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Abstract: This paper is devoted to the spectral properties of a class of unitary operators
with a matrix representation displaying a band structure. Such band matrices appear as
monodromy operators in the study of certain quantum dynamical systems. These doubly
infinite matrices essentially depend on an infinite sequence of phases which govern their
spectral properties. We prove the spectrum is purely singular for random phases and
purely absolutely continuous in case they provide the doubly infinite matrix with a pe-
riodic structure in the diagonal direction. We also study some properties of the singular
spectrum of such matrices considered as infinite in one direction only.

1. Introduction

The dynamical stability of quantum systems governed by a time periodic Hamiltonian is
often characterized in terms of the spectral properties of the corresponding monodromy
operator, a unitary operator defined as the evolution generated by the Hamiltonian over
a period. A first rough classification consists in determining whether or not the spectrum
of the monodromy operator contains an absolutely continuous (a.c.) component. The
presence of absolutely continuous spectrum is a signature of unstable quantum systems,
whereas a purely singular spectrum is a characteristic of quantum stability.

For smooth Hamiltonians, these spectral properties can be obtained through the study
of an associated self-adjoint operator, the so-called Floquet or quasi-energy operator
[Ho1], [Y]. In case the Hamiltonian is singular, e.g. when it corresponds to a kicked
system, one is often lead to consider the monodromy operator directly [Co2]. In both
situations, one is typically confronted with a problem where a dense pure point operator
is perturbed either by the addition of a self-adjoint operator in the first case, or by a
multiplicative unitary perturbation in the second case. A more or less detailed spectral
analysis can thus be performed provided a perturbative framework of some sort is avail-
able, or in case disorder is present. See e.g. [Be, DS, DLSV, GY, Ho2, Ho3, N, J] for
the smooth case, and also the review [Co2, Co1, dO, ADE, Bo] for the kicked case.
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The dynamical quantum systems we address here are characterized by a monodromy
operator given by a product of two pure point unitaries, neither of which can be consid-
ered a perturbation of the other. However, the spectral analysis can be carried over under
certain circumstances due to the fact the monodromy operator has a band structure in
some basis. The motivation of the construction of such operators is borrowed from the
work [BB] which we briefly recall below.

As noted by these authors, this structure allows us to adapt the techniques developed
in the study of one dimensional discrete Schrödinger operators to the unitary framework
in order to obtain results about the spectrum of such monodromy operators.

Let us briefly summerize the paper. In Sec. 2, we define explicitly the class of unitary
operators on the integer lattices Z and N that we shall study and discuss their relation-
ship to [BB]. These operators depend on transmission and reflection amplitudes at each
lattice point. Some simple perturbative results for essential and absolutely continuous
spectra are obtained in Sec. 3. Here, the moduli of the transmission and reflection am-
plitudes may vary from point to point, but in the remainder of the paper these moduli are
assumed constant on the lattice. In Secs. 4 and 5, we consider the random case, in which
the phases are independent and randomly distributed on the circle, and we prove that
the spectrum is purely singular. To do this, we first establish a version of the Ishii-Pastur
Theorem according to which the absolutely continuous part of the spectrum is almost
surely supported on the closure of the set where the Lyapunov exponent vanishes and
then prove that the Lyapunov exponent is everywhere positive. In Sec. 6, we consider the
coherent case, in which the phases are eventually periodic. We identify the absolutely
continuous spectrum, and show that the singular continuous spectrum is absent. Finally,
in Sec. 7, we give an example in which the phases are almost periodic and the spectrum
is purely singular continuous.

2. Construction of the Monodromy Operator

We consider a class of monodromy operators whose construction is motivated by the
study of a model of electronic transport in a ring threaded by a linear time dependent
magnetic flux, as discussed in [BB], and references therein. Neglecting the curvature
of the ring, the instantaneous Hamiltonian of the one-body Schrödinger operator cor-
responds to that of a one dimensional Schrödinger operator with a periodic potential
describing the material of the ring and time dependent boundary conditions of Floquet
type. With a choice of linear flux, the time plays the role of the quasi-momentum. There-
fore, as a function of time, the Hamiltonian is periodic and its instantaneous spectrum
is given by the band structure corresponding to the potential. Under some adiabatic-
ity condition, the evolution operator is assumed to couple states by adjacent pairs of
states only by means of the Landau-Zener mechanism. The concerned states are those
whose corresponding eigenvalues become close to one another. Thus, a given state
with index k say, is coupled once to the one with index k − 1 and once with the one
index k + 1. This yields the band structure of the evolution operator over a period in
the basis of eigenvectors at time zero, say. We refer the reader to this paper for physical
background and further description of the regime in which the model holds. Let us now
define our monodromy operator following the main lines of the construction sketched
above.

Our separable Hilbert space is l2(Z) and we denote the canonical basis by {ϕk}k∈Z.
In order to make contact with the above model, we shall also state results for l2(N∗).
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The most general 2 × 2 unitary matrix depends on 4 parameters and can be written as

S = e−iθ
(
re−iα iteiγ
ite−iγ reiα

)
, (2.1)

where α, γ, θ belong to the torus T and the real parameters t, r , also called reflection
and transition coefficients, are linked by r2 + t2 = 1.

We introduce an infinite set of such matrices {Sk}k∈Z, where Sk depends on the phas-
es αk, γk, θk , and the reflection and transition coefficients tk, rk . They are the building
blocks of our monodromy operator in l2(Z).

Let Pj be the orthogonal projector on the span of ϕj , ϕj+1 in l2(Z). We introduce
Ue,Uo, two 2 × 2 block diagonal unitary operators on l2(Z) defined by

Ue = ∑
k∈Z

P2kS2kP2k,

Uo = ∑
k∈Z

P2k+1S2k+1P2k+1,
(2.2)

or, in matrix representation in the canonical basis,

Ue =




. . .

S−2
S0
S2
. . .


 (2.3)

and similarly for Uo, with S2k+1 in place of S2k . Note that the 2 × 2 blocks in Ue are
shifted by one with respect to those of Uo along the diagonal.

We now define the monodromy operator U , object of our investigations, by

U = UoUe, (2.4)

such that, for any k ∈ Z,

Uϕ2k = ir2kt2k−1e−i(θ2k+θ2k−1)e−i(α2k−γ2k−1)ϕ2k−1

+r2kr2k−1e−i(θ2k+θ2k−1)e−i(α2k−α2k−1)ϕ2k

+ir2k+1t2ke−i(θ2k+θ2k+1)e−i(γ2k+α2k+1)ϕ2k+1

−t2kt2k+1e−i(θ2k+θ2k+1)e−i(γ2k+γ2k+1)ϕ2k+2,

Uϕ2k+1 = −t2kt2k−1e−i(θ2k+θ2k−1)ei(γ2k+γ2k−1)ϕ2k−1

+it2kr2k−1e−i(θ2k+θ2k−1)ei(γ2k+α2k−1)ϕ2k

+r2kr2k+1e−i(θ2k+θ2k+1)ei(α2k−α2k+1)ϕ2k+1

+ir2kt2k+1e−i(θ2k+θ2k+1)ei(α2k−γ2k+1)ϕ2k+2.

(2.5)
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In matrix form, without expliciting the elements, we have the structure

U =




. . .

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

. . .




. (2.6)

In the regime considered in [BB], the transition coefficients tk , and all elements of the
scattering matrices Sk can be computed from the band functions of the periodic back-
ground potential. In particular, the transition coefficients may admit a limit as k → ∞.

In this paper, we briefly show how to get information on the spectral properties of
the monodromy operators defined on l2(N∗) from those of operators defined on l2(Z).
Also, we briefly demonstrate how spectral properties of U when the tk’s have limits
t± as k → ±∞ can be related to those of the limiting operator with constant (in k)
transition coefficients t . Then we focus on the case of constant transition and reflection
coefficients tk = t ∈]0, 1[i.e. rk = r ∈]0, 1[, for all k ∈ Z, which is the main object
of our analysis. This corresponds to a regime of the original model in which the sole
behavior of the scattering phases θk, γk, αk determine the spectral properties of U . It is
argued in [BB] on the basis of numerical computations that in case these phases have a
coherent behavior as functions of k, if they are periodic say, U has an a.c. component in
its spectrum, whereas U should be singular if some phases are random. Following their
arguments, we are aiming at a rigorous version of similar statements in our setting.

3. First Properties

At this point, we have slightly generalized the construction proposed by [BB] in order
to define our monodromy operator, a unitary pentadiagonal band matrix. Before going
further in the analysis, one can ask whether simpler unitary band matrices could provide
interesting models, spectrally speaking, as is the case in the self-adjoint setting where
the discrete Schrödinger operators are tridiagonal, though non-trivial. The next lemma
answers this question negatively, validating our model from another point of view. Its
proof can be found in the Appendix.

Lemma 3.1. If U is unitary and tridiagonal, then U is either unitarily equivalent to
a (bilateral) shift operator, or it is an infinite direct sum of 2 × 2 and 1 × 1 unitary
matrices.

On the other hand, it is straightforward to construct unitary band matrices with
larger width starting with general unitary finite size matrices, following the same steps
as above.
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Perturbative results. In the physical context alluded to above, the natural Hilbert space is
l2(N∗), with N

∗ the set of positive integers, and the definition of the unitary monodromy
operator, say U+, is

U+ϕ1 = r1e−i(θ0+θ1)e−iα1ϕ1 + it1e−i(θ0+θ1)e−iγ1ϕ2,

U+ϕk, k > 1, (3.1)

as in (2.5). We shall also define U− on l2(−N
∗) in a similar fashion. Consider Ue on

l2(Z) defined by (2.5) with even matrix elements

{t−k, θ−k, α−k, γ−k} = {tk, θk, αk, γk} ∀k ∈ N. (3.2)

Theorem 3.1. LetU+ andUe be as above and letU+
a.c. andUea.c. denote their restriction

to their respective absolutely continuous subspaces. Then

σess(U
+) = σess(Ue), and U+

a.c. ⊕ U+
a.c. � Uea.c.,

where � means unitary equivalence.

Proof. We can write on l2(−N
∗)⊕ C ⊕ l2(N∗),

Ue =

CU+C−1

1
U+


+ F

=

C 1

II




U+

1
U+




C−1

1
II


+ F, (3.3)

where absent elements denote zeros, II is the identity, C is the operator

C : l2(N∗) → l2(−N
∗)

ϕk �→ ϕ−k
(3.4)

and F is a finite rank operator. Noting that σ(CU+C−1) = σ(U+), we get the re-
sult by Weyl’s and Birman-Krein’s theorems on invariance of essential, resp. absolutely
continuous, spectrum, under compact, resp. trace class, perturbation. ��

Let us now consider the situation where the transition coefficients of the operator U
defined by (2.5) satisfy

lim
k→±∞

tk = t± ⇐⇒ lim
k→±∞

rk = r±. (3.5)

We measure the convergence by means of the quantities δ± defined by

δ+(j) = max{rj rj−1 − r2
+ , tj tj−1 − t2+ , tj rj±1 − r+t+} , j ∈ N, (3.6)

and similarly for δ−. Let U±(t±) be defined on l2(±N
∗) by (3.1) with tk = t± and

rk = r±, for all k ∈ ±N
∗.
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Theorem 3.2. Assume (3.5) and let U and U±(t±) be as above. Then

σess(U) = σess(U+(t+)) ∪ σess(U−(t−)).

If, furthermore, there exists ε > 1/2 such that supj∈N δ
±(j)j2ε < ∞,

Ua.c. � U+
a.c.(t+)⊕ U−

a.c.(t−).

Proof. Let us introduce the asymptotic unitary operator U−,+ by

U−,+ =

U−(t−)

1
U+(t+)


 . (3.7)

The difference between the actual and asymptotic operators is given by the operator

 = U − U−,+ (3.8)

whose matrix elements  (j, k) = 〈ϕj | ϕk〉 satisfy for |k| > 1,

| (j, k)| ≤ {δ±(j + 1)} if |j − k| ≤ 20 otherwise. (3.9)

Therefore, approximating by a finite matrix N , we can use the Schur condition, [K],
P. 143, to estimate the norm of the difference  −  N and get ‖ −  N‖ → 0 as
N → ∞. This, in turn, shows that  is compact and that the essential spectra of U and
U−,+ coincide and yields the first assertion. The second is proven following arguments
used in [Ho2]. Let ε > 1/2 and set 〈j〉 = (1 + j2)1/2. We define " = diag {〈j〉ε} in
the basis {ϕk}k∈Z. As  = "−1(" ")"−1, where "−1 is Hilbert-Schmidt,  will be
trace class as soon as " " is bounded. Its non-zero matrix elements are

(" ")(j, k) = (〈j〉〈k〉)ε (j, k), k = j, j ± 1, j ± 2, (3.10)

so that we get boundedness as above from the Schur condition and the estimate (3.9).
��

Remarks. i) An analogous statement is obviously true for operators defined on l2(N∗).
ii) The condition supj∈N δ

±(j)j2ε < ∞ for some ε > 1/2, actually is necessary as well
to have  trace-class. Indeed, in case t± = t ⇐⇒ r± = r with tr �= 0, t �= r , and
t − tj = 1/jα , one checks that δ(j) ∼ c/jα , for some constant c. Assuming that  is
trace class, we have

∑
j∈Z

| (j, j)| < ∞ which is equivalent to
∑
j∈Z

1/〈j〉α < ∞
and requires α > 2ε, for some ε > 1/2.
iii) It is clear that similar perturbative results hold for more general cases where the
phases have a limiting behavior as well.

The case t+ = t− = 0 is of particular interest and allows a stronger result.

Theorem 3.3. ConsiderU on l2(Z) defined by (2.5) andU+ on l2(N∗) defined by (3.1).
If lim infk→±∞ tk = 0, then

σa.c.(U) = σa.c.(U+) = ∅. (3.11)
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Proof. We consider U only, the proof for U+ being similar. Let Un be equal to U with
tn = 0 and

Fn = U − Un. (3.12)

The matrix of Un is separated into two disjoint blocks and Fn is a rank four operator
with ‖Fn‖ ≤ ctn. The hypothesis insures the existence of a subsequence tn(k) going to
zero as fast as we wish, say as 〈k〉−2, when k → ±∞. We set

G =
∑
k∈Z

Fn(k) and Ũ = U −G. (3.13)

By construction, we have for some constant c̃,

‖G‖1 ≤ 4
∑
k∈Z

‖Fn(k)‖ ≤
∑
k∈Z

c̃

〈k〉2 < ∞, (3.14)

and Ũ is pure point, hence the result. ��

Remarks. i) In case there exists a subsequence {tn(k)} such that

lim
k→+∞

tn(k) = t+ and lim
k→−∞

tn(k) = t−, (3.15)

a similar construction is valid and we get an approximation of the form

U = Ũ−,+ +G−,+, (3.16)

where Ũ−,+ contains an infinite number of t− and t+ in its matrix representation and
G−,+ is trace class. However we do not know the spectral properties of such Ũ−,+’s.
ii) If U+(0) defined as in Theorem 3.2 is such that its pure point spectrum possesses
a finite number of accumulation points only, then, if lim tj → 0, σ(U+) is pure point
with finitely many accumulation points as well. This will be true in case the phases have
a coherent behavior, see Sect. 6.

Motivated by the previous theorems, we now address the spectral properties of the
limiting operators.

Constant reflection and transition coefficients. From now, tk = t , rk = r , ∀k ∈ Z. We
first note that the extreme cases where rt = 0 are spectrally trivial.

Proposition 3.1. In case t = 0 i.e. r = 1, U is pure point and if t = 1 i.e. r = 0, U is
purely absolutely continuous.

Proof. The first case is trivial. In the second case, we observe that U is reduced by the
supplementary subspacesL+, respectivelyL−, generated by the vectors in the canonical
basis with even indices, respectively odd indices. MoreoverU |L± is unitarily equivalent
to the shift operator, hence the result. ��
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Remark. As a typical corollary, we get the following spectral properties for monodromy
operators U+ defined on l2(N∗) according to (3.1):

σa.c.(U
+) = S1 if 1 − tj ∼ 1/jα, α > 1. (3.17)

The rest of the paper is devoted to studying the limiting operator when tk = t ∈
]0, 1[i.e. rk = r ∈]0, 1[, for all k ∈ Z.

All phases in the definition of U do not play the same role, as the following lemma
shows. On the one hand it justifies the choice made in [BB] where the phases γk are
taken equal to zero and, on the other hand, it will be very useful below.

Lemma 3.2. If we denote the matrix (2.6) by M({θk}, {αk}, {γk}), and identify U to it,
we have for any sequences {θk}, {αk}, {γk}, k ∈ Z,

U ≡ M({θk}, {αk}, {γk}) � M({θk}, {αk}, {0}).
Remarks. i) As a corollary, we can replace the sequence {γk}, k ∈ Z in the definition of
U by any other sequence {γ ′

k}.
ii) The same statement is true for U+ defined on l2(N∗) by (3.1).

Proof. Let V be the unitary operator defined by

V ϕk = eiζkϕk, k ∈ Z. (3.18)

One checks easily that the operator V −1UV has the form M({θk}, {αk}, {0}) in the
canonical basis provided for all j ∈ Z,

ζj − ζj−1 = −γj−1. (3.19)

This is realized by taking, for example, ζ0 = 0 and

ζk = −
k−1∑
j=0

γj , ζ−k =
−k∑
j=−1

γj , k ∈ N
∗. (3.20)

��

Generalized eigenvectors. Without making use yet of the freedom we have in the
sequence {γk}, k ∈ Z, we now turn to the eigenvalue equation

Uψ = eiλψ,

ψ =
∑
k∈Z

ckϕk, ck ∈ C, λ ∈ C. (3.21)

One sees from the structure (2.6) of the operator U , that if ψ satisfies (3.21), a linear
relation between the coefficients (c2k, c2k+1) and (c2k−2, c2k−1) of the form(

c2k
c2k+1

)
= T (k)

(
c2k−2
c2k−1

)
(3.22)
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must exist, provided some 2 × 2 matrix is invertible. Using the definition (2.5), straight-
forward computations show that the matrix T (k) has elements

T (k)11 = −e−i(λ+γ2k−1+γ2k−2+θ2k−1+θ2k−2),

T (k)12 = i
r

t

(
e−i(λ+γ2k−1−α2k−2+θ2k−1+θ2k−2) − e−i(γ2k−1−α2k−1)

)
,

T (k)21 = i
r

t

(
e−i(θ2k−2−θ2k+γ2k+γ2k−1+γ2k−2+α2k−1)

− e−i(λ+θ2k−2+θ2k−1+γ2k+γ2k−1+γ2k−2+α2k)
)
, (3.23)

T (k)22 = − 1

t2
ei(λ+θ2k+θ2k−1−γ2k−γ2k−1)

+ r
2

t2
e−i(γ2k+γ2k−1)

(
ei(θ2k−θ2k−2+α2k−2−α2k−1) + e−i(α2k−α2k−1)

)

− r
2

t2
e−i(λ+θ2k−2+θ2k−1+γ2k+γ2k−1+α2k−α2k−2),

provided t �= 0. We also compute

det T (k) = e−i(θ2k−2−θ2k+γ2k+2γ2k−1+γ2k−2) (3.24)

so that | det T (k)| = 1.
Therefore, once the coefficients (c0, c1) are given, we compute for any k ∈ N

∗,(
c2k
c2k+1

)
= T (k) · · · T (2)T (1)

(
c0
c1

)
≡ ,(k)

(
c0
c1

)
,(

c−2k
c−2k+1

)
= T (−k + 1)−1 · · · T (−1)−1T (0)−1

(
c0
c1

)
≡ ,(−k)

(
c0
c1

)
.

(3.25)

The multiplicity of possible eigenvalues is therefore bounded by two.

4. Random Setting

Apart from the fact that our transfer matrix is complex valued instead of the usual real
valued setting suiting the discrete Schrödinger case, we will see that here also one Lyapu-
nov exponent is enough to describe the spectral properties of U , when the phases are
random and the transfer matrices T (k) are independent and identically distributed.

Making use of Lemma 3.2, let us introduce a probabilistic space (-,F,P), where
- is identified with {TZ}, T being the torus, and P = ⊗k∈ZP0, where P0 is the uniform
distribution on T with F the σ -algebra generated by the cylinders. We introduce the set
of random vectors on (-,F,P) given by

- → T
2

ω �→ (θk, αk) k ∈ Z, (4.1)

with θk(ω) = ω2k , αk(ω) = ω2k+1 .

The random vectors {βk}k∈Z are i.i.d. and uniformly distributed on T
2.

We denote by Uω the random unitary operator corresponding to the random infinite
matrix (2.6),

Uω = M({θk(ω)}, {αk(ω)}, {0}). (4.2)
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Introducing the shift operator S on - by

S(ω)k = ωk+2, k ∈ Z, (4.3)

we get an ergodic set {Sj }j∈Z of translations. With the unitary operator Vj defined on
the canonical basis of l2(Z) by

Vjϕk = ϕk−2j , ∀k ∈ Z, (4.4)

we observe that for any j ∈ Z,

USjω = VjUωV ∗
j . (4.5)

Therefore, our random operatorUω is an ergodic operator. The spectral projectorsE (ω)
of Uω, where is a Borel set of T, define a weakly measurable projector valued family
of operators on- and the spectrum of Uω is deterministic, see [CL]. However, we shall
not make use of these properties below.

As it stands, the transfer matrix T (k) depending on the random vectors β2k, β2k−1,

β2k−2 seems to be correlated with T (k + 1) and T (k − 1). Using the same Lemma 3.2,
we can replace the sequence {0} in (4.2) by {(−1)k+1αk}, so that we consider explicitly
M({θk}, {αk}, {(−1)k+1αk}) and the corresponding transfer matrices. Thus, in terms of
the new variable, with λ ∈ R,

ηk(λ) = θk + θk−1 + αk − αk−1 + λ, (4.6)

the transfer matrix can be written as

T (k) ≡ T (η2k(λ), η2k−1(λ)) (4.7)

with ∀k ∈ Z,

T (k)11 = −e{−iη2k−1(λ)},
T (k)12 = i r

t

(
e−iη2k−1(λ) − 1

)
,

T (k)21 = i r
t

(
ei(η2k(λ)−η2k−1(λ)) − e−iη2k−1(λ)

)
,

T (k)22 = − 1
t2

eiη2k(λ) + r2

t2

(
ei(η2k(λ)−η2k−1(λ)) + 1 − e−iη2k−1(λ)

)
.

(4.8)

Therefore, introducing the set of random vectors

δk = (η2k(λ), η2k−1(λ)) ∈ T
2, k ∈ Z, (4.9)

we observe that the set of random transfer matrices {T (k)}k∈Z will be independent
provided the set of random vectors {δk}k∈Z are independent.

Using properties of the characteristic functions of random vectors

,β(n1, n2) = E

(
e−i(n1β1(ω)+n2β2(ω))

)
, n1, n2 ∈ Z, (4.10)

we get the following lemma.

Lemma 4.1. If the vector {βk}k∈Z are i.i.d and uniform, the random vectors {δk}k∈Z are
also i.i.d. and uniformly distributed on T

2. In turn, the set of transfer matrices {T (k)}k∈Z

are i.i.d. random matrices in Gl2(C).

We can now state our main result in the random setting:
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Theorem 4.1. Let Uω be defined by its matrix elements (2.5) with t ∈ (0, 1). Assuming
the phases {αk}k∈Z and {θk}k∈Z are i.i.d. and uniform on T, we have almost surely

σa.c.(Uω) = ∅.
The next section is devoted to the proof of this theorem.

Remarks. i) The same result for U+
ω defined by (3.1) holds by Theorem 3.2.

ii) In case the phases αk ∈ T are deterministic and of the form αk = ak + b, a, b ∈ R,
whereas the θk’s are i.i.d. and uniform, the conclusions of the above lemma and theorem
still hold. The same is true if the θk’s are deterministic and constant whereas the αk’s are
i.i.d. and uniform.
iii) To motivate our hypotheses on the uniform distribution of the phase vectors βk , we
recall the

Lemma 4.2. If Xk , k ∈ Z, is a set of i.i.d. random variables on T with support not
reduced to a point, then the random variables Y±

k = Xk±Xk−1, k ∈ Z are independent
if and only if the Xk are uniformly distributed.

A proof of Lemmas 4.1 and 4.2 can be found in the Appendix.

5. Lyapunov Exponents

As the map (4.6) is measurable, we can realize our transfer matrices as an i.i.d. random
process on the same probabilistic space (-,F,P) in such a way that

T (k, ω) = T (ω2k, ω2k−1), k ∈ Z, ∀ω ∈ T
Z, (5.1)

with the C∞ map T : T
2 → Gl2(C) defined in (4.7). Therefore,

T (k + 1, ω) = T (k, S(ω)), ∀k ∈ Z. (5.2)

The set of translations {Sj }j∈Z is ergodic and we can write for all k ∈ N
∗,

,(k, ω) = T (k, ω)T (k − 1, ω) · · · T (1, ω)
= T (1, Sk(ω))T (1, Sk−1(ω)) · · · T (1, ω). (5.3)

Similarly, we set ,(0, ω) = II 2 and

,(−k, ω) = T −1(0, S−k+1(ω))T −1(0, S−k+2(ω)) · · · T −1(0, ω). (5.4)

Therefore {,(k, ω)}k∈N defines a random ergodic linear dynamical system overGl2(C)
generated by the map T (1, ·) and {,(−k, ω)}k∈N defines another one generated by
T −1(0, ·).

We are now formally in good shape to apply Oseledec’s and Furstenberg’s Theorems
to define and study the Lyapunov exponents. However, the last result is stated for real
valued matrices, and, in particular, irreducibility properties of groups of matrices are
a delicate matter. Therefore, we first want to map our problem to a problem involving
matrices inGl4(R). This is done very conveniently using the method described in [MT],



202 O. Bourget, J.S. Howland, A. Joye

which we apply to our setting. We will denote by 〈·|·〉 the scalar product on R
4 or C

2

and we introduce

I =
(

1 0
0 1

)
, J =

(
0 1

−1 0

)
. (5.5)

We define a sub-algebra of A4(R) of M4(R) by

A4(R) =
{(
a1I + a2J b1I + b2J

c1I + c2J d1I + d2J

)
, aj , bj , cj , dj ∈ R, j = 1, 2.

}
. (5.6)

The topology on M2(C), M4(R) is generated by the spectral norm

‖A‖ =
√ ∑
λ∈σ(|A|)

|λ|2 (5.7)

and that of A4(R) is the induced topology. Let ρ be the mapping ρ : C
2 → R

4,

(
x

y

)
→




"(x)
−#(x)
"(y)
−#(y)


 , (5.8)

and τ : M2(C) → A4(R) be defined by(
a b

c d

)
→
("(a)I + #(a)J "(b)I + #(b)J

"(c)I + #(c)J "(d)I + #(d)J
)
. (5.9)

The following properties are readily checked:

Lemma 5.1. For any u, v ∈ C
2, and any α ∈ C,

ρ(u+ v) = ρ(u)+ ρ(v), (5.10)

ρ(αu) = "(α)ρ(u)+ #(α)ρ(iu). (5.11)

For any A,B ∈ M2(C), and α ∈ R,

τ(A+ B) = τ(A)+ τ(B), τ (AB) = τ(A)τ(B),
τ (αA) = ατ(A), τ (A∗) = τ(A)∗, (5.12)

τ(A−1) = τ(A)−1.

The last formula means that if A ∈ M2(C) is invertible, τ(A) is also invertible and the
formula is true. Finally, for all u ∈ C

2,∀T ∈ M2(C),

ρ(T u) = τ(T )ρ(u). (5.13)

We also note the following lemma for future reference.

Lemma 5.2. IfA ∈ M2(C) and | det(A)| = 1, then | det(τ (A))| = 1. IfA is self adjoint
with eigenvalues γ1 and γ2 , then τ(A) is real symmetric with eigenvalues γ1 and γ2 of
multiplicity two.

More general results of the same sort in higher dimension can be found in [MT].
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Remarks. i) Let us note as a consequence of Lemma 5.2 that the mappings ρ and τ are
homeomorphisms and ∀u ∈ C

2, ∀A ∈ M2(C),

‖ρ(u)‖ = ‖u‖, ‖τ(A)‖ =
√

2‖A‖. (5.14)

ii) The mapping ρ does not transport scalar product but it does preserve the norm. Note
that we have for all ∀u, v ∈ C

2, and all T ∈ M2(C),

〈ρ(iu)|ρ(u)〉 = 0, (5.15)

〈ρ(u)|τ(T )ρ(v)〉 = 〈ρ(iu)|τ(T )ρ(iv)〉 = "(〈u|T v〉), (5.16)

〈ρ(iu)|τ(T )ρ(v)〉 = −〈ρ(u)|τ(T )ρ(iv)〉 = #(〈u|T v〉). (5.17)

Therefore, if u and v are orthogonal in C
2, ρ(u) and ρ(v) are also orthogonal.

Existence of the Lyapunov Exponents. Using this operator τ : Gl2(C) → Gl4(R), we
can now consider the random ergodic linear dynamical system overGl4(R) defined from
{,(k, ω)}k∈N by

?(k, ω) = τ(,(k, ω)) (5.18)

generated by the map τ(T (1, ·)) : - → Gl4(R). We will work similarly if −k ∈ N.
We now apply Oseledec’s Theorem according to [A], Thm. 3.4.11, specialized to our

setting.

Proposition 5.1. Let the random ergodic dynamical system generated by the map
τ(T (1, ·)) : - → Gl4(R). Then, on an invariant set -0 ⊂ - of P-measure one, the
following limit exists

lim
n→∞(?(n, ω)

∗?(n, ω))1/2n = "(ω). (5.19)

The matrix"(ω) possesses at most 2 distinct eigenvalues of multiplicities 2, denoted by

eγ1 ≥ eγ2 ≡ e−γ1 > 0, (5.20)

associated with at most two eigenspaces E1(ω), E2(ω). The Lyapunov exponents γ1 ≥ γ2
are constant almost surely.
If γ1 > 0, there exists a filtration of R

4,
{0} ⊂ V(ω) ⊂ R

4 such that

V(ω) = E2(ω), and R
4 = E2(ω)⊕ E1(ω), (5.21)

and u ∈ V(ω) iff

lim
n→+∞

1

n
log ‖?(n, ω)u‖ = γ2 = −γ1 < 0, (5.22)

and u ∈ R
4 \ V(ω)

lim
n→+∞

1

n
log ‖?(n, ω)u‖ = γ1 > 0. (5.23)
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Moreover, there exists a splitting

R
4 = E2(ω)⊕ E1(ω) (5.24)

such that

lim
n→±∞

1

n
log ‖?(n, ω)u‖ = γj ⇔ u ∈ Ej(ω) \ {0}. (5.25)

Proof. We need to check the hypotheses of the Ergodic Multiplicative (Oseledec’s) The-
orem, see e.g. [A], Thm. 3.4.11, in order to get the existence of the limit. All norms being
equivalent, considering the maximum modulus of the matrix elements, we get the exis-
tence of a finite constant depending only on 0 < t < 1 such thatC(t)−1 ≤ ‖T (1, ω)‖ ≤
C(t). As | det(T (1, ω))| = 1, the same bound is true for T (1, ω)−1. The properties of τ
finally yield

(ln+ ‖τ(T (1, ·))‖ + ln+ ‖τ(T (1, ·)−1)‖) ∈ L1(-,F,P), (5.26)

where ln+(x) = max{ln(x), 0}, x > 0, which ensures the existence of the limit. The
statements about the number of Lyapunov exponents, their relations and multiplici-
ties are shown as follows. For any n, the 2 × 2 matrix ,(n, ω)∗,(n, ω) is positive,
of determinant one so that it either possesses two distinct eigenvalues σ1(n, ω) >

σ2(n, ω) = 1/σ1(n, ω) > 0 (of multiplicity one), or it is the identity matrix. There-
fore,?(n, ω)∗?(n, ω) = τ(,(n, ω)∗,(n, ω)) has two distinct eigenvalues σ1(n, ω) >

σ2(n, ω) = 1/σ1(n, ω) > 0 of multiplicity two, or it is the identity matrix in R
4. The de-

terminant being continuous, the limit"(ω) is also positive of determinant equal to one.
By continuity of τ and τ−1,"(ω) also belongs to A4(R) and there exists κ(ω) ∈ M2(C)

such that τ(κ(ω)) = "(ω). Moreover, the relation κ(ω) = limn→∞,(n, ω)∗,(n, ω)
shows that κ(ω) is also positive of determinant one, which proves that the multiplicities
of the eigenvalues of "(ω) is two or it is the identity matrix. ��
Corollary 5.1. Under the same hypotheses as above, there exists almost surely a
subspace V0(ω) of C

2 of complex dimension 1 such that

∀u ∈ V0(ω) \ {0}, lim
n→+∞

1
n

ln ‖,(n, ω)u‖ = −γ1 < 0,

∀u ∈ C
2 \ V0(ω), lim

n→+∞
1
n

ln ‖,(n, ω)u‖ = γ1 > 0.
(5.27)

Also, there exists a splitting C
2 = E0

2(ω)⊕ E0
1(ω) such that

lim
n→±∞

1

n
log ‖,(n, ω)u‖ = γj ⇔ u ∈ E0

j (ω) \ {0}. (5.28)

Proof. By the proposition, there exists a filtration: {0} ⊂ V(ω) ⊂ R
4, such that:

∀v ∈ R
4 \ V(ω), lim

n→+∞
1
n

log ‖τ(T (1, Sn(ω))) . . . τ (T (1, ω)v‖ = γ1,

∀v ∈ V(ω) \ {0}, lim
n→+∞

1
n

log ‖τ(T (1, Sn(ω))) . . . τ (T (1, ω))v‖ = −γ1.
(5.29)

The properties (5.1), (5.13) and (5.14) imply that ∀v ∈ R
4,

lim
n→∞

1

n
log ‖τ(T (1, Sn(ω))) . . . τ (T (1, ω))v‖

= lim
n→∞

1

n
log ‖T (1, Sn(ω)) . . . T (1, ω)ρ−1(v)‖. (5.30)
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Let v0 ∈ V(ω), u0 = ρ−1(v0) and V0(ω) = Cu0. The equation above proves the first
assertion. Consider u ∈ C

2 \ V0(ω). Then

u = αu0 + u⊥
0 , u⊥

0 �= 0, α ∈ C, (5.31)

ρ(u) = "(α)ρ(u0)+ #(α)ρ(iu0)+ ρ(u⊥
0 ). (5.32)

The three components are non-zero and mutually orthogonal. Therefore ρ(u) ∈ R
4 \

V(ω), from which the second assertion follows.
We can proceed along the same lines in order to prove the statements concerning the

existence and properties of a splitting of C
2 = E0

2(ω)⊕E0
1(ω)withE0

j (ω) = Cρ−1(vj ),

vj ∈ Ej(ω). Indeed, let v1 ∈ E1(ω) and u1 = ρ−1(v1). We define v′
1 = ρ(iu1), so

that 〈v1|v′
1〉 = 0 and limn→±∞ 1

n
ln ‖,(n, ω)v′

1‖ = limn→±∞ ln 1
n
‖?(n, ω)iu1‖ = γ1.

Hence v′
1 ∈ E1(ω). Let v2 ∈ E2(ω) such that u2 := ρ−1(v2) is not colinear to u1. There

exists such a v2, otherwise, u2 = αu1 implies ρ(u2) = v2 = "(α)v1+#(α)v′
1 ∈ E2(ω),

which is a contradiction. Hence, v′
2 = ρ(iu2) ∈ E2(ω). Now u = αu1 + β1u2 and

ρ(u) = "(α)v1 + #(α)v′
1 + "(β)v2 + #(β)v′

2. So that

lim
n→±∞

1

n
ln ‖,(n, ω)u‖ = γj = lim

n→±∞
1

n
ln ‖?(n, ω)ρ(u)‖ (5.33)

is equivalent to β = 0 if j = 1 and α = 0 if j = 2. ��

Positivity of the Lyapunov exponent. In order to assess the positivity of the first Lyapunov
exponent, we use Furstenberg’s Theorem. Let us introduce, according to [BL] III.2.1.,
the following notions.

Let S be a subset of GLd(R), d > 0. Such a set S is said irreducible if there is no
strict subspace V of R

d such that ∀M ∈ S, M(V ) = V . A set will be called strongly
irreducible if there is no finite family V1, . . . , VN of strict subspaces of R

d , such that:
∀M ∈ S,M(V1 ∪ . . . ∪ VN) = V1 ∪ . . . ∪ VN .

The basic theorem is then

Theorem 5.1 (Furstenberg). If µ is a probability measure on M = {M ∈ GLd(R);
| detM| = 1} such that:

∫
log ‖M‖dµ(M) < +∞ and the group Gµ generated by the

support of µ is strongly irreducible and non-compact, then the first Lyapunov exponent
associated with any sequence of i.i.d. matrices in M satisfies γ1 > 0.

See [BL] Theorem III.6.1 for a proof.
We note the following property (Exercise IV.2.9 of [BL]) reducing strong irreduc-

ibility to irreducibility in some cases.

Lemma 5.3. Let 1 < d ∈ N and S be a connected subset ofGLd(R). Then S is strongly
irreducible if and only if S is irreducible.

In our case, the measure µ is the image by the map (4.7) of the uniform measure
P0 ⊗P0 on T

2. In order to study the properties of the corresponding set Gµ, we introduce
the connected set of matrices given by the range of the smooth map from T

2 → C
2

which to (θ, η) assigns the matrix

T(θ,η) =
(

−e−iθ ir
t

(
e−iθ − 1

)
− ir
t

(
e−iθ − ei(η−θ)) − r2

t2

(
e−iθ − 1 − ei(η−θ))− 1

t2
eiη

)
. (5.34)
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Let G ⊂ Gµ denote the smallest group generated by the support of the measure image
by P0 ⊗ P0 on SL4(R) by (θ, η) → τ(T(θ,η)).

Proposition 5.2. The group G is not compact.

Proof. The matrix τ(T(π,π)) belongs to the support of the image of P0 ⊗ P0 by (5.34)
and it has eigenvalues

(r − 1)2

t2
and

(r + 1)2

t2
. (5.35)

The second one is strictly larger than 1, if t < 1 so that, since for any n ∈ N, τ(T(π,π))n ∈
G, G cannot be bounded. ��
Proposition 5.3. The group G is strongly irreducible.

Proof. It is enough to exhibit an irreducible, connected, subset of G. The map τ(T·,·)
is smooth, hence the set {τ(T(θ,η)), (θ, η) ∈ [0, 2π [2}, included in G, is connected. We
now show that there exists no strict subspace of R

4 invariant under this set of matrices.
We first note that choosing η = θ ∈ [0, 2π [ we get

τ(T(θ,θ)) = M0 + sin(θ)M1 + cos(θ)M2, (5.36)

where

M0 =




0 0 0 − r
t

0 0 r
t

0

0 r
t

2 r
2

t2
0

− r
t

0 0 2 r
2

t2


 , (5.37)

M1 =




0 1 r
t

0
−1 0 0 r

t− r
t

0 0 −1
0 − r

t
1 0


 , (5.38)

M2 = −(M0 + II ), (5.39)

where II denotes the identity matrix. If there exists a strict invariant subspace E for the
set τ(T(θ,θ))θ∈[0,2π [, this subspace E is also invariant for the matrices Mj , j = 0, 1, 2.
Similarly, choosing −η = θ ∈ [0, 2π [, we have

τ(T(θ,−θ )) = N0 + sin(θ)N1 + cos(θ)N2 + sin(2θ)N3 + cos(2θ)N4, (5.40)

where, in particular,

N1 =




0 1 r
t

0
−1 0 0 r

t

− r
t

0 0 r2+1
t2

0 − r
t

− r2+1
t2

0


 . (5.41)

Again E must be invariant under N1.
AsM0,M1, N1 are real (anti) symmetric, they all leave E⊥ invariant as well so that

these matrices are reduced by the orthogonal spaces E ⊕ E⊥ = R
4. In particular, these
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invariant subspaces must be generated by the eigenvectors {u1, u2, u3, u4} ofM0 which
form a basis of R

4. Explicitly,

u1 =




1
0
0
r+1
t


 , u2 =




0
1−r
t
1
0


 , u3 =




1
0
0

1−r
t


 , u4 =




0
− r+1

t
1
0


 , (5.42)

the first two vectors being associated with the eigenvalue r(r + 1)/t2 while the last two
are associated with r(r − 1)/t2. We further compute, repeatedly using r2 + t2 = 1, that

M1u1 = 1

t
u4, M1u2 = 1

t
u3, M1u3 = −1

t
u2, M1u4 = −1

t
u1 (5.43)

and

N1u1 = − 1 + r
t (1 − r)u2, N1u2 = 1

t
u1, N1u3 = 1 − r

t (1 + r)u2, N1u4 = −1

t
u3. (5.44)

Clearly no one dimensional subspace E = 〈uj 〉 (or E⊥ = 〈uj 〉) can be invariant under
M0,M1 and N1. And by inspection, one checks that no two dimensional subspace E =
〈uj , uk〉 can be invariant underM0,M1 and N1. The irreducible set {τ(T(θ,η)), (θ, η) ∈
[0, 2π [2} being contained in the group G, the latter and Gµ are a fortiori irreducible. ��

Therefore,

Proposition 5.4. The Lyapunov exponent γ1(λ) associated to the ergodic linear dynam-
ical system (5.18) is strictly positive for any λ ∈ T.

Ishii-Pastur. The link between Lyapunov exponents and a.c. spectrum is provided in
the self adjoint random case by the Ishii-Pastur-Kotani Theorem. We provide a unitary
version of the Ishii-Pastur part of the result, which is enough for our purpose. In order
to adapt the proof of [CFKS], it is only necessary to show that it is spectrally true that
the generalized eigenvectors of U are polynomially bounded.

We first show that generalized eigenvectors corresponding to spectral parameters
outside the spectrum cannot be polynomially bounded for bounded normal operators
with a band structure. We’ll say that a matrix {Mj,k}j,k∈Z has a band structure of order
2p + 1, p ∈ N if |j − k| > p impliesMj,k = 0. Note that if this is so, then

(Mv)k =
∑
j∈Z

Mk,j vj =
k+p∑
j=k−p

Mk,j vj (5.45)

makes sense for an arbitrary vector v = {vj }j∈Z, since the sum is finite. Define the
projections

P[a,b] =
∑
a≤j≤b

|ϕj 〉〈ϕj | (5.46)

and note that

P[a,b]U = P[a,b]UP[a−p,b+p],

UP[a,b] = P[a−p,b+p]UP[a,b].
(5.47)

That is, in fact, just another way of saying that U has band structure.
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Lemma 5.4. Let (ϕn)n∈Z be an orthonormal basis of a separable Hilbert space H on
which a normal operator U acts. Assume U has a band structure of order 2p + 1 and
consider an arbitrary nontrivial sequence φ such that Uφ = zφ, where z ∈ C is in the
resolvent set of U . Then the sequence (〈ϕk|φ〉)k∈Z is not polynomially bounded.

Proof. The operator U being normal, for any z in the resolvent set, (U − z)−1 is normal
too. Therefore ‖(U − z)−1‖ = rσ ((U − z)−1), where rσ (A) is the spectral radius of the
operator A. As rσ ((U − z)−1) = 1/dist (z, σ (U)) ([K] (III 6.16 p.177)), we deduce

∀ψ ∈ H, ‖ψ‖ ≤ 1

dist (z, σ (U))
‖(U − z)ψ‖ . (5.48)

Consider the generalized eigenvector φ. Since z /∈ σ(U), φ cannot be in l2, so it must
fail to be in l2 either at +∞ or at −∞. We will assume that it fails at +∞, and focus on
the coefficients 〈ϕk|φ〉, with k ≥ 0 and large enough.

Let n > 3p and let

Pn = P[p,n] = II −Qn. (5.49)

Since Pnφ ∈ l2(Z), we have by (5.48),

‖Pnφ‖ ≤ cz‖(U − z)Pnφ‖, (5.50)

where c−1
z = dist (z, σ (U)). Since we have assumed that φ is not in l2 as k ≥ 0,

necessarily

‖Pn−pφ‖2 = ‖P[p,n−p]φ‖2 → ∞ as n → ∞. (5.51)

So there exists an n0 such that, given ε > 0, n ≥ n0 implies

‖Pn−pφ‖2 ≥ ε−1‖P[0,2p]φ‖2. (5.52)

Since (U − z)φ = 0, it follows for any finite projection P that

(U − z)Pφ = −(U − z)Qφ, (5.53)

whereQ = II − P , and hence that

(U − z)Pφ = P(U − z)Pφ +Q(U − z)Pφ
= −P(U − z)Qφ +Q(U − z)Pφ
= −PUQφ +QUPφ. (5.54)

Take in (5.50), P = Pn = P[p,n] = II −Qn. By (5.47), we get

PnUQn = P[p,n]UP[0,p+n]Qn

= P[p,n]U(P[0,p−1] + P[n+1,p+n]). (5.55)

Also,

QnUPn = QnU(P[p,2p] + P[2p+1,n−p] + P[n−p+1,n]). (5.56)

But

QnUP[2p+1,n−p] = QnP[p+1,n]UP[2p+1,n−p] = 0 (5.57)



Spectral Analysis of Unitary Band Matrices 209

so that

QnUPn = QnU(P[p,2p] + P[n−p+1,n]). (5.58)

Since the ranges of the appropriate projectors are orthogonal, we have with A = ‖U‖2,

‖(U − z)Pnφ‖2 = ‖PnUQnφ‖2 + ‖QnUPnφ‖2

= ‖PnU(P[0,p−1] + P[n+1,p+n])φ‖2 + ‖QnU(P[p,2p] + P[n−p+1,n])φ‖2

≤ A
(
‖P[0,p−1]φ‖2 + ‖P[n+1,p+n]φ‖2 + ‖P[p,2p]φ‖2 + ‖P[n−p+1,n]φ‖2

)
= A
(
‖P[0,2p]φ‖2 + ‖P[p,n+p]φ‖2 − ‖P[p,n−p]φ‖2

)
= A
(
‖P[0,2p]φ‖2 + ‖Pn+pφ‖2 − ‖Pn−pφ‖2

)
. (5.59)

Thus, by (5.52) and (5.50), for n > max(n0, 3p), we have

‖Pn−pφ‖2 ≤ ‖Pnφ‖2 ≤ c2
z‖(U − z)φ‖2

≤ c2
zA
(
ε‖Pn−pφ‖2 + ‖Pn+pφ‖2 − ‖Pn−pφ‖2

)
, (5.60)

which implies that

‖Pn+pφ‖2 ≥ ‖Pn−pφ‖2
(

1

Ac2
z

+ 1 − ε
)

≡ B‖Pn−pφ‖2, (5.61)

where B > 1, if ε < 1/(Ac2
z ). Iterating the argument, we get ∀k ∈ N,

‖Pn+p2kφ‖ ≥ B k
2 ‖Pnφ‖ , (5.62)

which ensures the existence of an exponentially growing subsequence of coefficients.
��

The second element is the construction of generalized solutions corresponding to
spectral parameters in the spectrum of U which are polynomially bounded, à la Bere-
zanskii. This is done in our unitary setting following, mutatis mutandis, the arguments
given in [S] for the self-adjoint case. We only quote the end result here, including a proof
in the Appendix for completeness.

Recall that a measure ρ is in the measure class of a unitary operator U with spectral
projection E(·) if for any Borel set  ⊂ T: ρ( ) = 0 ⇔ E( ) = 0.

Theorem 5.2. Let U be a unitary operator with a band structure defined on l2(Z) and
δ > 1. Then there exists a measure ρ in the spectral measure class of U and a family of
disjoint measurable sets ( n)n∈N∗ whose union supports ρ such that for λ ∈  n, there
exist n vectors φj (λ) satisfying

• (U − eiλ)φj (λ) = 0.
• ∀n ∈ Z, |〈ϕn|φj (λ)〉| ≤ C < n >δ .
• For any λ fixed, the family {φj (λ)}j is linearly independent.

Remark. The result is also true if the operator U is defined on l2(N) or l2(N)∗.
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Corollary 5.2. σ(U) is the essential closure of the set

S = {λ ∈ T
1;Uφ = eiλφ admits a polynomially bounded solution} (5.63)

and E[0,2π [\S(U) = 0.

Proof. If eiλ ∈ σ(U) then for any ε > 0,E(]λ−ε, λ+ε[) > 0 and ρ(]λ−ε, λ+ε[) > 0.
Hence, by Theorem 5.2, for λ′ arbitrarily close to λ there exists a polynomially bounded
solution φj (λ′). Thus σ(U) ⊂ S̄. The reverse inclusion follows from Lemma 5.4 and
the fact that σ(U) is closed. The last statement follows immediately. ��

Putting these arguments together, we get the unitary version of the Ishii-Pastur
theorem suited to our monodromy operator:

Theorem 5.3. Let Uω be unitary with a band structure. Assume that the correspond-
ing transfer matrix at spectral parameter eiλ induces two Lyapunov exponents γ1(λ) ≥
γ2(λ) = −γ1(λ) which are constant almost surely. Then

σac(Uω) ⊆ {eiλ ∈ S1; γ1(λ) = 0} . (5.64)

Proof. Identical to that given in [CFKS] Thm 9.13. ��

Therefore, Theorem 4.1 follows from the above theorem and Proposition 5.4.

6. Coherent Setting

In this section we consider situations where the behavior of the matrix coefficients of
U in (2.5) are periodic functions of k as the result of a coherent behavior of the phases.
We first show that this implies purely absolutely continuous spectrum. Then we prove
that when restricted to l2(N∗), these operators have no singular continuous spectrum
and may possess finitely many simple eigenvalues only.

Coherence on l2(Z). As a first particular case of coherent dependence of the scattering
phases, we consider the simple situation where the θk’s and αk’s take alternatively two
values, up to a linear term. This corresponds to a monodromy operator U = UoUe,
where Ue, Uo are direct sums of constant blocks S2k = Se, S2k+1 = So.

Proposition 6.1. Let t ∈]0, 1[, let the sequence {γk} be arbitrary and

θk =
{
θe if k is even

θo if k is odd
, αk = ak +

{
αe if k is even

αo if k is odd
∀k ∈ Z,

where θe, θo, αe, αo, a ∈ R. Define  = αe − αo, H = θe + θo. Then, with the identifi-
cation U ≡ M({θk}, {αk}, {γk}), U is purely absolutely continuous and

σac(U) = {e−i(a+H)e±i(arccos(r2 cos −t2 cos(2x+ ))), x ∈ T}.
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Proof. By Lemma 3.2, we can replace γk by (−1)k+1αk so that, with our choice of
phases, U � e−i(a+H)V , where

V ϕ2k = irte−i ϕ2k−1 + r2e−i ϕ2k + irtei ϕ2k+1 − t2ei ϕ2k+2,

V ϕ2k+1 = −t2e−i ϕ2k−1 + itre−i ϕ2k + r2ei ϕ2k+1 + irtei ϕ2k+2.

(6.1)

Let us map l2(Z) unitarily to L2(T) via

W : ϕk �→ eikx, (6.2)

such that for any ψ =∑k ckϕk , ck ∈ C,

(Wψ)(x) =
∑
k∈Z

cke
ikx ∈ L2(T). (6.3)

We further introduce L2±(T) = WL±, where L+, L− are the subspaces of l2(Z) gener-
ated by the basis vectors with even, respectively odd, indices. It is easily checked that V
is unitarily equivalent on L2(T) = L2+(T)⊕L2−(T) to the matrix valued multiplication
operator

V �
(
r2e−i − t2ei e2ix 2itr cos(x + )

2itr cos(x + ) r2ei − t2e−i e−2ix

)
. (6.4)

This matrix is analytic in x and has non-constant eigenvalues given by

λ±(x) = r2 cos − t2 cos( + 2x)± i
√

1 − (r2 cos − t2 cos( + 2x))2, (6.5)

from which the result follows. ��
Using basically the same strategy, we can consider the general case where the

elements of U display an arbitrary periodicity.

Theorem 6.1. Let t ∈]0, 1[, let the sequence {γk} be arbitrary and {θk}, {αk} be such
that for some 2 ≤ N ∈ N, and all k ∈ Z,

θk+N = θk, αk = ak + πk, where πk+N = πk and a ∈ R.

Then, with the identification U ≡ M({θk}, {αk}, {γk}), U is purely absolutely continu-
ous.

Proof. As above, we first replace γk by (−1)k+1αk and we introduce

L2(T) =
[
⊕N−1
q=0 L

2
2q(T)
]⊕[

⊕N−1
q=0 L

2
2q+1(T)

]
, (6.6)

L2
2q(T) = span{(e(2Nk+2q)ix)k∈Z, x ∈ T}, (6.7)

L2
2q+1(T) = span{(e(2Nk+2q+1)ix)k∈Z, x ∈ T} . (6.8)

If P2q and P2q+1 denote the orthogonal projections on these subspaces, we get for
ψ =∑k∈Z

ckϕk , with the same notations as above,

(P2qWψ)(x) =
∑
k∈Z

c2(Nk+q)ei2(Nk+q)x ∈ L2
2q(T), (6.9)
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and similarly for (P2q+1W?)(x). To determine the image of U under the unitary
mappingW , we introduce

ν±
k = θ2k + θ2k±1 ∓ (π2k − π2k±1), (6.10)

such that ν±
k = ν±

k+N for any k ∈ Z. Hence U � e−iaV where, this time, V acts on
l2(Z) according to

V ϕ2k = irte−iν−
k ϕ2k−1 + r2e−iν−

k ϕ2k + irte−iν+
k ϕ2k+1 − t2e−iν+

k ϕ2k+2,

V ϕ2k+1 = −t2e−iν−
k ϕ2k−1 + itre−iν−

k ϕ2k + r2e−iν+
k ϕ2k+1 + irte−iν+

k ϕ2k+2.

(6.11)

The phases ν±
k being N -periodic, by manipulations similar to those performed above,

one gets that V � T , where T is a matrix valued multiplication operator on the decom-
position of the Hilbert space (6.6) by the 2N × 2N matrix

T (eix) =
2∑

k=−2

eikxTk, (6.12)

where the Tk’s have a N ×N block structure of the form

T2 = −t2
(

0 0
0 Wu

)
, T1 = irt

(
0 D−
Wu 0

)
,

T0 = r2
(
D− 0
0 D+

)
, T−1 = irt

(
0 Wl
D+ 0

)
, T−2 = −t2

(
Wl 0
0 0

)
,

(6.13)

with

D± = diag(e−iν±
0 , e−iν±

1 , . . . , e−iν±
N−1)

Wu =




0 e−iν−
1

0 e−iν−
2

. . .

0 e−iν−
N−1

e−iν−
0 0



, (6.14)

Wl =




0 e−iν+
N−1

e−iν+
0 0

e−iν+
1
. . .

0

e−iν+
N−2 0



.

Now, the operator T being unitary, the matrix T (eix) is unitary as well for almost every
x ∈ R. But this matrix being analytic in a neighborhood of the real axis, it must be unitary
everywhere on the real axis. By classical results in analytic perturbation theory, see [K],
it is therefore diagonalizable with analytic eigenprojectors in a neighborhood of the real
axis, and identically zero eigennilpotents. In order to prove the absolutely continuous
nature of the spectrum of U , it is then enough to show that the analytic eigenvalues of
the matrix T (eix) are non-constant in x ∈ R. But this is immediate, because otherwise,
an infinitely degenerate eigenvalue would exist, which is forbidden by (3.25). ��
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Remarks. i) The formulae (6.13) above are the starting point of a detailed analysis
of the band spectrum of U as a function of t ∈]0, 1[, which we shall not perform here.
We only note that for t = 0 (and with no loss of generality a = 0),

σ(U) = {eiν+
0 , ν+

1 + . . .+ ν+
N−1 + πeiν

−
0 + ν−

1 + . . .+ ν−
1 + . . .+ ν−

N−1 + π)},
(6.15)

where each eigenvalue is infinitely degenerate, whereas, for t = 1,

σ(U) =
⋃

k=0,... ,N−1

Ran
{
e−2ixei(ν

+
0 +ν+

1 +···+ν+
N−1+π)/Neik2π/N , x ∈ T

}

∪ Ran
{
e2ixei(ν

−
0 +ν−

1 +···+ν−
N−1+π)/Neik2π/N , x ∈ T

}
. (6.16)

Perturbation theory as t → 0 and t → 1 can now be applied to get information on the
corresponding band functions in these regimes.
ii) It is not difficult to check that a unitary band matrix of order 2p + 1 with periodic
coefficients, in the sense that there existsN > 0 such that 〈ϕj |Uϕk〉 = 〈ϕj+N |Uϕk+N 〉,
is always unitarily equivalent to a multiplication by an pN ×pN unitary matrix T (eix)
on ⊕q=0,... ,pN−1L

2
q(T), where T (eix) is a polynomial of degree p in e±ix . Howev-

er, in general, one cannot rule out the existence of finitely many infinitely degenerate
eigenvalues.

Coherence on l2(N∗). Let us now turn to the study of U+ defined on l2(N∗) by (3.1)
in case the phases {γk} are arbitrary whereas {θk} and {αk} are eventually coherent: i.e.,
there exists k0 ∈ N and 2 ≤ N ∈ N such that for all k ≥ k0 ∈ N

∗,

θk+N = θk, αk = ak + πk, where πk+N = πk and a ∈ R. (6.17)

We can replace without loss γk by (−1)k+1αk and assume a = 0, since we are working
up to unitary equivalence. Our coherent comparison operator U0 on l2(Z) is defined
by (2.5) with phases {θk} and {αk} obtained by extending (6.17) (with a = 0) to Z.
Therefore we can write on l2(−N

∗)⊕ C ⊕ l2(N∗)

U0 =

W−

1
U+


− F, (6.18)

where absent elements denote zeros, W− is an operator defined on l2(−N
∗) which is

eventually periodic and F is a finite rank operator. It is always possible to construct U0
this way with dim Ran F = M depending on N and k0.

Theorem 6.2. Let U+ and U0 be as above. Then

σs.c.(U
+) = ∅ and σa.c.(U

+) = σa.c.(U0).

The point spectrum of U+ consists of finitely many simple eigenvalues in the resolvent
set of U0.

Remark. As the proof below shows, the same statement holds if U+ denotes a doubly
infinite coherent matrix perturbed by a finite rank operator.
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Proof. Let us first show that the finite rank perturbation F of the unitary U0 does not
produce any singular continuous spectrum. By Weyl’s Theorem, this cannot happen in
the gaps (on S1) of the absolutely continuous spectrum of U0. Therefore we focus on
σ(U0). Depending on k0 and N , we have for some finiteM > 0,

F =
∑

|j |,|k|≤M
cj,k|ϕj 〉〈ϕk|. (6.19)

We know from (6.12) that U0 is unitarily equivalent to the multiplication by a 2N × 2N
unitary matrix V (x) on the decomposition (6.6), where V (x) is a polynomial in e±ix
whose eigenvalues are not constant in x. Therefore, V (x) is analytic in a neighborhood
of the real axis and we can write

V (x) =
2N∑
j=1

Pj (x)λj (x), (6.20)

where the eigenprojections Pj and eigenvalues λj are analytic in a neighborhood of the
real axis as well (see [K]). We know that

σ(U0) = ∪2N
j=1 Ran {λj (x), x ∈ T}. (6.21)

Note that

F �
∑

|j |,|k|≤M
cj,k|(eijx)〉〈(eikx)|, (6.22)

where the r.h.s. is to be understood as a multiplication operator on the decomposition
(6.6) and (eijx) is a vector in C

2N with zero elements except at some line, depending
on j , where the entry is eijx . We follow the perturbation theory of unitary operators
presented in [KK] to study the unitary operator U1 ≡ U0 +F . Let ζ = ρeiβ with ρ �= 1
and β ∈ T. We set for j = 0, 1,

Rj (ζ ) = Uj(Uj − ζ )−1 = (II − ζUj ∗)−1, (6.23)

G(ζ) = II + ζ(U∗
1 − U∗

0 )R1(ζ )

= ( II + ζ(U∗
0 − U∗

1 )R0(ζ ))
−1. (6.24)

These quantities are analytic in C \ S1. We know from [KK] that for any vectors f, g,

lim
ρ→1−

〈g|δρ(Ej , β)f 〉 = d

dβ
〈g|Ea.c.,j (β)f 〉 a.e. β ∈ T, j = 0, 1, (6.25)

where

2πδρ(Ej , β) = Rj (ζ )− Rj (ζ ′) with ζ ′ = 1/ζ̄ , (6.26)

andEa.c.,j (β) is the absolutely continuous part of the the spectral projector ofUj at eiβ .
Also,

δρ(E1, β) = G(ζ)∗δρ(E0, β)G(ζ )

= (II − ζF ∗R0(ζ ))
−1∗
δρ(E0, β)(II − ζF ∗R0(ζ ))

−1. (6.27)
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In order to get information on the nature of the spectral measure of U1, it is sufficient to
consider (6.25) on the cyclic subspace for U0 generated by the range of F ∗. Indeed, the
spectral measures ofU0 andU1 associated with vectors in the orthogonal complement of
this subspace coincide and it is cyclic also forU1. Let P denote the projector on Ran F ∗.
We first note that II − ζF ∗R0(ζ ) is invertible on Ran P if and only if

det(P (II − ζF ∗R0(ζ ))P ) �= 0 (6.28)

and

(II − ζF ∗R0(ζ )|Ran P )
−1 = (P (II − ζF ∗R0(ζ ))P )

−1P. (6.29)

So we need to consider the finite matrix whose elements are given for |n|, |m| ≤ M by

〈ϕn|F ∗R0(ζ )ϕm〉 =
∑

|j |≤M
c̄j,n〈ϕj |U0(U0 − ζ )−1ϕm〉

=
∑

|j |≤M

2N∑
l=1

c̄j,n

∫ 2π

0
dx

〈
(eijx),

Pl(x)λl(x)

λl(x)− ζ (e
imx)

〉
, (6.30)

where < ·, · > denotes here the scalar product in C
2N . Therefore, (6.30) is a finite sum

of the form

2N∑
l=1

∫ 2π

0
dx

f
(l)
n,m(x)

λl(x)− ζ , (6.31)

where f (l)n,m is analytic in an open strip of finite width, independent of l, n,m containing
the real axis.

Fix an l ∈ {1, . . . , 2N} and let xβ ∈ T be such that eiβ = λl(xβ). There is only a
finite number of such points. Assume λ′

l (xβ) �= 0. Then we can deform the contour of
integration in x to control the integrals (6.31) when ρ → 1 as follows. There exists a
neighborhood C ⊃ Nβ of xβ which is mapped by λl bijectively on its imageMβ which
contains eiβ in its interior. Let Dβ ⊂ Mβ be a smooth deformation of the unit circle
towards the exterior which avoids eiβ . Taking the inverse image λ−1

l (Dβ) ⊂ Nβ and
connecting it at both ends with the real axis, we get a smooth path Cβ along which

∫ 2π

0
dx

f
(l)
n,m(x)

λl(x)− ζ =
∫
Cβ

dz
f
(l)
n,m(z)

λl(z)− ζ . (6.32)

By construction, the last integral is now analytic in ζ in a neighborhood M̃β ⊂ Mβ

containing eiβ . Therefore, the matrix (6.30) has an analytic continuation in ζ in a
neighborhood of S1 except at a finite set of points. Hence there is only a countable
set of points of S1, call it Z, where the determinant (6.28) is zero.

Then, for any ψ = Pψ and any eiβ ∈ S1 \ Z, we can write

(II − ζF ∗R0(ζ ))
−1ψ =

∑
|k|≤M

dk(ζ )ϕk, (6.33)
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where the dk(ζ )’s are analytic in a neighborhood of eiβ ‘ and the ϕk’s span the range of
F ∗. Thus, we deduce from the relation

〈ψ |δρ(E1, β)ψ〉 =
∑

|k|,|j |≤M
d̄j (ζ )dk(ζ )〈ϕj |δρ(E0, β)ϕk〉, (6.34)

that the limit ρ → 1− yields the derivative of an absolutely continuous measure on
S1\Z, as the limits limρ→1−〈ϕj |δρ(E0, β)ϕk〉 ∈ L1(T). As a countable set of point
cannot support a continuous measure, we get that σs.c.(U1) = ∅.

Let us consider the point spectrum of U+. From the relation (3.25), we get that the
eigenvalues have multiplicity two at most. Except for a finite number of them, the transfer
matrices T (k) are periodic in k, of period N . Therefore we define

R = T (k0 + 1 +N)T (k0 +N) · · · T (k0 + 1) (6.35)

and set

d(k) =
(
c2k
c2k+1

)
(6.36)

so that

d(jN + k0) = Rjd(k0) = RjT (k0)T (k0 − 1) · · · T (2)d(1). (6.37)

We will use the notation D(j) = d(jN + k0). Note also that detR = eiκ , where κ ∈ T

is independent of λ, due to (3.24), and that the matrix R is analytic in λ since it is a
polynomial in e+iλ and e−iλ.

Assume that an eigenvector of U+ exists in l2(N∗) for the eigenvalue eiλ. This im-
plies that the sequence {‖D(j)‖}j∈Z belongs to l2 at +∞. We are thus lead to the study
of (6.37). This is done by means of the following elementary lemma whose proof we
omit.

Lemma 6.1. Let R be a 2 × 2 matrix with | detR| = 1, and let E1 be an eigenvalue of
R. Consider D(j) = RjD(0), where D(0) ∈ C

2. Then,
1) there exists K > 0, such that for all vectors D(0) of norm 1, for all j ∈ Z, K ≤
‖D(j)‖ ≤ |j |/K if and only if |E1| = 1.
2) When |E1| �= 1, there exists another eigenvalue E2 �= E1. We can assume |E1|
> 1 > |E2| = |E1|−1 and we get

D(j) = AEj1v1 + BEj2v2, j ∈ Z,

where v1, v2 ∈ C
2 are the corresponding eigenvectors of R and A,B ∈ C are the

coefficient of D(0) in the basis they form.

A direct consequence is that {‖D(j)‖} ∈ l2(N) implies exponential decay at +∞,
thus D(0) = v2 and any eigenvalue is simple. Now we use D(0) as an initial vector to
construct a generalized vector for the coherent operatorU0 on l2(Z). Note that considered
as a functions of λ,R(λ) is analytic in a neighborhood of the real axis, therefore,E1(λ) is
analytic on T, except at the finite setX of exceptional points in T where the eigenvalues
of R(λ) cross. At such exceptional points, |E1| = 1. Then observe that if the second
statement of Lemma 6.1 is true for some λ ∈ T, it still true in a neighborhood of λ by
continuity. This implies that all generalized eigenvectors corresponding to eigenvalues
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in the corresponding neighborhood grow exponentially at one end or the other. Due to
Corollary 5.2, this can take place only in the resolvent set of U0. Also, as the spectrum
of U0 contains no isolated point, the argument above shows that X must belong to the
closure of the set of points in T \ X, where |E1(λ)| = 1. Therefore |E1| is continuous
on the whole of T and σ(U0) = |E1|−1({1}). The band edges are also excluded from
the point spectrum of U+, since they correspond to points where |E1| = 1.

We now study the number of eigenvalues of U+. The boundary condition that d(1)
has to meet reads, according to (3.1),

T̃ −1d(1) = c1b(λ), (6.38)

where c1 is the non zero first coefficient of the generalized eigenvector and

T̃ −1 = e−i(θ1+θ2+α2−α1)

(
irt −t2
r2 itr

)
− eiλ
(

0 0
1 0

)
, (6.39)

b(λ) = eiλ
(

1
0

)
− e−i(θ0+θ1+α1)

(
r

it

)
, (6.40)

with | det T̃ −1| = 1. Therefore, the condition to have an eigenvalue eiλ for U+ is equiv-
alent to

b(λ) ‖ T̃ −1T −1(2)T −1(3) · · · T −1(k0)v2(λ), (6.41)

where v2(λ) is an eigenvector of R(λ) and all matrices involved are analytic in λ ∈ T.
In other words, eiλ is an eigenvalue if and only if

det(v2(λ); T (k0)T (k0 − 1) · · · T (2)T̃ b(λ)) ≡ det(v2(λ); a(λ)) = 0, (6.42)

where a is analytic on T and v2 can be chosen analytic on T \ X, see [K]. Therefore,
to show that the number of eigenvalues of U+ is finite, it is enough to prove that, as a
function of λ on T, the determinant above has finitely many zeros. This is a consequence
of the next lemma we prove in the Appendix.

Lemma 6.2. If λ0 ∈ X, the eigenvectors vj (λ), j = 1, 2, have at worst a square root
branch point at λ0.

It follows that the function λ �→ det(v2(λ); a(λ)) is analytic on T \ X and possesses
square root branch point singularities at X as well. Therefore it only possesses finitely
many zeros on T.

Finally, we show that σ(U0) ⊂ σ(U+). Let eiλ be in the interior of the set σa.c(U0)

and consider the relation (3.25) yielding the coefficients d(k) of the corresponding gen-
eralized eigenvector. Up to a finite number of transfer matrices T (k0)T (k0 −1) · · · T (1),
this relation is identical to that yielding the coefficients with positive indices of a cor-
responding generalized eigenvector for U+. The discussion above shows that d(k) is
polynomially bounded at both ends, so that by Corollary 5.2, eiλ belongs the spectrum
of U+ as well. This finishes the proof of the theorem. ��
Remark. In keeping with the last remark following the proof of Theorem 6.1, let U0
denote a periodic band matrix of order 2p + 1. Then, it is also true that a finite rank
perturbation of the form (6.19) produces no singular continuous spectrum, since the first
part of the above proof goes through without changes.
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7. An Almost Periodic Example

In order to complete the picture of the spectral properties such matrices can possess,
we briefly describe below an example of deterministic unitary band matrices which is
almost periodic and purely singular continuous. This example is constructed in analogy
with the random discrete Schrödinger case according to the approaches of Herman and
Gordon, see e.g. [CFKS].

We consider again the matrix M({θk}, {αk}, {γk}), where the phases αk are taken as
constants, while the γk’s are arbitrary and can be replaced by (−1)k+1αk , as above. The
almost periodicity lies with the phases θk defined according to

θk = 2πβk + θ, ∀k ∈ N, (7.1)

where β is irrational, and θ ∈ [0, 2π [.
Consider the uniform measure P0 on the T, and the translation τ : T → T defined

by

τ(θ) = 2iπβ + θ. (7.2)

Then the set of iterates τ k , k ∈ Z is ergodic. The corresponding transfer matrices T (k)θ

generated by this set of translations are then given by (see (4.8))

T (k)θ11 = −e−i(λ+2θ+8kπβ−6βπ),

T (k)θ12 = ir

t

(
e−i(λ+2θ+8kπβ−6βπ) − 1

)
,

T (k)θ21 = ir

t

(
e2iθ − e−i(λ+2θ+8kπβ−6βπ)

)
, (7.3)

T (k)θ22 = r2

t2

(
e4iβ + 1 − e−i(λ+2θ+8kπβ−6βπ)

)
− 1

t2
ei(λ+2θ+8kπβ−2βπ).

Following Herman [He], we first get the positivity of the Lyapunov exponent.

Proposition 7.1. Let T (k)θ be the transfer matrices (7.3) at spectral parameter λ ∈ T

corresponding to U ≡ M({θk}, {α}, {γk}), where the θk’s are given by (7.1). For β
irrational, the Lyapunov exponent γ (λ) satisfies for almost all θ :

γ (λ) ≥ ln
1

t2
> 0, therefore σac(U) = ∅.

Proof. We first note that the sub-additive ergodic theorem applies to FN(θ)

= ln ‖RNk=1T (k)
θ‖ and since τ is ergodic,

lim
N→∞

FN(θ)

N
= γ (λ) (7.4)

almost surely with respect to P0. Setting z = e−iθ , we write our transfer matrices
T (k, z), expliciting the dependence in z ∈ C

∗, and we define three matrices (Rj (k)),
j = −2, 0, 2, by

T (k, z) ≡ z2R2(k)+ R0(k)+ z−2R−2(k), (7.5)
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where

R2(k) = e−i(λ+8kπβ−6βπ)

(
−1 ir

t

− ir
t

− r2

t2

)
, (7.6)

R0(k) =
(

0 − ir
t

ir
t

e4iπβ r2

t2
(ei4πβ + 1)

)
, (7.7)

R−2(k) = − 1

t2
ei(λ+8kπβ−2βπ)

(
0 0
0 1

)
. (7.8)

Then we consider Sk(z) = z2T (k, z) which is analytic in C and such that if z ∈ S1,
‖Sk(z)‖ = ‖Tk(z)‖, ∀k ∈ Z. Hence, the function ‖ ln

∏N
k=1 Sk(z)‖ is sub-harmonic and

as Sk(0) = R−2, we get the estimate

1

2π

∫ 2π

0
ln ‖

N∏
k=1

Sk(e
iθ )‖dθ ≥ ln ‖

N∏
k=1

Sk(0)‖ = N ln
1

t2
. (7.9)

We finally note that (7.4) implies

γ (λ) = lim
N→+∞

1

N

∫ 2π

0
ln

∥∥∥∥∥
N∏
k=1

Tk(e
iθ )

∥∥∥∥∥ dθ2π
. (7.10)

The second statement then follows from Theorem 5.3. ��
Next, we adapt the argument of Gordon to our setting in order to exclude eigenvalues

in σ(U), for β a Liouville number. That is if for any k ∈ N, there exist pk, qk ∈ N such
that

|β − pk/qk| ≤ k−qk . (7.11)

Proposition 7.2. Assume the phases (θk) are given by (7.1) and (αk) are zero. Moreover,
suppose β is a Liouville number and ((θm)k) a family of periodic sequence of period
qm. For each sequence, the corresponding family of transfer matrices (7.3) is denoted
by (T (k)θ )k∈Z and (T θm(k))k∈Z respectively. Assume the period of the sequence (θm)
obeys limm→+∞ qm = +∞ and the following estimates hold:

sup
k,m

‖T θm(k)‖ < ∞, sup
|k|≤2qm

‖T θ (k)− T θm(k)‖ ≤ Cm−qm.

Then, any non-zero solution φ =∑ ckϕk of Uφ = eiλφ satisfies

lim sup
|k|→+∞

c2
k+1 + c2

k

c2
1 + c2

0

≥ 1

4
. (7.12)

Its proof is identical to that given in [CFKS], Theorem 10.3, noting that the norm of any
transfer matrix (7.3) is bounded by a constant depending on t, r only.

Theorem 7.1. Let U be as in Proposition 7.1. If β is a Liouville number, then for a.e. θ ,
U is purely singular continuous.
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Proof. Let β be a Liouville number. It can be approximated by a sequence of irreduc-
ible fractions

(pm
qm

)
obeying (7.11). Define the sequence ((θm)k) by: ∀k ∈ Z, (θm)k =

2π pm
qm
k + θ . A simple computation shows ∀k ∈ Z,

T θ (k)− T θm(k)
= 2i sin

(
(4k − 3)π

(
β − pm

qm

))
e

−i
(
λ+2θ+(4k−3)π

(
β+ pm

qm

)) (
1 −irt−1

irt−1 r2t−2

)

−2i sin

(
(4k − 1)π

(
β − pm

qm

))
e
i
(
λ+2θ+(4k−1)π

(
β+ pm

qm

)) (
0 0
0 t−2

)
(7.13)

Then, β being a Liouville number allows us to check the hypotheses of Proposition 7.2.
Therefore, the generalized eigenvalue equation cannot have l2 solution and the point
spectrum of U is empty. Combining this result with Theorem 7.1 yields the conclusion.

8. Appendix

Proof of Lemma 3.1. Assume U is unitary and, for all k ∈ Z,

Uϕk = αkϕk−1 + βkϕk + γkϕk+1, (8.1)

so that

U =




. . . αk−1
βk−1 αk
γk−1 βk αk+1

γk βk+1

γk+1
. . .


 . (8.2)

Then, for all k ∈ Z,

|αk|2 + |βk|2 + |γk|2 = 1,
|αk+1|2 + |βk|2 + |γk−1|2 = 1,
αkβ

∗
k−1 + βkγ ∗

k−1 = 0,
γk−1β

∗
k−1 + βkα∗

k = 0,
αkγ

∗
k = 0,

αkγ
∗
k−2 = 0.

(8.3)

Let us start by noting that |βk0 | = 1 is equivalent to αk0 = γk0 = αk0+1 = γk0−1 = 0,
which creates an isolated 1 × 1 block in the matrix structure of U .

We assume now that one off-diagonal element is non-zero. By considering the trans-
pose of U instead of U if necessary, we assume without loss αk0 �= 0. The last two
relations impose γk0 = γk0−2 = 0 and the two middle ones yield

|βk0αk0+1| = |βk0−1αk0−1| = |βk0+1αk0+1| = |βk0−2αk0−1| = 0. (8.4)

On the one hand, if βk0 �= 0, then βk0−1 �= 0. Otherwise we would get from the first
two relations in (8.3) |αk0 | = 1 and βk0 = 0. Hence, from (8.4), αk0−1 = αk0+1 = 0,
showing that an isolated block of the form(

βk0−1 αk0

γk0−1 βk0

)
(8.5)

exists in the matrix U .
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If, on the other hand, βk0 = 0, together with αk0 �= 0 this implies |αk0 | = 1 and, in
turn βk0−1 = 0.

We first assume γk0−1 �= 0. Hence the last two equations in (8.3) yield αk0−1 =
αk0+1 = 0, which again yields an isolated block of the form(

0 αk0

γk0−1 0

)
. (8.6)

in U with |γk0−1| = |αk0 | = 1.
If γk0−1 = 0 and |αk0 | = 1, we get |αk0−1| = |αk0+1| = 1. In turn, this imposes

βk0−1 = γk0−1 = 0 and βk0+1 = γk0+1 = 0. Thus, U is of the form

U =




. . . αk0−1
0 αk0

0 αk0+1
0

. . .


 (8.7)

and is therefore unitarily equivalent to the shift operator, using a unitary defined similarly
to (3.18).

Hence, except in the last case, iteration of the above arguments, shows thatU has the
block structure announced. ��
Proof of Lemma 4.1. We can set the value λ at zero without loss. Let

,u(n) = E(e−inθ ) = δn,0 (8.8)

be the characteristic function of the common uniform distribution of the phases θk and
αk . Consider the characteristic function of the set of random vectors {δk1 , δk2 , · · · δkj }
given by

,δk1 ,δk2 ,···δkj (n1, n2, · · · , nj ) = E(exp(−i(n1 · δk1 + n2 · δk2 + · · · + nj · δkj )))
= E
(

exp(−i(n1
1θ2k1 + (n1

1 + n2
1)θ2k1−1 + n2

1θ2k1−2 + · · · + n1
j θ2kj

+(n1
j + n2

j )θ2kj−1 + n2
j θ2kj−2))

)
× E
(

exp(−i(n1
1α2k1 + (n2

1 − n1
1)α2k1−1 − n2

1α2k1−2 + · · · + n1
jα2kj

+(n2
j − n1

j )α2kj−1 − n2
jα2kj−2))

)
, (8.9)

where nk = (n1
k, n

2
k) ∈ Z

2. We used independence of the θ ’s and α’s to factorize the
expectations over these random variables. We can assume the kl’s are ordered and we
deal with the θ ’s only. The argument is similar for the α’s. From the expression above,
one sees that one can factorize the expectations over θl with l ≤ 2kr from those with
l ≥ 2kr+1 − 2 as soon as kr < kr+1 + 1. Therefore, it is enough to consider consecutive
indices k1 = m, k2 = m + 1, . . . , kj = m + j . As (8.8) shows, in such a case, the
expectation over the θ ’s equals zero unless

n1
1 = 0, n1

1 + n2
1 = 0, . . . , n1

j + n2
j = 0, n2

j = 0, (8.10)
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when it equals one. But this is equivalent to nlk = 0 for all k = 1, . . . , j , l = 1, 2.
Hence, we have proven that

,δ(n) = ,u(n1),u(n
2) (8.11)

for j = 1 and

,δk1 ,δk2 ,... ,δkj
(n1, n2, . . . , nj ) = ,δk1 (n1),δk2

(n2) · · ·,δkj (nj ), (8.12)

which is equivalent to independence of the random vectors δk1 , δk2 , · · · δkj . ��

Proof of Lemma 4.2. Let us consider Yk = Y+
k = Xk +Xk−1 only, the other case being

similar. Let the measure µX denote the distribution of theXk’s. Then the Yk’s are identi-
cally distributed according to the measure µY = µX ∗µX. Let,X be the characteristic
function of the random variable X. Then ,Y (n) = ,2

X(n). Given Lemma 4.1, we need
only prove that independence of the Yk’s imposes µX is uniform on the torus. Then, the
characteristic function of the variables {Yk, Yk+1} must satisfy for all (n1, n2) ∈ Z

2,

,Yk,Yk+1(n1, n2) = E(exp(−in1(Xk +Xk−1)− in2(Xk+1 +Xk)))
= ,X(n1),X(n1 + n2),X(n2) ≡ ,2

X(n1),
2
X(n2). (8.13)

In case ,X(n1),X(n2) = 0, this relation is fulfilled. Otherwise, we have for all other
cases

,X(n1),X(n2) = ,X(n1 + n2). (8.14)

If N is the smallest positive integer such that ,X(N) �= 0, we get that

1 = ,X(0) = ,X(N),X(−N) = |,X(N)|2 ⇐⇒ ,X(N) = e−iν , (8.15)

for some ν ∈ T. Iteration of (8.14) implies that for any m ∈ Z,

,X(mN) = e−imν. (8.16)

One checks with (8.14) that there can be no integer M > N , M �= kN , k ∈ N, such
that ,X(M) �= 0. That implies that µX = δ(x − ν/N), which is a contradiction to our
hypothesis. Hence we must have ,X(n) = 0 for all n �= 0, which corresponds to a
uniform distribution. ��
Proof of Theorem 5.2. We develop here the arguments yielding polynomially bounded
generalized eigenfunctions associated with spectral parameters in the spectrum of U .
We state the starting point result, Theorem C.5.1 in [S], specialized to our setting.

Theorem 8.1. Let H be a separable Hilbert space. Assume that to any Borel set  ⊂
[0, 2π [ we have a positive trace class operator A( ) on H satisfying: the condition if
 = ∪+∞

n=1 n with  i ∩ j = ∅ for i �= j , then A( ) = s − lim
∑
A( n).

Then there exists a Borel measure dρ and a positive, trace class, operator valued
measurable function a(λ) such that:

• ∀φ ∈ H, 〈φ|A( )φ〉 = ∫
 

〈φ|a(λ)φ〉dρ(λ).
• T r(a(λ)) = 1, dρ-ae.

These two conditions characterize the operator valued function a.
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Let us introduce weighted l2(Z) spaces

l2δ (Z) = {φ = (φn)n ∈ l2(Z∗);
∑
n∈Z

< n >δ |φn|2 < +∞}, (8.17)

where < n >=< 1 + n2 >1/2. We prove the equivalent of Theorem C.5.2. in [S].

Proposition 8.1. Let U be a unitary operator defined on l2(Z) and δ > 1. Then there
exists a spectral measure dρ and, for dρ almost all λ, there exists a function F.,.(λ)
defined on Z × Z such that:

• Fn,m is measurable in λ.
•∑n,m < n >−δ |Fn,m(λ)|2 < m >−δ≤ 1, dρ-ae.

• |Fn,m(λ)| ≤ C < n >− δ
2< m >− δ

2 .
• For any bounded Borel function g on S1, and for any vectors φ, ψ in l2δ (Z),

〈φ|g(U)ψ〉 =
∫
g(λ)

(∑
n,m

Fn,m(λ)φn
∗ψm

)
dρ(λ). (8.18)

• For any fixed m, (U − eiλ)F.,m(λ) = 0, where F.,m(λ) =∑n∈Z
Fn,m(λ)ϕn.

Proof. We denote the spectral projectors of U by (E( )) ∈B([0,2π [), where B([0, 2π [)
denotes the Borel sets on the interval [0, 2π [. Let x be the self adjoint operator, diagonal
on the orthonormal basis (ϕn)n∈Z, defined ∀n ∈ Z, by xϕn =< n > ϕn. The operators
(A( )) ∈B([0,2π [) defined ∀ ∈ B([0, 2π [) by

A( ) = x −δ
2 E( )x

−δ
2 , (8.19)

are positive and trace class:∑
n∈Z

〈
ϕn|x −δ

2 E( )x
−δ
2 ϕn

〉
≤
∑
n∈Z

〈n〉−δ〈ϕn|E( )ϕn〉 < +∞ . (8.20)

By definition, the spectral familyE(.) satisfies for any countable disjoint family ( i)i∈I ⊂
B([0, 2π [): E(∪i∈I i) = s − lim

∑
i∈I E( i). The operators x−δ being bounded on

l2(Z), we get A(∪i∈I i) = s − lim
∑
i∈I A( i). Hence A(.) is a Borel measure with

values in positive, trace class operators. and Theorem 8.1 applies. Thus, ∀(n,m) ∈ Z×Z,
we get a function defined dρ-ae,

Fn,m(λ) =
〈
ϕn|x δ2 a(λ)x δ2 ϕm

〉
= (〈n〉〈m〉) δ2 〈ϕn|a(λ)ϕm〉

= (〈n〉〈m〉) δ2 an,m(λ). (8.21)

By construction, the functions an,m (hence Fn,m) are measurable. Moreover,∑
n,m

|Fn,m(λ)|2(〈n〉〈m〉)−δ =
∑
n,m

|an,m(λ)|2

=
∑
n

‖a(λ)ϕn‖2 = ‖a(λ)‖2
2 ≤ ‖a(λ)‖2

1 = T r(a(λ))2 = 1 dρ − ae. (8.22)
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This implies the third statement. Let Ai ⊂ [0, 2π [ be the Borel set, χi : S1 → R be its
characteristic function and φ,ψ be two vectors of l2δ (Z). Then

∫
[0,2π [

χi(e
iλ)
∑
n,m

φ∗
nψmFn,m(λ)dρ(λ) =

∑
n,m

φ∗
nψm

∫
[0,2π [

χi(e
iλ)Fn,m(λ)dρ(λ)

=
∑
n,m

φ∗
nψm

∫
Ai

Fn,m(λ)dρ(λ) =
∑
n,m

φ∗
nψm〈ϕn|E(Ai)ϕm〉

=
∑
n,m

φ∗
nψm

〈
ϕn

∣∣∣∣
(∫

[0,2π [
χi(e

iλ)dλ

)
ϕm

〉
= 〈φ|χi(U)ψ〉. (8.23)

This results holds for step functions by linearity, and for bounded measurable functions
on [0, 2π [. In particular, taking g = id and ψ = ϕm,

〈φ|Uϕm〉 =
∫

[0,2π [
eiλ

(∑
n

Fn,m(λ)φ
∗
n

)
dρ(λ) ,

=
∫

[0,2π [
〈φ|eiλF.,m(λ)〉dρ(λ). (8.24)

But,

∫
[0,2π [

〈φ|UF.,m(λ)〉dρ(λ) =
∑
k

∫
[0,2π [

φ∗
k (UF.,m(λ))kdρ(λ)

=
∑
k

∫
[0,2π [

φ∗
k

∑
j

UkjFj,m(λ)dρ(λ) =
∑
k,j

Ukjφ
∗
k

∫
[0,2π [

Fj,m(λ)dρ(λ)

=
∑
k,j

Ukjφ
∗
k (jm)

δ

∫
[0,2π [

aj,m(λ)dρ(λ) =
∑
k,j

Ukjφ
∗
k (jm)

δA([0, 2π [)j,m

=
∑
k,j

Ukjφ
∗
kE([0, 2π [)j,m =

∑
k,j

Ukjφ
∗
k δj,m = 〈φ|Uϕm〉. (8.25)

It follows that ∀m ∈ Z,∀φ ∈ l2δ (Z),∫
[0,2π [

〈φ|UF.,m(λ)〉dρ(λ) =
∫

[0,2π [
〈φ|eiλF.,m(λ)〉dρ, (8.26)

and thus

〈φ|UF.,m(λ)〉 = 〈φ|eiλF.,m(λ)〉 dρ − ae. (8.27)

��

At this point we can prove Theorem 5.2, following closely the arguments of [S]: Let
N(λ) be the rank of the Hilbert-Schmidt operator a(λ), which is a measurable function
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of λ. For all λ, there exists a set of orthogonal vectors [K], (fj (λ))j∈{1,... ,N(λ)}, such that
dρ-ae:

a(λ) =
N(λ)∑
j=1

|fj (λ)〉〈fj (λ)| and

N(λ)∑
j=1

‖fj (λ)‖2 =
∑
m,j

1

‖fm(λ)‖2 〈fm(λ)|fj (λ)〉〈fj (λ)|fm(λ)〉

=
N(λ)∑
m=1

〈
fm(λ)

‖fm(λ)‖ |a(λ) fm(λ)‖fm(λ)‖
〉

= T r(a(λ)) = 1.

In case of degeneracy of the spectrum, it is always possible [S] to choose the f ’s so that
they are measurable. It is enough to set now

φn(λ) = xδ/2fn(λ) ,∀n ∈ Z,∀λ ∈ [0, 2π [,  n = {λ;N(λ) = n}. (8.28)

The sets  n are disjoint by construction. For any fixed λ, the vectors φj (λ) are linearly
independent, as is easily checked. The conditions on the growth of the components of the
vectors φj (λ) are consequences of their definitions and Proposition 8.1. By construction,
∀k ∈ Z,

‖fj (λ)‖2(φj (λ))k =
∑
m

< m >−δ Fk,m(λ)(φj (λ))m. (8.29)

Therefore, ∀n ∈ Z,∀j ∈ {1, . . . , N(λ)},
〈ϕn|Uφj (λ)〉 =

∑
k

Unk(φj (λ))k

= 1

‖fj (λ)‖2

∑
k,m

Unk < m >
−δ Fk,m(λ)(φj (λ))m

= 1

‖fj (λ)‖2

∑
m

< m >−δ (φj (λ))m〈ϕn|UF.,m(λ)〉.

Using Proposition 8.1, it follows that the previous line equals

= 1

‖fj (λ)‖2

∑
m

< m >−δ (φj (λ))meiλ〈ϕn|F.,m(λ)〉 = 〈ϕn|eiλφj (λ)〉. (8.30)

Thus, ∀φ ∈ l2δ (Z), 〈φ|Uφj (λ)〉 = 〈φ|eiλφj (λ)〉, dρ-ae. ��
Proof of Lemma 6.2. Write

R(λ) =
(
a(λ) b(λ)

c(λ) d(λ)

)
, (8.31)

where a, b, c, d are analytic on T and detR(λ) = eiκ . The eigenvalues of R(λ) are

Ej(λ) = TrR(λ)

2
+ (−1)j

√
(TrR(λ))2

4
− eiκ j = 1, 2, (8.32)
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and the set X consists of the zeros of (TrR)2 − 4eiκ . Let λ = 0 belong to X. We can
assume that in a punctured neighborhood of 0, b(λ) �= 0. Therefore, the eigenvectors
can be chosen as

vj (λ) =
(

b(λ)

Ej (λ)− a(λ)
)
. (8.33)

Since

(TrR(λ))2/4 − eiκ =
∑
n∈N

tnλ
n (8.34)

with t0 = 0, Ej and, in turn, vj admit convergent series expansions in non-negative
powers of λ1/2 in a neighborhood of 0. ��
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