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Absence of geometrical correction to the Landau-Zener formula *
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We consider the transition probability 74, in the adiabatic limit between two levels displaying one avoided crossing of width
O(J). The geometrical prefactor completing the Dykhne formula for .4, is shown to be of order 1 +0O{(4), so that the dominant
contribution to %, is given by the well-known Landau-Zener formula.

1. Introduction

The adiabatic theorem of quantum mechanics
deals with systems governed by slowly varying time-
dependent Hamiltonians. More precisely, if the typ-
ical time scale of the Hamiltonian H is T=1/¢, the
adiabatic theorem describes the singular limit ¢ -0
of the rescaled Schrédinger equation

i€ < g.(0)=H(p1) (1.1

The original statement [1] is that if we prepare the

system at 1=1, in an eigenstate i, () associated with

the eigenvalue e, (#,) of the Hamiltonian H(t,), then

the solution of (1.1) at any time ¢, > ¢, has the form
n

(ﬂe(tl):eXp(—%jel([)d1>W1([1)+O(f)~ (1.2)

0

provided ¢, (¢) remains isolated in the spectrum for
all t{p<t<t,. As a consequence, the transition prob-
ability 4, (€) to any other eigenstate w-,(¢,) of H(t,)
is of order ¢ and vanishes in the limit e—~0. When

* Supported by Fonds National Suisse de la Recherche Scienti-
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the Hamiltonian is analytic in ¢, the decay of the
transition probability is then exponential, provided
one takes the limits 74> —oc and £,— +oo [2-4].

Ailey=e 7 >0 (1.3)

The adiabatic limit is an important regime in physics
which is reached in a wide variety of applications.
ranging from atomic and molecular physics (see for
example refs. [ 5-8] to nuclear physics [9], solid state
physics [10] or laser physics {11.12]. In such sit-
uations, the transition probability .4, (€) between
two isolated levels e;(7) and e,(7) expresses the
physically relevant quantity of the problem. As a
typical example in atomic physics, %, (€) gives the
probability of a charge transfer during a slow atomic
collision [5]. This is the reason why it is important
to have explicit formulae for the asymptotic regime
e 1 of #,(¢). In case of an avoided crossing be-
tween the two levels of interest, there exists a simple
and general formula.

Let ¢,(¢) and e,(?) be two neighboring levels iso-
lated in the spectrum displaying an avoided crossing
at (=0,

ex(t)—e (1) = @’ + 6" +0(1) . (1.4)

with closest approach of order d. If 4 is small but ti-
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nite, the Landau-Zener formula states that the tran-
sition probability is explicitly given by

P, (€) ~exp(—0%b*n/2ea) (L.5)

as €—0. This formula has been obtained by Zener
[13] in the case of a particular real symmetric two-
level Hamiltonian for which he found an analytic so-
lution to the Schrédinger equation, and it was de-
rived independently by Landau [14] who intro-
duced the idea of integrating the Schrodinger
equation in the complex plane on a path surrounding
the complex eigenvalue crossing point t*~ibd/a,
making explicit use of the analyticity of the Hamil-
tonian. The Landau-Zener formula has been used
with success in atomic and molecular physics mainly
but also in the other fields quoted above.

The original idea of Landau has been recently re-
considered to compute the transition probability in
the adiabatic limit for general two-level systems dri-
ven by Hermitian Hamiltonians. These results com-
plete the earlier works of Davis and Pechukas [15]
and Hwang and Pechukas [16] on a generalization
of the Landau-Zener formula for real symmetric two-
level Hamiltonians, the so-called Dykhne formula
[2]. Berry [17] and Joye, Kunz and Pfister [4] re-
alized independently that the Dykhne formula must
be completed by a prefactor of geometrical nature in
the case of a general Hermitian two-level Ham-
iltonian:

%, (e)=exp(2Im 0)

Xexp(%ImJ‘e,(z) dz)[1+0(e)] . (1.6)

Here [, e,(z) dz is the integral of the analytic con-
tinuation of e, in the complex plane along a loop ¥y
based at the origin which encircles a carefully chosen
complex eigenvalue crossing point z* of ¢; and e,
and exp(Im @) is the geometrical prefactor men-
tioned above. This geometrical prefactor has been
measured experimentally by Zwanziger, Rucker and
Chingas [18]. A detailed analysis of the conditions
under which this formula holds is given in ref. [4].
See also refs. [19] and [20] for generalizations of
this result.

At this point a natural question arises. Does the
geometrical prefactor contribute to the Landau-
Zener formula giving %,(€) in the situation of an
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avoided crossing described above when the (re-
duced) Hamiltonian is Hermitian instead of real
symmetric? And if not, of what order is the first cor-
rection to the Landau-Zener formula? These re-
marks lead us to a mathematical study of the range
of validity of the Landau~Zener formula in the gen-
eral case. Indeed, despite its wide application in a
variety of circumstances, no rigorous proof of this
formula under general assumptions on the Hamil-
tonian can be found in the literature. Concerning this
problem, we can mention the work of Hagedorn [21]
where he showed that if the minimum gap J between
e, and e, is rescaled according to 6=\/2, then the
transition probability is indeed given by the Lan-
dau-Zener formula where J is replaced by \/E:

P (€)=exp(—b’n/2a)[1+0(€) ],
p>0. (1.7)

Due to the importance of the Landau-Zener formula
and the presence of geometrical effects in adiabatic
evolution we would like to present the results of our
mathematical analysis of these problems. We for-
mulate below a theorem establishing the validity of
the Landau-Zener formula in the physically relevant
regime of one avoided crossing characterized by a
small minimum gap J between e, (¢) and e,(¢), un-
der natural and general conditions on the Hamilto-
nian. Our analysis of the Landau-Zener formula re-
lies on our recent results [22] where we prove that
the transition probability between two levels isolated
in the spectrum of the (possibly unbounded) Ham-
iltonian is still given in the adiabatic limit by for-
mula (1.6) derived for the two-level case. Naturally,
the two levels e, and e, must be sufficiently isolated
in the spectrum. This condition is to insure that the
transition probability from the two-dimensional
subspace to the rest of the space is negligible with
respect to the transition between the two levels.
Moreover, another technical condition is necessary
to prove the result. We exploit here the presence, be-
side ¢, of the supplementary parameter d to show that
the hypotheses of ref. [22] are always satisfied when
J is small. Then we perform an asymptotic analysis
of the generalized Dykhne formula to obtain, to the
lowest order in J, the Landau-Zener formula. The
transition probability %, (¢, d) in the adiabatic limit
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e 1 for an avoided crossing described by (1.4) with
d< 1 is given by

62b°n
%1(6,5)=€XD(— Yea [1+0(d)]
X[14+0(8)+0(e)] . (1.8)

This result shows that to the leading order in 4, the
exponential decay rate in 1/¢ of the transition prob-
ability is given by the Landau-Zener formula whereas
the geometrical prefactor is a correction of order
O(0) to the leading term.

2. Main result

Let us state our results in a precise form. We con-
sider a family of time-dependent Hamiltonians H (¢,
d), teR, which also depend on a small parameter
del,=[0, 4]. They are defined on the same sepa-
rable Hilbert space #. We suppose that the Ham-
iltonians H (¢, &) satisfy three natural conditions. The
first condition is that the Hamiltonian is analytic in
time and sufficiently smooth in ¢ and 4.

(1) Self-adjointness, analyticity and smoothness.
For any vector ¢, H(z, 8)¢ is analytic in z in a strip
including the real axis for J fixed ' and H(z, d)¢ is
C! as a function of both variables (z, §).

The second condition states that H(¢, §) tends suf-
ficiently rapidly to two limiting Hamiltonians as
t— T co. These limiting Hamiltonians also have to be
smooth in 4.

(I1) Behaviour at infinity. There exist H* () and
H~(8), C! in ¢, such that

lim H(i+is)=H* () (2.1)

- too

4

More precisely, there exist a strip S,={z:|Imz| <a} and a
dense domain D of # such that for each zeS, and del,
H(z, d) is a self-adjoint holomorphic family for § fixed [23],
and H (¢, J) is bounded from below if teR.
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The third hypothesis states that the two levels of
interest e, (1, ) and e,(¢, d) lie in a gap and when
the parameter =0, these levels have a crossing at
t=0 and when > 0, the crossing becomes an avoided
crossing. The parameter J is to be considered as con-
trolling a perturbation which lifts the degeneracy of
e, (t,0) and e,(1, 0) at =0 and turns the genuine
crossing into an avoided crossing of minimum gap
of order 4.

(II1) Separation of the spectrum and avoided cross-
/ng. There exists a constant g independent of 7 and
J such that the spectrum o(¢, 8) of H(t, 6), teR, del,.
1s given by

a(t, d)=0,(t,0)uo,(1.5) .
o,(t,0)={e, (1, d),e:(1,0)} .

and satisfies

dist[o,(1,0), 02(t, 0) 1 2g>0 ., VieR,del;.
Moreover,

e:(1,0)—e (1,0)>0, VteRandd>0 (2.2)
and if =0,

e:(t,0)—e (1,0)>0., Vi<O.

e (t,0)y—e (1,0)<0, Vvi>0.

¢:(0,0)=¢,(0,0) . (2.3)
where =0 is a simple zero of the function e, (¢, 0)

—e,(1,0) (see fig. 1).

This condition implies that for §>0 there is a
complex eigenvalue crossing point z*(J) together
with its complex conjugate in a neighbourhood of
z=0, if § is small enough and that z*(J) is a square
root type branch point for the eigenvalues. The one-
dimensional projectors corresponding to e, (¢, ) and

*2 More precisely again, there exist two families of self-adjoint
operators H * (J), defined on D, strongly C' in é and bounded
from below and a function b(¢) independent of J, behaving as
1/[t]'**, a>0, t—Too, such that sup <.l [H(t+is, )
—H*(5) ol <b(t)[llgl+IH*(8)¢l], 120, for all peD and
del,. Moreover, for each ¢eD, |(d/dd)H(z, 8)p| <N.
V(z,0)eS, X1,
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Fig. 1. The levels ¢;(¢, 6) and ¢,(¢, 0).

e,(t, 0) are denoted by P, (¢, ) and P, (¢, ). We also
define the two-dimensional projector P(f, )=
P (t, 6)+P, (¢, 3).

To investigate the local structure of the Hamilto-
nian close to the avoided crossing, we need only con-
sider the restriction of H(¢, ) to the two-dimen-
sional subspace P(t, d)#. We specify in a fourth
condition the generic form of avoided crossings to
which the Landau-Zener formula applies. The as-
sumption is that the quadratic form giving the square
of the gap between the levels close to (¢, §) = (0, 0)
must be positive definite.

(IV) Behaviour at the avoided crossing. There ex-
ist constants a> 0, b> 0 and ¢ with ¢ <a?b?, such that
eZ(t’ 6) —€ (t’ 6)

=./a*?+2ctd+b*5*+ Ry(1,6) , (2.4)

where R;(¢, 6) is a rest of order 3 in (¢, 6) #.

The avoided crossings considered can be rewritten
as

eZ(ta 5)—31(1, 6)

= /a2 + 2ct5+ b?02 [1+ Ry (1, 9) ], (2.5)
with closest approach at £ (d)=—cd/a?>+0(d?)
given by
e:(4(3), 0) —e(4(9), 8)

=d,/b*=c?/a’[1+0(d)]. (2.6)

# We also assume that if g, and ¢, form a basis of P(0, 0) #, the
matrix elements {@;| P(t, 8)¢i> and {@;| H(t, 3)P(t, 6)oi),
k,j=1, 2, are C? as functions of the two real variables (1, §).
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Let J be fixed and let n be a closed loop based at the
origin which encloses the complex eigenvalue z*(J)
(Im z*(d) >0) as in fig. 2. We fix the phases of the
eigenvectors ¥, (t, d) and w, (¢, §) of H(t, §) asso-
ciated with e, (¢, d) and e,(¢, ) by the condition

(it 0)1(d/dt) (L, 8)>=0, VteR. (2.7)

Consider €,(0, ) and y,(0, J) and their analytic
continuations along #. If we denote by &, (0, 6) and
,(0, &) the results of these analytic continuations at
the end of the loop 7, we have

él (0’ 6) =eZ(Os 5) ’
#1(0, 6) =exp[ —16(5) 1v2(0, 9) , (2.8)

because z*(J) is a square root branch point for the
energies. The phase 8(J), which is an analog of the
Berry phase, is in general complex and is now J-
dependent.

Theorem 2.1 (Landau-Zener formula). Let H(t,
0) be a self-adjoint operator analytic in ¢ satisfying
conditions I-III. Let ¢(¢) be a normalized solution
of the Schrodinger equation

ie%(p([):H([, 5)(p([) s ¢(O)=¢*ED ’

such that

tli{n 1P(t, O)p()l=1.

If € and & are small enough,

P (e 5)=tlir+n I1P2(t, $)p(2)11?

=exp[2Im 6(5)] exp(% Im J. e (z0) dz)

n
X[14+0(e)],
where O(e€) is independent of § and where Im 6(J)

z(
0 R

Fig. 2. The loop n and the eigenvalue crossing z*(d).
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and Im [, e,(z, §) dz—0 if 6—0. Moreover, if con-
dition IV is satisfied, we have
o*m

bZ Cl
%,(e,&):expl:— 2—6(; —_ ?)[14'0((5)]]

X[1+0(5)+0(e)],

where O(e) and O(d) are independent of J and ¢
respectively.

We can recover the results obtained by Hagedorn
{21] specialized to our setting as a direct corollary:

Corollary 2.1. If the width § of the avoided cross-
ing is rescaled according to & =\/;, then

2 2
%,(e,ﬁ>=exp[— g(% - f;)][HO(\/E)] :

Remarks. If we set §=0 in the above results, we get
P,(€, 0)=1+0(e€). This apparent contradiction
with the adiabatic theorem comes from the fact that
the eigenvectors undergo a change of labels when
J0-0. Indeed when >0, e,(t, 8)>e, (¢, 8) for any
time ¢ whereas if =0, e,(¢, 0) <e, (¢, 0) for positive
times ¢ as shown in fig. I (see (2.2) and (2.3)). Thus
w, (t, d), associated with the lower level for any 1,
tends to y, (¢, 0) if <0 and to a vector proportional
to ¥, (2, 0) if t>0. From this remark it follows that
the quantity %, (¢, 0) gives the probability 7o stay in
the eigenstate associated with ¢,(¢, 0), which must
be close to 1 according to the adiabatic theorem.
Moreover, we get the correct behaviour for that
probability since it was in shown in ref. [ 1] that when
a genuine crossing occurs between the levels, the
transition probability is of order € instead of €.

The proof of the theorem is a combination of two
kinds of techniques. We reduce the complete prob-
lem to an effective two-level system by means of a
“superadiabatic evolution” (a word introduced by
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Berry [24]) which approximates the true evolution
up to exponentially small correction terms. Then we
g0 to the complex plane and perform an analysis
similar to the one presented in ref. [4]. One of the
main difficulties is to obtain a uniform control in the
parameter o for the correction terms. The details of
the analysis can be found in ref. [25].
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