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Cooper pair pumping is a coherent process. We derive a general expression for the adiabatic pumped
charge in superconducting nanocircuits in the presence of level degeneracy and relate it to non-Abelian
holonomies of Wilczek and Zee. We discuss an experimental system where the non-Abelian structure of
the adiabatic evolution manifests in the pumped charge.
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If the Hamiltonian of a quantum system depends adia-
batically and cyclically on time via some external parame-
ters the wave function, for the system initially prepared in
an energy eigenstate, after a cycle returns back to its initial
state up to a phase, that in addition to the dynamical
contribution, has a component of geometric nature [1]. It
depends only on the shape of the path covered in the
parameters space and on the structure of the Hilbert space
of the quantum system. If the adiabatic evolution takes
place in a degenerate energy eigenspace the cyclic evolu-
tion leads to a superposition of the degenerate eigenstates
and the geometric transformation acquires a non-Abelian
structure [2]. Simon [3] and Wilczek and Zee [2] showed
that this mapping plays the role of the holonomy of the
gauge theories. Holonomies naturally emerge in the de-
scription of the dynamics of simple quantum systems due
to the parallel transport dictated by the Schrödinger equa-
tion [4,5] which constraints the overlap between the wave
functions of the system at successive times to be real and
positive. The holonomy group is the group of the trans-
formations generated by the parallel transport along closed
paths on the parameter space.

Geometric effects appear naturally in adiabatic quantum
pumping: in a mesoscopic conductor a dc charge current
can be obtained, in the absence of applied voltages, by
cycling in time two parameters which characterize the
system [6]. In the scattering approach to transport the
pumped charge per cycle can be expressed in terms of
derivatives of the scattering amplitudes with respect to
the pumping parameters [7], the Brouwer formula [8]. Its
relation to geometric phases has been elucidated in
Refs. [9,10]. If only superconducting leads are present
pumping is due to the adiabatic transport of Cooper pairs.
Besides the dependence of the pumped charge on the cycle,
in this case there is a dependence on the superconducting
phase difference(s) (the overall process is coherent).
Cooper pair pumping has been studied both in the limit

of transparent interfaces [11,12] and in the Coulomb block-
ade regime [13–15]. A connection between Berry phase
and pumped charge has been established also in this case
[11,16,17] thus opening the possibility to detect geometric
phases in superconducting circuits [17,18]. An experiment
of this kind has been successfully performed recently in
Ref. [19] thus paving the way to holonomic quantum
computation [20,21] with superconducting nanodevices.

In this Letter we study Cooper pair pumping in super-
conducting circuits in the regime of Coulomb blockade.
The new feature we consider here is the possibility to pump
in a degenerate subspace. We derive an expression for the
pumped charge in the presence of a degenerate spectrum
and relate it to the non-Abelian connection of Wilczek and
Zee. We propose a superconducting network where this
relation can be tested and discuss two clear signatures of
non-Abelian holonomies. First, under appropriate condi-
tions, the pumped charge per cycle is quantized. Second
the pumped charge depends both on the cycle and on the
point where the cycle starts. If tested experimentally this
would be a clear proof of the non-Abelian nature of
pumping.

The possibility to generate non-Abelian holonomies in
superconducting circuits has been studied previously [22].
Reference [22] dealt with the problem of implementing a
holonomic quantum computer with Josephson circuits. In
that work the authors show that a cyclic adiabatic change of
parameters in a closed system may lead to a final state
having a different charge distribution than the initial one.
In that context the word ‘‘charge pumping’’ was used to
describe such process even if the charge cannot be really
pumped in or out the system. In the present work we study
charge transport between two external reservoirs con-
nected to the circuit via Josephson junctions, the word
‘‘pumping’’ has thus a different meaning. In order to
keep the presentation transparent we discuss an idealized
situation, in the conclusions we discuss the various prob-
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lems that may occur in experiments. The Cooper pair pump
consists of a Josephson network connected through
Josephson junctions to two superconducting leads. An
example (at this stage the discussion is general) is pre-
sented in Fig. 1. The two superconducting electrodes are
kept at a finite phase difference ’ � ’L � ’R where ’R=L
is the phase of the superconducting order parameter of the
right or left lead. The Cooper pair pump is operated by
changing adiabatically in time some external parameters
such as gate voltages or magnetic fluxes. We will label this
set of external parameters by the vector ~��t� �
fVgi�t�;�i�t�g. The Hamiltonian of the pump depends on
the superconducting phase of each island of the network ’i
(i � 1; . . . ; N), on its conjugate, the charge on each island
ni, on the phase difference across the pump ’, and on all
the external parameters: H�t� � H�’1; . . . ; ’N; n1; . . . ;
nN; ~��t�; ’�. The state of the system is denoted by j��t�i
and j��t�i � j��t; ~��t�; ’�i. By changing the control pa-
rameters in time, a charge Q�tr� will be transferred in the
circuit. The transferred charge after a period T can be
obtained by integrating the charge imbalance between the
outer capacitors that connect the network to the leads

 Q�tr� � �2ie
Z T

0
@t0 �h��t0�j@’j��t0�i�dt0: (1)

This definition of the transferred charge may be derived
from the time integral of the current operator, Q�tr� �
� 2e

@

R
T
0 h��t

0�j�@’H�t��j��t0�idt0, and the Schrödinger
equation. In the definition of the transferred charge @’ is
not a quantum operator but a simple derivative respect to a
classical parameter (the phase difference between the two
electrodes). In this Letter we generalize the results ob-
tained so far relating Cooper pair pumping to geometric
phases allowing the spectrum of H�t� to be degenerate. We
assume that for all ~� in the parameter space a degenerate
energy eigenspace H n� ~�� exists of constant dimensionDn

corresponding to the eigenvalue En� ~��. The control pa-
rameters are varied in time adiabatically, i.e., ~� �
~��t=T�. It is convenient to introduce for all t 2 �0; T� a
basis, f n��t�g � 2 �1; . . . ; Dn�, of the degenerate sub-
space, H n� ~��, formed by the instantaneous eigenstates
of the Hamiltonian, H�t�: H�t�j k��t�i � Ek�t�j k��t�i.

As discussed by Wilczek and Zee [2], if initially the state
of the system is in one of the degenerate eigenstates j��t �
0�i � j n�� ~��0��i 2H n� ~��0��, then after a cyclic evolu-
tion

 j��T�i � �Un�T����j n�� ~��0��i �O�1=T�: (2)

The Dn �Dn operator Un�t� can be written as

 Un�T� � e��i=@�
R
T

0
En�t�T e��

R
T

0
�n�t�dt�: (3)

Here, T denotes the time ordering and the connection
�n�t� is given by ��n�t���� � h n��t�j _ n��t�i. The relation
between the transferred charge and the non-Abelian hol-
onomy can be obtained by substituting (2) in (1) [23]. We
assume that the system is prepared at t � 0 in a linear
superposition of the degenerate eigenstates, j�ini �P
�c�j n�� ~��0��i; during a cycle of duration T the total

transferred charge then reads

 Q�tr� �
X
��0
c	�c�0Q̂

n
��0 ; (4)

where the charge matrix Q̂n
��0 is given by

 

Q̂n
��0 � �

2e
@

Z T

0

�
@’En���0

� i@
X
��

��Uyn ����@’��n�����Un���0

� @t��U
y
n ���h n�j@’j n�i�Un���0 ��

�
dt�O�1=T�:

(5)

The first term in the right-hand side is the supercurrent
contribution to the transferred charge. The second and third
terms are of geometrical nature and describe pumping. If
the pumping occurs through a nondegenerate level, Dn �
1, we recover the Abelian result [16,17,24]. The measure-
ment of non-Abelian holonomies is a nontrivial task, in
particular, the noncommutativity of the theory has been
revealed to be not easy to detect [5]. Non-Abelian contri-
butions to pumping introduce qualitatively new effects that
can be verified experimentally. We will highlight these
aspects by analyzing a specific case that can be realized
experimentally.

A possible experimental realization of a non-Abelian
pump is shown in Fig. 1. It is a three island pump with
four symmetric Josephson SQUID loops: two inner loops
with capacitances C1 and C2 and two outer loops with
capacitances CL and CR. The outer loops connect the net-
work to the superconducting electrodes which are kept at a
constant phase difference ’ (from now on for simplicity
we fix ’L � ’ and ’R � 0). The charging configuration
of the system can be controlled externally modulating three
gate voltages, Vu, Vg1, and Vg2 connected to the islands via
the respective gate capacitances, Cu, Cg1, and Cg2. The
effective Josephson couplings, JL, JR, J1, J2, can be tuned

FIG. 1 (color online). Non-Abelian superconducting pump.
The gate voltages are kept fixed during the cycle, their values
are chosen in order to have a doubly degenerate spectrum. The
only pumping parameters are the fluxes through the four loops.
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independently varying the magnetic fluxes through each
loop. All the Josephson coupling energies are much
smaller than the charging energy of the system, EC. The
charge states are indicated as jnu; n1; n2i, ni being the
excess charge on the ith island in units of 2e. The realiza-
tion of the degenerate subspace requires additional con-
straints on the gate voltages. We take the gate capacitances
to be small compared to the Josephson capacitances, i.e.,
Cu 
 Cgi � Ci 
 CI with i � 1, 2 and I � L, R, and we
assume that the gate charge ngu � CuVgu=2e is in the
range 1

2 < ngu <
3
2�

C1�C2

CL�CR
while the two gate charge ngi �

CgiVgi=2e satisfy the condition ngi �
1
2 �1�

Ci
CT
�2ngu � 1��

with i � 1, 2 and CT � C1 � C2 � CL � CR. Under these
conditions only four charge states are relevant to the dy-
namics at low temperatures: j0; 0; 0i, j0; 1; 0i, j0; 0; 1i,
j1; 0; 0i (all other charge states are at a much higher energy

EC). Moreover the charge states j0; 0; 0i, j0; 1; 0i, j0; 0; 1i
are degenerate while the charge state j1; 0; 0i, correspond-
ing to the configuration in which there is one excess charge
on the islandU, has higher energy. In this restricted Hilbert
space the effective Hamiltonian of the pump can be written
as

 H � Euj1; 0; 0ih1; 0; 0j � �Jeff�’�j1; 0; 0ih0; 0; 0j

� J1j1; 0; 0ih0; 1; 0j � J2j1; 0; 0ih0; 0; 1j � H:c:�;

(6)

where Jeff�’� � �JLei’ � JR�. We set to zero the electro-
static energy of the degenerate charge configurations and
we denoted with Eu the charging energy of the state

j1; 0; 0i, Eu �
2e2C1�2ng1�1�

�CL�CR�2
. Given the capacitances, our

choice of the gate voltages guarantees that the charging
Hamiltonian is symmetric under the simultaneous ex-
change of the three charge states and of the three couplings
Jeff , J1 and J2. This fact leads to a two-dimensional degen-
erate subspace for any value of the couplings. Hamiltonian
(6) has been discussed previously in the context of adia-
batic passage techniques in a quantum optics [25] and
superconducting nanocircuits [26] and for holonomic
quantum computation as demonstrated in [27]. The crucial
point here is that Eq. (6) arises from a Josephson network
in the presence of superconducting electrodes. This is why
we are able to relate pumping to holonomies. The
Hamiltonian has three distinct eigenvalues: E0 �

1=2�Eu � �E
2
u � 4�J2

0 � J
2
1 � J

2
2��

1=2�, E1 � 0, and E2 �

1=2�Eu � �E2
u � 4�J2

0 � J
2
1 � J

2
2��

1=2�. In the previous
definitions we set J0 � �J

2
L � J

2
R � 2JLJR cos’�1=2. The

eigenvalue E1 remains zero and it is doubly degenerate
for any value of the Josephson couplings not all zero. An
orthonormal basis for the two-dimensional degenerate sub-
space corresponding to the eigenvalue E1 is given by the
following: j 11i �N11�J2j0;1;0i� J1j0;0;1i� and j 12i �
N12��J2

1 � J2
2�j0; 0; 0i � Jeff�’��J1j0; 1; 0i � J2j0; 0; 1i��,

where N11 and N12 are normalization factors.

In the following we will show that: (i) the pumped
charge may be quantized; (ii) by composing two cycles
in the parameter space, the pumped charge depends on the
order in which the two cycles are followed; (iii) con-
sidering the pumped charge as a function of time, Q �
Q�t�, the period of Q�t� may be a multiple of the period of
the parameters cycle. The second and the third point are
due to the non-Abelian character of the adiabatic evolution.

(i) We first discuss the quantization of the pumped
charge. To this end the cycle can be divided in three steps.
First, we prepare the system in the charge state j0; 0; 0i and
we set all the couplings to zero except for J2 which is kept
constant and positive during the whole cycle. For these
initial values of the couplings the two degenerate eigen-
states are also charge eigenstates: j 11�t � 0�i � j0; 1; 0i,
j 12�t � 0�i � j0; 0; 0i; so the system is initially in the
eigenstate j 12i. Second, we perform a �=2 rotation in
the degenerate subspace by manipulating adiabatically and
cyclically JL and J1 and keeping JR to zero. In this phase
one charge enters the pump from the left reservoir and the
state vector of the system undergoes the transformation:
j0; 0; 0i ! ei’j0; 1; 0i. Third, we let the charge out of the
circuit with another �=2 rotation in the degenerate sub-
space. During this third phase we manipulate JR and J1 and
we keep JL to zero. The state of the system undergoes the
transformation ei’j0; 1; 0i ! ei’j0; 0; 0i. How is it pos-
sible to realize the �=2 rotations? One can show that by
manipulating adiabatically J1,J2 and JL or J1,J2 and JR and
keeping respectively JR or JL zero the holonomy reads

 U���L=R �
cos�� ei’L=R sin��

�e�i’L=R sin�� cos��

 !
; (7)

where �� �
H
� h 11j _ 12i. The required rotations are real-

ized whenever �� � �=2, for example, by means of the
cycles �L and �R shown in Fig. 2. By substituting the
evolution U, the connection � and the matrix elements of
h n�j@’j n�i for the cycles of Fig. 2 in Eq. (5) we find
Q�tr� � �2e. For the present cycle, the charge pumped
starting from the eigenstate j 11i has opposite sign to the
charge pumped starting from the eigenstate j 12i.

(ii) The non-Abelian nature of the evolution has mea-
surable effects on the pumped charge. We consider the

FIG. 2. By varying the Josephson couplings through the cycles
�L (left) and then �R (right) one Cooper pair is transferred
through the pump.
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cycles depicted in Fig. 3 and determine the pumped charge
in the two cases in which the pumping cycle is either
performed by first going over �1 and then �2 or in the
reverse order. In the Abelian case considered in
Refs. [14,16,17] the two situations are equivalent. In our
case the order matters; i.e., there are examples where
Q�tr��1�2

� Q�tr��2�1
. A specific example is provided by the

pumping cycle obtained by performing the two loops
presented in Fig. 2. Assuming that the initial state is the
state j0; 1; 0i, the pumped charge in the two cases is
Q�tr��1�2

� e
2 and Q�tr��2�1

� e. The pumped charge differs in
the two cases.

(iii) Another manifestation of the non-Abelian nature of
pumping is that after a cyclic evolution of the external
parameters the state does not necessarily go to the initial
state [see Eq. (2)]. One can therefore design paths in
parameter space such that after N cycles the system re-
turns, up to a phase, to its initial state. In this situation the
pumped charge per cycle will not be constant in each cycle
but it will have a period which is NT, T being the period of
the elementary cycle. In fact, assume that a certain cycle ��
is performed consecutively N times starting with the sys-
tem in the state j�ini defined before. At the beginning of
the Nth cycle the state will be �U �� �

N�1j�ini then,
as one can easily show using Eq. (4), the total
transferred charge will be given by Qtr

Nthcycle �P
��0c

	
�c�0 ��U

y
��
�N�1Q̂n�U �� �

N�1���0 . Eventually, when

UN�1
��

is proportional to the identity operator, the trans-

ferred charge will be periodic with period NT.
The situation we discussed so far is ideal. Several im-

portant issues have to be considered in a realistic situation.
First of all, it would be desirable to pump through the
ground state; here the degenerate subspace is the first
excited level, which is sensitive to relaxation effects. We
do not think this is a serious problem, though: we showed
how the state can be accessed and moreover the real bottle-
neck is the decoherence time and not the relaxation time,
which typically is much longer. Indeed, the effect of deco-
herence on coherent pumping appears to be a more funda-
mental issue since the presence of an external bath may, in
addition to relaxation, lift part of the degeneracy which is

crucial for non-Abelian pumping. In addition, the degen-
eracy may be lifted because of the unavoidable static
imperfections in the network. We do not expect degeneracy
lifting to prevent the observation of non-Abelian effects on
pumping, it just imposes a constraint on the duration of the
cycle: T should be shorter than minf@=�E; @=	
g where
�E is the small splitting arising from the nonperfect de-
generacy of the levels involved and 	
 the decoherence
time.
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