(ε, x),(5.8)
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where

R(ε, x) =
n∑

j=1

εµj Φ(x) f(x/εα) ∂2
xj
F(x/εδ)/2

+
n∑

j=1

εµj ∂xj
(Φ(x) f(x/εα)) ∂xj F(x/εδ)

+
n∑

j=1

εµj

(
f(x/εα) ∂2

xj
Φ(x)/2 + ∂xj f(x/εα) ∂xj Φ(x)

)
F(x/εδ).(5.9)

We consider the first two terms in R(ε), where Φ and its derivatives are uniformly
bounded in a neigborhood of the origin. Because of the derivatives of the cutoff
function, there is always one direction in which the integration range is away from
the origin. Using this together with the fact that f and ∂yj f are exponentially
decaying in any direction, an argument similar to that used in (5.6) shows that
these contributions are O(ε∞). The last contribution to R(ε) is simply estimated
by O(

∑n
j=1 ε|α|/2 εµj−αj ), where ε|α|/2 comes from scaling. By (3.3), µj − αj =

σ + αj > σ, so that R(ε) satisfies the bound (5.7). To bound the norm of the first
term in (5.8), we use (3.5) and (3.7) to see that

‖(V (ε) − εσ VNF (·/εα))ΨQ(ε)‖ ≤ c
∑

β∈βF

(∫
|xj |≤2εδj

|xβ |2 |f(x/εα)|2 dx

)1/2

≤ c̃ ε|α|/2 εβ·δ,(5.10)

for some constant c̃. By assumption, for all β ∈ βF , we have
β · α− σ = 1

2 (β · µ− σ(|β|+ 2)) > 0. Hence, by continuity, choosing δj < αj close
to αj , we get

ε|α|/2 εβ·δ = ε|α|/2+σ εβ·δ−σ ≡ ε|α|/2+σ εξ, with ξ > 0,

which ends the proof. �

Remark 5.5. From the proof, we get that the quasimode for the tri-atomic
molecule is of the form

(5.11) ΨQ(ε, x1, x2) = Φ(x1, x2) f(x1/ε, x2/ε1/2) F(x1/εδ1 , x2/εδ2),

for suitable values of δ1 and δ2, and where f is an eigenfunction of the normal form
(2.3). Provided we have further arguments supporting that fact that quasimodes
are close to true eigenvectors, we observe the following. The amplitude of the
distance between the two heavy nuclei is of order ε, whereas the hydrogen atom
can move a larger distance away form its equilibrium position, i.e., of order

√
ε.
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