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Abstract

We consider the discrete time unitary dynamics given by a quantum walk on the lattice
Zd performed by a quantum particle with internal degree of freedom, called coin state,
according to the following iterated rule: a unitary update of the coin state takes place,
followed by a shift on the lattice, conditioned on the coin state of the particle. We study
the large time behavior of the quantum mechanical probability distribution of the position
observable in Zd when the sequence of unitary updates is given by an i.i.d. sequence of
random matrices. When averaged over the randomness, this distribution is shown to display
a drift proportional to the time and its centered counterpart is shown to display a diffusive
behavior with a diffusion matrix we compute. A moderate deviation principle is also proven
to hold for the averaged distribution and the limit of the suitably rescaled corresponding
characteristic function is shown to satisfy a diffusion equation. A generalization to unitary
updates distributed according to a Markov process is also provided.

An example of i.i.d. random updates for which the analysis of the distribution can be
performed without averaging is worked out. The distribution also displays a deterministic
drift proportional to time and its centered counterpart gives rise to a random diffusion
matrix whose law we compute. A large deviation principle is shown to hold for this example.
We finally show that, in general, the expectation of the random diffusion matrix equals the
diffusion matrix of the averaged distribution.

1 Introduction

Quantum walks are models of discrete time quantum evolution taking place on a d-dimensional
lattice. Their implementation as unitary discrete dynamical systems on a Hilbert space is
typically the following. A quantum particle with internal degree of freedom moves on an
infinite d-dimensional lattice according to the following rule. The one-step motion consists
in an update of the internal degree of freedom by means of a unitary transform in the
relevant part of the Hilbert space followed by a finite range shift on the lattice, conditioned
on the internal degree of freedom of the particle. Quantum walks constructed this way
can be considered as quantum analogs of classical random walks on lattices. Therefore, in
this context, the space of the internal degree of freedom is called coin space, the degree of
freedom is the coin state and the unitary operators performing the update are coin matrices.

Due to the important role played by classical random walks in theoretical computer
science, quantum walks have enjoyed an increasing popularity in the quantum computing
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community in the recent years, see for example [28], [3], [21], [23]. Their particular features
for search algorithm is described in [34], [4], [27] and in the review [31]. In addition, quantum
walks can be considered as effective dynamics of quantum systems in certain asymptotic
regimes. See e. g. [11], [1], [28], [26], [9], [30], for a few models of this type, and [6],
[8], [12], [14], [5] for their mathematical analysis. Moreover, quantum walk dynamics have
been shown to be an experimental reality for systems of cold atoms trapped in suitably
monitored optical lattices [19], and ions caught in monitored Paul traps [37].

While several variants and generalizations of the quantum dynamics described above are
possible, we will focus on the case where the underlying lattice is Zd and where the dimension
of the coin space is 2d. We are interested in the long time behavior of quantum mechanical
expectation values of observables that are non-trivial on the lattice only, i.e. that do not
depend on the internal degree of freedom of the quantum walker. Equivalently, this amounts
to studying a family of random vectors Xn on the lattice Zd, indexed by the discrete time
variable, with probability laws P(Xn = k) = Wk(n) defined by the prescriptions of quantum
mechanics. The initial state of the quantum walker is described by a density matrix.

The case where the unitary update of the coin variable is performed at each time step
by means of the same coin matrix is well known. It leads to a ballistic behavior of the
expectation of the position variable characterized by EW (n)(Xn) ' nV when n is large, for
some vector V . This vector and further properties of the motion can be read off the Fourier
transform of the one step unitary evolution operator.

In this paper, we consider the situation where the coin matrices used to update the
coin variable depend on the time step in a random fashion, that is a situation of temporal
disorder. Let us describe our results informally here, referring the reader to the relevant
sections for precise statements.

We assume the sequence of coin matrices consists of random unitary matrices which are
independent and identically distributed (i.i.d.) and we analyze the large n behavior of the
corresponding random distribution Wω(n) of Xω

n . We do so by studying the characteristic
function Φω

n(y) = EWω(n)(e
iyXω

n ). In Section 2, we first show a deterministic result saying
that the characteristic function at time n can be expressed in terms of a product of n
matrices, Mj , each Mj depending on the coin operator at step j only, in the spirit of the
GNS construction, see Propositions 2.9, 2.13. In the random case, the Mj ’s become i.i.d.
random matrices Mω.

Then we address the behavior of the averaged distribution w(n) = Eω(Wω(n)) of Xn,
for n large in Section 3. Theorem 3.10 says under certain natural spectral assumptions on
the matrices Eω(Mω) that Xn displays a ballistic behavior

Ew(n)(Xn) ' nr ∈ Rd

where r is a drift vector depending only on the properties of the deterministic shift operation
following the random update of the coin state. Moreover, the centered random vector
(Xn−nr) is shown to display a diffusive behavior characterized by a diffusion matrix D we
compute:

Ew(n)((Xn − nr)i(Xn − nr)j) ' nDij , i, j = 1, 2, · · · , d.
We also show in Theorem 3.10 that for any t > 0, y ∈ Rd, the averaged and rescaled
characteristic function e−i[tn]ry/

√
nEω(Φω

[tn](y/
√
n)) converges for large n, in a certain sense,
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to the Fourier transform of superpositions of solutions to a diffusion equation, with diffusion
matrix D(v), v ∈ Td, the d-dimensional torus:

e−i[tn]ry/
√
nEω(Φω

[tn](y/
√
n))→

∫
Td
e−

t
2
〈y|D(v)y〉dv/(2π)d.

In Section 4, we briefly discuss the relationship between the drift vector r and the
diffusion matrix D in case the deterministic shift can take arbitrarily large values. Then we
investigate finer properties of the behavior in n of the averaged distribution in Section 5.
Theorem 5.2 states that a moderate deviation principle holds for w(n): there exists a rate
function Λ∗ : Rd → [0,∞] such that, for any set Γ ∈ Rd and any 0 < α < 1, as n→∞,

P(Xn − nr ∈ n(α+1)/2 Γ) ' e−nα infx∈Γ Λ∗(x). (1.1)

In Section 6, we consider a distribution of coin operators which allows us to analyze
the random distribution Wω(n), without averaging over the temporal disorder. This dis-
tribution is supported, essentially, on the unitary permutation matrices. We show that in
this case Wω(n) coincide with the distribution of a Markov chain with finite state space
whose transition matrix we compute explicitly. Consequently, we get that the centered
random vector Xω

n −nr converges in distribution to a normal law N (0,Σ), with an explicit
correlation matrix Σ, and an explicit deterministic drift vector r given in Theorem 6.6. In
turn, this allows us to show in Corollary 6.8 the existence of a random diffusion matrix Dω
such that

EWω(n)((X
ω
n − nr)i(Xω

n − nr)j) ' nDωij , i, j = 1, 2, · · · , d,

whose matrix elements Dωij are distributed according to the law of Xω
i X

ω
j , where the vector

Xω is distributed according to N (0,Σ). Finally, a large deviation principle for the random
distribution Wω(n) is stated as Theorem 6.14. This example also shows that we cannot
expect almost sure convergence results for random quantum walks.

We close the paper by showing how to generalize the results of Sections 3 and 5 to
the case where the random coin matrices are not independent anymore and are distributed
according to a Markov process with a finite number of states. See Section 7.

Let us comment about the literature. In a sense, the situation we address corresponds
to the cases considered in [29], [17], [15] where the dynamics is generated by a quantum
Hamiltonian with a time dependent potential generated by a random process. For quantum
walks, the role of the random time dependent potential is played by the random coin
operators whereas the role of the deterministic kinetic energy is played by the shift.

Quantum walks with unitary random coin operators have been tackled in some numerical
works, see [32], for example. On the analytical side, we can mention [24] (see also [16]) where
particular hypotheses on the coin matrices reduce the problem to the study of correlated
random walks. During the completion of the paper, the preprint [2] appeared. It reviews
and addresses several types of quantum walks, deterministic and random, decoherent and
unitary. In particular, the averaged dynamics of random quantum walks of the type studied
in the present paper are tackled, by means of a similar approach. The results we prove,
however, are more detailed and go beyond those of [2].
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We finally note that there exist another instance of random quantum walks in which
the randomness lies in space rather than in time. In the present context, this means the
coin operators depend on the sites of the lattice and are chosen according to some law,
in the same spirit as for the Anderson model. Dynamical or spectral localization are the
phenomena on interest there. See for example [22],[16], [33] and references therein for results
about such questions.

Acknowledgements It is a pleasure to thank L. Bruneau, E. Hamza, M. Merkli and
C.A. Pillet for fruitful discussions and suggestions about this work.

2 General Setup

Let H = C2d ⊗ l2(Zd) be the Hilbert space of the quantum walker in Zd with 2d in-
ternal degrees of freedom. We denote the canonical basis of C2d by {|τ〉}τ∈Id± , where

I± = {±1,±2, . . . ,±d}, so that the orthogonal projectors on the basis vectors are noted
Pτ = |τ〉〈τ |, τ ∈ I±. We denote the canonical basis of l2(Zd) by {|x〉}x∈Zd . We shall write
for a vector ψ ∈ H, ψ =

∑
x∈Zd ψ(x)|x〉, where ψ(x) = 〈x|ψ〉 ∈ C2d and

∑
x∈Zd ‖ψ(x)‖2C2d =

‖ψ‖2 < ∞. We shall abuse notations by using the same symbols 〈·|·〉 for scalar products
and corresponding ”bra” and ”ket” vectors on H, C2d and l2(Zd), the context allowing us
to determine which spaces we are talking about. Also, we will often drop the subscript C2d

of the norm.

A coin matrix acting on the internal degrees of freedom, or coin state, is a unitary matrix
C ∈M2d(C) and a jump function is a function r : I± → Zd.

The corresponding one step unitary evolution U of the walker on H = C2d ⊗ l2(Zd) is
given by

U = S (C ⊗ I), (2.1)

where I denotes the identity operator and the shift S is defined on H by

S =
∑
x∈Zd

∑
τ∈{1,··· ,d}

Pτ ⊗ |x+ r(τ)〉〈x|+ P−τ ⊗ |x+ r(−τ)〉〈x|

=
∑
x∈Zd

∑
τ∈I±

Pτ ⊗ |x+ r(τ)〉〈x|. (2.2)

By construction, a walker at site y with internal degree of freedom τ represented by the
vector |τ〉 ⊗ |y〉 ∈ H is just sent by S to one of the neighboring sites depending on τ
determined by the jump function r(τ)

S |τ〉 ⊗ |y〉 = |τ〉 ⊗ |y + r(τ)〉. (2.3)

The composition by C ⊗ I reshuffles or updates the coin state so that the pieces of the
wave function corresponding to different internal states are shifted to different directions,
depending on the internal state. We can write

U =
∑
x∈Zd

∑
τ∈I±

PτC ⊗ |x+ r(τ)〉〈x|. (2.4)
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Given a set of n > 0 unitary coin matrices Ck ∈ M2d(C), k = 1, · · · , n, we define the
corresponding discrete evolution from time zero to time n by

U(n, 0) = UnUn−1 · · ·U1, where Uk = S (Ck ⊗ I). (2.5)

Let f : Zd → C and define the multiplication operator F : D(F ) → H on its do-
main D(F ) ⊂ H by (Fψ)(x) = f(x)ψ(x), ∀x ∈ Zd, where ψ ∈ D(F ) is equivalent to∑

x∈Zd |f(x)|2‖ψ(x)‖2Cd <∞. Note that F acts trivially on the coin state.
When f is real valued, F is self-adjoint and will be called a lattice observable.

2.1 Vector states

In particular, consider a walker characterized at time zero by the normalized vector ψ0 =
ϕ0 ⊗ |0〉, i.e. which sits on site 0 with coin state ϕ0. The quantum mechanical expectation
value of a lattice observable F at time n is given by 〈F 〉ψ0(n) = 〈ψ0|U(n, 0)∗FU(n, 0)ψ0〉.

As in [16], a straightforward computation yields

Lemma 2.1 With the notations above,

U(n, 0) =
∑
x∈Zd

∑
τ1,τ2,...,τn∈I±n

PτnCnPτn−1Cn−1 · · ·Pτ1C1

⊗|x+ r(τ1) + · · ·+ r(τn)〉〈x|
≡

∑
x∈Zd

∑
k∈Zd

Jk(n)⊗ |x+ k〉〈x|, (2.6)

where
Jk(n) =

∑
τ1,τ2,...,τn∈I±n∑n

s=1 r(τs)=k

PτnCnPτn−1Cn−1 · · ·Pτ1C1 ∈M2d(C) (2.7)

and Jk(n) = 0, if
∑n

s=1 r(τs) 6= k. Moreover, for any lattice observable F , and any normal-
ized vector ψ0 = ϕ0 ⊗ |0〉,

〈F 〉ψ0(n) = 〈ψ0|U∗(n, 0)FU(n, 0)ψ0〉 =
∑
k∈Zd

f(k)〈ϕ0|Jk(n)∗Jk(n)ϕ0〉

≡
∑
k∈Zd

f(k)Wk(n), (2.8)

where Wk(n) = ‖Jk(n)ϕ0‖2C2d satisfy∑
k∈Zd

Wk(n) =
∑
k∈Zd
‖Jk(n)ϕ0‖2C2d = ‖ψ0‖2H = 1. (2.9)

Remark 2.2 We view the non-negative quantities {Wk(n)}n∈N∗ as the probability distri-
butions of a sequence of Zd-valued random variables {Xn}n∈N∗ with

Prob(Xn = k) = Wk(n) = 〈ψ0|U(n, 0)∗(I⊗ |k〉〈k|)U(n, 0)ψ0〉 = ‖Jk(n)ϕ0‖2C2d , (2.10)

in keeping with (2.8). In particular, 〈F 〉ψ0(n) = EWk(n)(f(Xn)). We shall use freely both
notations.
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Remark 2.3 All sums over k ∈ Zk are finite since Jk(n) = 0 if maxj=1,...,d |kj | > ρn, for
some ρ > 0 since the jump functions have finite range.

We are particularly interested in the long time behavior, n >> 1, of 〈X2〉ψ0(n), the expec-
tation of the observable X2 corresponding to the function f(x) = x2 on Zd with initial
condition ψ0. Or, in other words, in the second moments of the distributions {Wk(n)}n∈N∗ .

Let us proceed by expressing the probabilities Wk(n) in terms of the Ck’s, k = 1, . . . , n.
We need to introduce some more notations. Let In(k) = {τ1, · · · , τn}, where τl ∈ I±,
l = 1, . . . , n and

∑n
l=1 r(τl) = k. In other words, In(k) denotes the set of paths that link

the origin to k ∈ Zd in n steps via the jump function r. Let us write ϕ0 =
∑

τ∈I± aτ |τ〉.

Lemma 2.4

Wk(n) =
∑

τ0,{τ1,··· ,τn}∈In(k)

τ ′0,{τ
′
1,··· ,τ

′
n}∈In(k)

s.t. τn=τ ′n

aτ ′0aτ0〈τ
′
0|C∗1 τ ′1〉〈τ1|C1τ0〉

n∏
s=2

〈τ ′s−1|C∗s τ ′s〉〈τs|Cs τs−1〉. (2.11)

We approach the problem through the characteristic functions Φn of the probability
distributions {W·(n)}n∈N∗ defined by the periodic function

Φn(y) = EW (n)(e
iyXn) =

∑
k∈Zd

Wk(n)eiyk, where y ∈ [0, 2π)d. (2.12)

To emphasize the dependence in the initial state, we will sometimes write Φϕ0
n and/or

Wϕ0

k (n). All periodic functions will be viewed as functions defined on the torus, i.e.
[0, 2π)d ' Td. The asymptotic properties of the quantum walk emerge from the analy-
sis of the limit in an appropriate sense as n → ∞ of the characteristic function in the
diffusive scaling

lim
n→∞

Φn(y/
√
n) (2.13)

Looking for a relation between Wk(n) and Wk(n+1), we find that the condition τn = τ ′n
is a nuisance we can relax now and deal with later.

Consider the set of paths Gn(K) in Z2d from the origin to K =

(
k
k′

)
∈ Z2d via the

(extended) jump function defined by

R : I2
± → Z2d, R

(
τs
τ ′s

)
=

(
r(τs)
r(τ ′s)

)
, (2.14)

that is paths of the form (T1, · · · , Tn−1, Tn), where Ts =

(
τs
τ ′s

)
∈ I2
±, s = 1, 2, . . . , n, and∑n

s=1R(Ts) = K. Then note that the generic term in Lemma 2.4 reads

〈τ ′s−1|C∗s τ ′s〉〈τs|Cs τs−1〉 = 〈τ ′s|Cs τ ′s−1〉〈τs|Cs τs−1〉 ≡ 〈τs⊗τ ′s|(Cs⊗Cs) τs−1⊗τ ′s−1〉, (2.15)

where, in the last expression, we introduced the unitary tensor product

V (s) ≡ Cs ⊗ Cs in C2d ⊗ C2d. (2.16)
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The canonical basis of C2d ⊗ C2d is {|τ ⊗ τ ′〉}(τ,τ ′)∈I2
±

, hence, with the identification

T =

(
τ
τ ′

)
' |τ ⊗ τ ′〉, (2.17)

we can write the matrix elements of V (s) as

〈σ ⊗ σ′|(Cs ⊗ Cs) τ ⊗ τ ′〉 ≡ V (s)ST , S =

(
σ
σ′

)
, T =

(
τ
τ ′

)
∈ I2
±. (2.18)

With the decompositions

ϕ0 =
∑
τ∈I±

aτ |τ〉 ⇒ χ0 = ϕ0 ⊗ ϕ0 =
∑

(τ,τ ′)∈I2
±

aτaτ ′ |τ ⊗ τ ′〉 (2.19)

we can write

〈T1|V (1)χ0〉 =
∑
T0∈I2

±

V (1)T1T0AT0 , where AT0 = aτ0aτ ′0 , for T0 =

(
τ0

τ ′0

)
. (2.20)

With these notations, we consider the weight of n-step paths in Z2d from the origin to
K, with last step T , defined by

W T
K(n) =

∑
(T1,··· ,Tn−1)∈I2±

n−1
s.t.

(T1,··· ,Tn−1,T )∈Gn(K)

V (n)TTn−1 · · ·V (2)T2T1V (1)T1χ0 . (2.21)

Note that by construction, see Lemma 2.4,

Wk(n) =
∑
T∈H±

W T
Kk

(n) with Kk =

(
k
k

)
and H± =

{(
τ
τ

)
, τ ∈ I±

}
. (2.22)

We also introduce corresponding periodic functions ΦT
n , n > 0 by

ΦT
n (Y ) =

∑
K∈Z2d

eiY KW T
K(n), where Y ∈ T2d (2.23)

and, see (2.20),
ΦT

0 (Y ) = AT . (2.24)

These definitions lead to the sought for relationships:

Proposition 2.5 For all n ∈ N, T ∈ I2
±, K ∈ Z2d and Y ∈ T2d,

W T
K(n+ 1) =

∑
S∈I2

±

V (n+ 1)TSW
S
K−R(T )(n), (2.25)

ΦT
n+1(Y ) =

∑
S∈I2

±

eiY R(T )V (n+ 1)TSΦS
n(Y ). (2.26)
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We can express these relationships in a yet more concise way as follows. Recall that for
each basis vector T ' τ ⊗ τ ′ and each vector Y = (y, y′) ∈ Td × Td, we have

Y R(T ) = yr(τ) + y′r(τ ′) ∈ R. (2.27)

Introduce the vectors in C4d2 ' C2d ⊗ C2d with Y ∈ T2d and n ≥ 0

Φn(Y ) =
∑

T=(τ,τ ′)∈I2
±

ΦT
n (Y ) |τ ⊗ τ ′〉 and Φ0 =

∑
T=(τ,τ ′)∈I2

±

AT |τ ⊗ τ ′〉 (2.28)

where Φ0 is determined by the internal state ϕ0 only and is independent of Y .
With the matrices on C2d ⊗ C2d ' C4d2

expressed in the ordered basis I2
± by

D(Y ) =
∑

T=(τ,τ ′)∈I2
±

eiY R(T ) |τ ⊗ τ ′〉〈τ ⊗ τ ′|, with Y ∈ T2d, (2.29)

and
V (s) = Cs ⊗ Cs, Ms(Y ) = D(Y )V (s), (2.30)

we get the

Corollary 2.6 For any n ≥ 0 and Y ∈ T2d,

Φn(Y ) = Mn(Y )Mn−1(Y ) · · ·M1(Y )Φ0. (2.31)

Remark 2.7 The matrix D(Y ) can be expressed as a tensor product of unitary diagonal
matrices. Let Y = (y, y′) ∈ Td × Td. Then

D(y, y′) =
∑

(τ,τ ′)∈I2
±

ei(yr(τ)+y′r(τ ′))|τ ⊗ τ ′〉〈τ ⊗ τ ′| =
∑
τ∈I±

eiyr(τ)|τ〉〈τ | ⊗
∑
τ ′∈I±

eiy
′r(τ ′)|τ ′〉〈τ ′|

≡ d(y)⊗ d(y′) where d(y) =
∑
τ∈I±

eiyr(τ)|τ〉〈τ |. (2.32)

Consequently, we can write

Ms(y, y
′) = d(y)Cs ⊗ d(−y′)Cs. (2.33)

Together with the fact that Φ0 = ϕ0 ⊗ ϕ0, this yields

Φn(y, y′) = d(y)Cn · · · d(y)C1 ϕ0 ⊗ d(−y′)Cnd(−y′) · · ·C1 ϕ0

≡ Jn(y)ϕ0 ⊗ Jn(−y′)ϕ0 = (Jn(y)⊗ Jn(−y′))ϕ0 ⊗ ϕ0. (2.34)

We note here for future reference that Jn(y) is the Fourier transform of Jk(n):

Lemma 2.8 For any y ∈ Td

Jn(y) =
∑
k∈Zd

eiykJk(n). (2.35)
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Proof: With the convention (2.27), the right hand side reads∑
k∈Zd

∑
(τ1,τ2,...,τn)∈I±n∑n

s=1 r(τs)=k

eiy(r(τ1)+···+r(τn))PτnCnPτn−1Cn−1 · · ·Pτ1C1

=
∑

(τ1,τ2,...,τn)∈I±n
eiyr(τn)|τn〉〈τn|Cneiyr(τn−1)|τn−1〉〈τn−1|Cn−1 · · · eiyr(τ1)|τ1〉〈τ1|C1

= d(y)Cnd(y)Cn−1 · · · d(y)C1 = Jn(y). (2.36)

Eventually, the characteristic function Φn(y) we are interested in, see (2.12), can be
obtained from Φn(Y ). We shall denote the normalized measure on the torus Td by dṽ =
dv

(2π)d
.

Proposition 2.9 For any n ∈ N and y ∈ Td,

Φϕ0
n (y) =

∫
Td
〈Ψ1|Mn(y − v, v)Mn−1(y − v, v) · · ·M1(y − v, v)Φ0〉 dṽ, (2.37)

where
Ψ1 =

∑
T∈H±

|T 〉 =
∑
τ∈I±

|τ ⊗ τ〉. (2.38)

Proof: Following (2.22), to get Φn(y) from {ΦT
n (Y )}T∈I2

±
we need to restrict the sum in

(2.23) to K = Kk, k ∈ Zd, and to sum on all last steps T ∈ H±.
Let α be the distribution on C∞(Td × Td) defined by

α(f(·, ·)) =

∫
Td
f(v,−v)dṽ. (2.39)

Its Fourier coefficients satisfy α̂(K) = δk,k′ , for all K = (k, k′) ∈ Z2d so that∑
K=(k,k′)

eiY KW T
K(n)δk,k′ = α ?ΦT

n (Y ) = α(ΦT
n (Y − ·)). (2.40)

On concludes using periodicity and by observing that the form 〈Ψ1| yields the summation
on T ∈ H±.

Remark 2.10 Noting that Ψ1 =
∑

τ∈I± |τ ⊗ τ〉, we get

Φϕ0
n (y) =

∑
τ∈I±

∫
Td
〈τ |Jn(y − v)ϕ0〉〈τ |Jn(−v)ϕ0〉dṽ

=

∫
Td

Tr(Jn(y − v)|ϕ0〉〈ϕ0|J ∗n (−v)) dṽ

=

∫
Td

Tr(J ∗n (−v)Jn(y − v)|ϕ0〉〈ϕ0|) dṽ. (2.41)
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2.2 Density matrices

The analysis above can easily be adapted in order to accommodate more general initial
vectors or density matrices.

A density matrix ρ is a trace class non-negative operator on H = C2d ⊗ l2(Zd) which
can be represented by its kernel

ρ = (ρ(x, y))(x,y)∈Zd×Zd , where ρ(x, y) ∈M2d(C) (2.42)

such that
ρ =

∑
(x,y)∈Z2d

ρ(x, y)⊗ |x〉〈y|. (2.43)

The matrix ρ(x, y) satisfies

ρ(x, y) = ρ∗(y, x) ⇒ ρ(x, x) = ρ∗(x, x) ≥ 0 (2.44)

and its elements are given by

ρσ,τ (x, y), (σ, τ) ∈ I2
±, so that 〈σ ⊗ x|ρ τ ⊗ y〉 = ρσ,τ (x, y). (2.45)

Since ρ ≥ 0 is trace class, and Cd is finite dimensional, we have∑
x∈Zd

Trρ(x, x) = ‖ρ‖1 <∞, (2.46)

‖ρ(x, x)‖ ≤ Trρ(x, x) ≤ 2d‖ρ(x, x)‖. (2.47)

The expectation value of a lattice observable F = I⊗ f in the state corresponding to ρ
reads

〈F 〉ρ = Tr(ρ(I⊗ f)) =
∑
x∈Zd

f(x)Tr(ρ(x, x)), (2.48)

where the first trace is on H and the second on C2d, assuming that the sum converges.
If ρ0 denotes the initial density matrix, its evolution at time n under U(n, 0) defined by

(2.5) is given by
ρn = U(n, 0)ρ0U

∗(n, 0) (2.49)

and the expectation of the lattice observable F is denoted by

〈F 〉ρ0(n) = Tr(ρn(I⊗ f)), (2.50)

if it exists.
Let us specify regularity properties on the lattice observable F = I ⊗ f and the initial

density matrix ρ0 which imply that all manipulations below are legitimate.

Assumption R:
a) The lattice observable is such that, for any µ <∞, ∃Cµ <∞ such that

|f(x+ y)| ≤ Cµ|f(x)|, ∀ (x, y) ∈ Zd × Zd with ‖y‖ ≤ µ. (2.51)
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b) The kernel ρ0(x, y) is such that ∑
(x,y)∈Zd×Zd

‖ρ0(x, y)‖ <∞ (2.52)

∑
x∈Zd

|f(x)|‖ρ0(x, x)‖ <∞. (2.53)

In a similar fashion to Lemma 2.1, we can express 〈F 〉ρ0(n) in the following way

Lemma 2.11 The kernel of ρn reads

ρn(x, y) =
∑

(k,k′)∈Zd×Zd
Jk(n)ρ0(x− k, y − k′)J∗k′(n). (2.54)

Let F = I⊗ f and ρ0 satisfy Assumption R. Then ρn satisfies Assumption R b) and

〈F 〉ρ0(n) =
∑
z∈Zd

f(z)
∑

(k,k′)∈Zd×Zd
Tr(Jk(n)ρ0(z − k, z − k′)J∗k′(n))

=
∑
z∈Zd

f(z)
∑

(k,k′)∈Zd×Zd
Tr(J∗k′(n)Jk(n)ρ0(z − k, z − k′)). (2.55)

Proof: Since for all n ∈ N, the summations on k and k′ are restricted to ‖k‖ ≤ µ(n) and
‖Jk(n)‖ ≤ c(n), we need to control

Σ :=
∑
z∈Zd
|f(z)|

∑
(k,k′)∈Zd×Zd

‖ρ0(z − k, z − k′)‖ (2.56)

under Assumption R. Now, ρ0 ≥ 0 implies Pxyρ0Pxy ≥ 0, where Pxy is the orthogonal
projector on H

Pxy = I⊗ |x〉〈x|+ I⊗ |x〉〈y|+ I⊗ |y〉〈x|+ I⊗ |y〉〈y|. (2.57)

In other words, the following 4d× 4d block matrix is non-negative(
ρ(x, x) ρ(x, y)
ρ∗(x, y) ρ(y, y)

)
. (2.58)

According to Lemma 1.21 in [36], this is equivalent to ρ(x, x) ≥ 0, ρ(y, y) ≥ 0 and ∃W ,
‖W‖ ≤ 1 such that ρ(x, y) = ρ(x, x)1/2Wρ(y, y)1/2. Hence,

‖ρ(x, y)‖ ≤ ‖ρ(x, x)‖1/2‖ρ(y, y)‖1/2. (2.59)

Applied to (2.56), this yields together with Assumption R and Cauchy Schwarz,

Σ ≤
∑
z∈Zd
|f(z)|1/2|f(z)|1/2

∑
(k,k′)∈Zd×Zd

‖ρ0(z − k, z − k)‖1/2‖ρ0(z − k′, z − k′)‖1/2

≤ C2
µ(n)

∑
(k,k′)∈Zd×Zd

‖k‖≤µ(n),‖k′‖≤µ(n)

∑
z∈Zd

(|f(z − k)|‖ρ0(z − k, z − k)‖)1/2 ×

×(|f(z − k′)|‖ρ0(z − k′, z − k′)‖)1/2

≤ C2
µ(n)

 ∑
‖k‖≤µ(n),‖k′‖≤µ(n)

1

 ∑
x∈Zd

|f(x)|‖ρ0(x, x)‖ <∞. (2.60)
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This generalization of Lemma 2.1 allows us to give an interpretation in terms of classical
random walk on Zd

P (Xn = z) = Tr(ρn(z, z)) ≡W ρ0
z (n), (2.61)

with corresponding characteristic function Φρ0
n (y) =

∑
z∈Zd e

iyzW ρ0
z (n).

Due to the expression of Wz(n) as a convolution, the characteristic function will be
expressed as a product of Fourier transforms.

For Y = (y, y′) ∈ Td × Td, we define the matrix valued Fourier transform of a density
matrix ρ0 by

R0(Y ) =
∑

(k,k′)∈Zd×Zd
ei(yk+y′k′)ρ0(k, k′) ∈M2d(C). (2.62)

Because of (2.46) and (2.44), R0 is uniformly continuous in Y and satisfies

R∗0(y, y′) = R0(−y′,−y). (2.63)

Then, the Fourier transform of Jn being J Lemma 2.8, the Fourier transform Rn of ρn
reads

Rn(y, y′) =
∑

(x,x′)∈Zd×Zd
ei(yx+y′x′)

∑
(k,k′)∈Zd×Zd

Jk(n)ρ0(x− k, x′ − k′)J∗k′(n)

= Jn(y)R0(y, y′)J ∗n (−y′) (2.64)

Proceeding as above, we arrive at the generalization of (2.41)

Lemma 2.12 For any y ∈ Td,

Φρ0
n (y) =

∫
Td

TrRn(y − v, v) dṽ (2.65)

=

∫
Td

Tr (Jn(y − v)R0(y − v, v)J ∗n (−v)) dṽ

=

∫
Td

Tr (J ∗n (−v)Jn(y − v)R0(y − v, v)) dṽ.

Let
R0(y, y′) =

∑
(τ,τ ′)∈I2

±

〈τ |R0(y, y′)τ ′〉 |τ ⊗ τ ′〉 ∈ C2d ⊗ C2d. (2.66)

Then, making use of the identity

Mn(y, y′)Mn−1(y, y′) · · ·M1(y, y′) = Jn(y)⊗ Jn(−y′), (2.67)

it is straightforward to get from (2.65) the following generalization of Proposition 2.9

Proposition 2.13

Φρ0
n (y) =

∫
Td
〈Ψ1|Mn(y − v, v)Mn−1(y − v, v) · · ·M1(y − v, v)R0(y − v, v)〉dṽ. (2.68)
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Remark 2.14 The map y 7→ R0(y − v, v) is continuous only under (2.46). Under As-
sumption R for an observable increasing at infinity, this map becomes more regular.

Remark 2.15 The procedure consisting in extending the space C2d where the Cj’s act to
the tensor product C2d⊗C2d where we consider Cj⊗Cj is parallel to the GNS construction.
Once the Fourier transform in position space is taken, it allows us to write the action of
the one-step dynamics in the coin variables as the action of a unitary matrix in C2d ⊗ C2d

and to replace the density matrix by a vector.

3 Random framework

For a deterministic non periodic set of coin operators, not much can be said about 〈F 〉ψ0(n)
in general. Therefore we consider the following random quantum dynamical system which
defines a quantum walk with random update of the internal degrees of freedom at each
time step. Let C(ω) be a random unitary matrix on C2d with probability space (Ω, σ, dµ),
where dµ is a probability measure. We consider the random evolution operator obtained
from sequences of i.i.d. coin matrices on (ΩN∗ ,F , dP), where F is the σ-algebra generated
by cylinders and dP = ⊗k∈N∗dµ, by

Uω(n, 0) = Un(ω)Un−1(ω) · · ·U1(ω), where Uk(ω) = S (C(ωk)⊗ I), (3.1)

and ω = (ω1, ω2, ω3, . . . ) ∈ ΩN∗ . The evolution operator at time n is now given by a product
of i.i.d. unitary operators on H. We shall denote statistical expectation values with respect
to P by E.

All results of the previous section apply, with each occurrence of Cs replaced by C(ωs). A
superscript ω will mention the resulting randomness of the different quantities encountered.
In particular, the random dynamical system at hands yields random matrices Jωk (n) ∈
M2d(C), which, in turn, define random probability distributions {Wω

k (n)}n∈N∗ on Zd which
satisfy (2.9) for all n ∈ N∗ and ω ∈ ΩN∗ . The corresponding characteristic functions Φω

n

become random Fourier series whereas Φω
n(Y ) is obtained by the following product of i.i.d.

random matrices
Φω
n(Y ) = Mωn(Y )Mωn−1(Y ) · · ·Mω1(Y )Φ0 (3.2)

where, with Y = (y, y′),

Mωs(Y ) = D(Y )V (ωs) = d(y)C(ωs)⊗ d(−y′)C(ωs) (3.3)

are distributed according to the image of dµ by the inverse mapping C 7→ D(Y )C ⊗ C.

3.1 Diffusive averaged dynamics

We consider in that section the statistical average of the motion performed by random
quantum walk, and, more specifically, its diffusive characteristics. For the lattice observable
X2, we will derive results regarding the long time behavior of

E(〈X2〉ωψ0
)(n) = E〈U∗ω(n, 0)ψ0|X2Uω(n, 0)ψ0〉 = E(EWω

k (n)(X
2
n)). (3.4)
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It means, see (2.8), that we consider the motion corresponding to the averaged probability
distributions defined by

wk(n) := E(Wω
k (n)), k ∈ Zd, n ∈ N∗, (3.5)

with corresponding characteristic function

Φn(y) = Ew(n)(e
iyXn) =

∑
k∈Zd

wk(n)eiky. (3.6)

Remark 3.1 To stress the dependence on ω in the distribution Wω
k (n), we shall denote

the corresponding random vector on the lattice by Xω
n . When we consider the averaged

distribution w(n) instead, we shall write Xn for the corresponding random vector.

Our results generalize those of [24] in the sense that the distribution of the random coin
matrices considered here is arbitrary. As a consequence, the analysis cannot be mapped to
that of a persistent or correlated classical random walk on the lattice, as was observed in
[24].

Let E and M(Y ) be the matrices defined by

E = E(V (ω)) = E(C(ω)⊗ C(ω)) and M(Y ) = D(Y )E . (3.7)

Note that while V (ω) is a unitary tensor product, its expectation E is neither unitary, nor
a tensor product in general. But ‖E‖ ≤ 1 and therefore ‖M(Y )‖ ≤ 1.

Since the {C(ωs)}s∈N∗ are i.i.d., we immediately get from Corollary 2.6 and Proposition
2.9 that

E(Φω
n)(Y ) = (M(Y ))nΦ0, (3.8)

so that

E(Φω
n)(y) =

∫
Td
〈Ψ1|(M(y − v, v))nΦ0〉 dṽ. (3.9)

The analysis of the diffusive scaling limit (2.13) now relies on the spectral properties of the
matrices E and M(Y ).

3.2 Spectral properties

The structure of these matrices implies the following deterministic and averaged statements:

Lemma 3.2 Let V (ω) = C(ω) ⊗ C(ω), E = E(V (ω)), M(Y ) = D(Y )E and let S denotes
the unitary involution defined by Sϕ⊗ ψ = ψ ⊗ ϕ, for all ϕ,ψ ∈ C2d.

Then, for all ω and all y, Ψ1 =
∑

τ∈I± |τ ⊗ τ〉 is invariant under V (ω), E ,M(y,−y),S
and their adjoints. Consequently

‖E‖ = Spr (E) = ‖M(y,−y)‖ = Spr (M(y,−y)) = 1, (3.10)

where Spr denotes the spectral radius. Moreover,

SV (ω)S = V (ω), SM(y,−y)S =M(y,−y), SES = E , (3.11)

so that

σ(V (ω)) = σ(V (ω)), σ(E) = σ(E), σ(M(y,−y)) = σ(M(y,−y)). (3.12)
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Remark 3.3 For M(Y ), we only have

Spr (M(Y )) ≤ ‖M(Y )‖ ≤ 1. (3.13)

Remark 3.4 Before taking expectation values, 1 is a eigenvalue at least 2d times degenerate
for the unitary matrices V (ω) and Mω(y,−y), for all ω and y, because of their tensor product
structure (2.16), (2.33).

We shall work under an assumption which implies that in the long run, the averaged
quantum walk loses track of interferences and acquires a universal diffusive behavior. At
the spectral level, this is expressed by the fact that after taking expectation values, 1 is the
only eigenvalue of M(y,−y) = E(Mω(y,−y)) on the unit circle and it is simple.

Let D(z, r) ⊂ C denote the open disc of radius r centered at z ∈ C.

Assumption S: For all v ∈ [0, 2π)d = Td,

σ(M(−v, v)) ∩ ∂D(0, 1) = {1} and the eigenvalue 1 is simple. (3.14)

Remark 3.5 Actually, because of the form of (3.9), it is enough to consider the spectrum
of the restriction of M(−v, v) to the M∗(Y )-cyclic subspace for generated by Ψ1. Set

I = Span {M∗(Y )kΨ1, k ∈ N, Y ∈ Td × Td}, (3.15)

and let PI = P ∗I be the orthogonal projector onto I. If PI 6= I, we can work under the
weaker

Assumption S’: For all v ∈ [0, 2π)d = Td,

σ(M(−v, v)|I) ∩ ∂D(0, 1) = {1} and the eigenvalue 1 is simple. (3.16)

Indeed, note that M∗(Y )PI = PIM∗(Y )PI so that, at the level of linear forms

〈Ψ1|M(Y )n = 〈M∗(Y )nPIΨ1| = 〈Ψ1|(PIM(Y )PI)
n = 〈Ψ1|M(Y )|In . (3.17)

While it is often necessary in applications to use S’, see the examples, we keep working
under S below in order not to burden the notation.

Let Ψ0 = Ψ1/‖Ψ1‖. Under assumption S, Ψ0 spans the one dimensional spectral
subspace of M(−v, v) associated with the eigenvalue 1. Moreover, by Lemma 3.2, the
corresponding rank one spectral projector reads P = |Ψ0〉〈Ψ0| and is v-independent. With
Q = I− P , we have the spectral decomposition

M(−v, v) = P +QM(−v, v)Q (3.18)

where, under assumption S, ∃ ε < 1, independent of v ∈ Td such that SprQM(−v, v)Q ≤ ε.

In keeping with (3.9) and the diffusive scaling (2.13) to be used below, we perform a
perturbative analysis of the spectrum of M(y − v, v) for small values of ‖y‖, uniformly in
v ∈ Td. Let us introduce the following notation for (y, v) ∈ Td × Td

Mv(y) =M(y − v, v), so that Mv(0) =M(−v, v). (3.19)
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Now, with D(y, y′) = d(y)⊗ d(y′), see (2.32)

Mv(y) = D(y, 0)Mv(0) =Mv(0) +
∑
τ∈I±

(eiyr(τ) − 1)|τ〉〈τ | ⊗ IMv(0)

≡ Mv(0) + F (y)Mv(0), (3.20)

where ‖Mv(0)‖ = 1 and ‖F (y)Mv(0)‖ ≤ c‖y‖, with c independent of v.
Since the map (y, v) 7→ Mv(y) is actually analytic in Cd × Cd, we can say more. For

ν > 0, let T dν = {z ∈ Cd | <z ∈ Td, =zj < ν, j = 1, . . . , d.} ⊂ Cd be a complex neighborhood
of Td. For y0 > 0, let B(0, y0) = {y ∈ Cd | ‖y‖ ≤ y0}.

Analytic perturbation theory, see [18], then yields the following

Lemma 3.6 Under assumption S, there exists 0 < δ < 1, ν = ν(δ) > 0 and y0 = y0(δ) > 0
such (y, v) ∈ (T dν ∩ B(0, y0))× T dν implies

σ(Mv(y)) ∩D(1, δ) = {λ1(y, v)} (3.21)

σ(Mv(y)) \ {λ1(y, v)} ⊂ D(0, 1− δ). (3.22)

Moreover, λ1(y, v) is simple, analytic in (T dν ∩B(0, y0))×T dν and λ1(0, v) = 1 for all v ∈ T dν .
The corresponding spectral decomposition reads

Mv(y) = λ1(y, v)P (y, v) +MQ(y, v), (3.23)

where P (y, v) is analytic in (T dν ∩ B(0, y0))× T dν and P (0, v) = P for all v ∈ T dν .
With Q(y, v) = I − P (y, v), the restriction MQ(y, v) = Q(y, v)Mv(y)Q(y, v) satisfies
Spr (MQ(y − v, v)) < 1− δ.

We need to compute λ1(y, v) = Tr(P (y, v)Mv(y)) to second order in y. We expand
F (y) as

F (y) = F1(y) + F2(y) +O(‖y‖3) (3.24)

=
∑
τ∈I±

iyr(τ) |τ〉〈τ | ⊗ I−
∑
τ∈I±

(yr(τ))2

2
|τ〉〈τ | ⊗ I +O(‖y‖3)

and introduce the (unperturbed) reduced resolvent Sv(z) for v ∈ T dν and z in a neighborhood
of 1 such that

(Mv(0)− z)−1 =
P

1− z
+ Sv(z) with P = |Ψ0〉〈Ψ0|. (3.25)

We have for a simple eigenvalue, (see [18] p.69)

λ1(y, v) = 1 + Tr(F1(y)Mv(0)P ) (3.26)

+ Tr(F2(y)Mv(0)P − F1(y)Mv(0)Sv(1)F1(y)Mv(0)P ) +Ov(‖y‖3).

Explicit computations with symmetry considerations yield
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Lemma 3.7 For all v ∈ T dν and y ∈ B(0, y0), there exists a symmetric matrix D(v) ∈
Md(C) such that

λ1(y, v) = 1 +
i

2d

∑
τ∈I±

yr(τ) +Ov(‖y‖3)

+
1

2d

∑
τ∈I±

(yr(τ))2

2
+

∑
τ,τ ′∈I±

(yr(τ))(yr(τ ′))

{
〈τ ⊗ τ |Sv(1)τ ′ ⊗ τ ′〉 − 1

2d

}
≡ 1 +

i

2d

∑
τ∈I±

yr(τ)− 1

2
〈y|D(v)y〉+Ov(‖y‖3). (3.27)

The map v 7→ D(v) is analytic in T dν ; when v ∈ Td, D(v) ∈ Md(R) is non-negative and

D(v)j,k = ∂2

∂yj∂yk
λ(0, v), j, k ∈ {1, 2, . . . , d}. Moreover, Ov(‖y‖3) is uniform in v ∈ T dν .

Proof: Existence and analyticity in v of D(v) follow from analyticity of λ1 in y and

analyticity of Sv(1) in v, see (3.25). Since D(v)j,k = ∂2

∂yj∂yk
λ(0, v), the matrix is symmetric.

For v ∈ Td, the symmetry (3.11) implies SSv(1)S = Sv(1) so that

〈τ ′ ⊗ τ ′|Sv(1)τ ⊗ τ〉 = 〈τ ′ ⊗ τ ′|SSv(1)Sτ ⊗ τ〉 = 〈τ ′ ⊗ τ ′|Sv(1)τ ⊗ τ〉. (3.28)

Hence the matrix elements D(v) for v ∈ Td are real as well. Finally, (3.13) implies that
〈y|D(v)y〉 ≥ 0 for all y ∈ Td.

Remark 3.8 Using the notation f = 1
2d

∑
τ∈I± f(τ) for any function on I±, D(v) reads

D(v) = 2|r〉〈r| − 1

2
|r〉〈r| − 1

d

∑
τ,τ ′∈I±

|r(τ)〉〈τ ⊗ τ |Sv(1)τ ′ ⊗ τ ′〉〈r(τ ′)|, (3.29)

where the ”bra” and ”ket” notation is understood in Rd for vectors r(τ) and in C2d ⊗ C2d

for τ ⊗ τ .

We are now set to prove the

Proposition 3.9 Under assumption S, uniformly in v ∈ T dν , in y in compact sets of C
and in t in compact sets of R∗+,

lim
n→∞

M[tn]
v (y/n) = eityrP, (3.30)

lim
n→∞

M[tn]
v (y/

√
n)e−i[tn]ry/

√
n = e−

t
2
〈y|D(v)y〉P. (3.31)

Proof: Let v ∈ T dν , t ∈ G ⊂ R∗+ and y ∈ K ⊂ C, G and K compact. We consider n large
enough so that y/

√
n and y/n belong to B(0, y0), uniformly in y ∈ K. The decomposition

(3.23) implies for any n large enough,

M[tn]
v (y) = λ

[tn]
1 (y, v)P (y, v) +M[tn]

Q (y, v) (3.32)
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where Lemma 3.6 implies the existence of c > 0 and 1 > δ′ > δ, uniform in (y, v, t) ∈
T dν ×K ×G, such that

‖M[tn]
Q (y, v)‖ ≤ cδ′tn. (3.33)

Moreover, by Lemma 3.7,

λ
[tn]
1 (y/n, v) =

(
1 + i

ry

n
+Ov(‖y‖2/n2)

)[tn]

(3.34)

n→∞
−→ eityr,

λ
[tn]
1 (y/

√
n, v)e

−i[tn] ry√
n =

{
e
−i ry√

n

(
1 + i

ry√
n
− 〈y|D(v)y〉

2n
+Ov

(
‖y‖3

n3/2

))}[tn]

(3.35)

n→∞
−→ e−

t
2
〈y|D(v)y〉,

and both P (y/
√
n, v) and P (y/n, v) tend to P as n→∞, uniformly in (v, y) ∈ T dν ×K.

With these technical results behind us, we come to the main results of this section which
are the existence of a diffusion matrix and central limit type behaviors.

Let N (0,Σ) denote the centered normal law in Rd with positive definite covariance
matrix Σ and let us write Xω ' N (0,Σ) a random vector Xω ∈ Rd with distribution
N (0,Σ). The superscript ω can be thought of as a vector in Rd such that for any Borel set
A ⊂ Rd

P(Xω ∈ A) =
1

(2π)d/2
√

det(Σ)

∫
A
e−

1
2
〈ω|Σ−1ω〉dω. (3.36)

The corresponding characteristic function is ΦN (y) = E(eiyX
ω
) = e−

1
2
〈y|Σy〉.

The first result concerning the asymptotics of the random variable Xn reads as follows.

Theorem 3.10 Under Assumption S, uniformly in y in compact sets of C and in t in
compact sets of R∗+,

lim
n→∞

Φϕ0

[tn](y/n) = eityr (3.37)

lim
n→∞

e
−i[tn] ry√

nΦϕ0

[tn](y/
√
n) =

∫
Td
e−

t
2
〈y|D(v)y〉 dṽ, (3.38)

where the right hand side admits an analytic continuation in (t, y) ∈ C× C2.
In particular, for any (i, j) ∈ {1, 2, . . . , d}2,

lim
n→∞

〈Xi〉ψ0(n)

n
= ri (3.39)

lim
n→∞

〈(X − nr)i(X − nr)j〉ψ0(n)

n
=

∫
Td

Di j(v) dṽ. (3.40)

Remark 3.11 We will call diffusion matrices both D(v) and D =
∫
Td D(v) dṽ.
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For any s = (s1, s2, . . . , sd) ∈ Nd with |s| =
∑d

j=1 sj and Ds
y =

(
∂
∂y1

)s1
· · ·
(
∂
∂yd

)sd
,

lim
n→∞

〈Xs1
1 X

s2
2 · · ·X

sd
d 〉ψ0(n)

n|s|
= rs11 r

s2
2 · · · r

sd
d , (3.41)

lim
n→∞

〈(X − nr)s11 (X − nr)s22 · · · (X − nr)
sd
d 〉ψ0(n)

n|s|/2

= (−i)|s|
∫
Td

(Ds
ye
− 1

2
〈y|D(v)y〉)|y=0 dṽ, (3.42)

which shows that all odd moments (|s| odd) of the centered variable are zero whereas all
even moments can be computed explicitly.

Proof: This is a direct consequence of Proposition 3.9 and definition (3.9). The unifor-
mity of the convergence in the variables (v, y, t) in compact sets provides analyticity after
integration in v ∈ Td and commutation of the limit and derivations.

For initial conditions corresponding to a density matrix ρ0, we have

Corollary 3.12 Under Assumption S, for any t ≥ 0,

lim
n→∞

Φρ0

[tn](y/n) = eityr, (3.43)

lim
n→∞

e
−i[tn] ry√

nΦρ0

[tn](y/
√
n) =

∫
Td
e−

t
2
〈y|D(v)y〉 〈Ψ1|R0(−v, v)〉dṽ

=

∫
Td
e−

t
2
〈y|D(v)y〉Tr (R0(−v, v))dṽ, (3.44)

where
R0(−v, v) =

∑
(k,l)∈Zd×Zd

eivlρ0(k, k + l). (3.45)

Remark 3.13 Under Assumption R for the observable X2, we deduce that for any (i, j) ∈
{1, 2, . . . , d}2,

lim
n→∞

〈Xi〉ρ0(n)

n
= ri, (3.46)

lim
n→∞

〈(X − nr)i(X − nr)j〉ρ0(n)

n
=

∫
Td

Di j(v)Tr (R0(−v, v)) dṽ. (3.47)

From Corollary 3.12, and Theorem 3.10, we gather that the characteristic function of the
centered variable Xn − nr in the diffusive scaling T = nt, Y = y/

√
n, where n → ∞,

converges to ∫
Td
F

(
e−

1
2t
〈x|D−1(v)x〉

(t2π)d/2
√

detD(v)

)
(y) Tr (R0(−v, v))dṽ, (3.48)

where the function under the Fourier transform symbol F is a solution to the diffusion
equation

∂ϕ

∂t
=

1

2

d∑
i,j=1

Dij(v)
∂2ϕ

∂xi∂xj
. (3.49)
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As explained in [17], [15], it follows that the position space density wk([nt])δ(
√
nx−k) con-

verges in the sense of distributions to a superposition of solutions to the diffusion equations
(3.49) as n→∞.

In case where the diffusion matrix D(v) = D is independent of v, Theorem 3.10 with
t = 1 says that the characteristic function of the rescaled variable (Xn − nr)/

√
n defined

by Ewk(n)(e
iy(Xn−nr)/

√
n) converges to e−

1
2
〈y|Dy〉 which is the characteristic function of the

normal law N (0,D). Hence, by Lévy’s continuity theorem, see e.g. Theorem 7.6 in [7],

Corollary 3.14 Assume S, suppose D(v) = D > 0 is independent of v ∈ Td. Then, for
any initial vector Ψ0 = ϕ0 ⊗ |0〉, we have as n→∞, in distribution,

Xn − nr√
n

−→ Xω ' N (0,D). (3.50)

Remark 3.15 All results of this section hold under Assumption S’ only, mutatis mutandis.
In particular, if the invariant subspace I coincides with span {|σ ⊗ σ〉}σ∈I±, the matrix
Mv(y) is actually independent of v, because D(−v, v) acts like the identity on the latter
space. Consequently, the diffusion matrix is independent of v as well.

Remark 3.16 We have chosen to randomize the coin state updates only, but it is possible
to adapt the method to deal with random jump functions as well.

3.3 Example

For d = 1, consider the set of three unitary matrices in C2 given by

{
I,
(

0 1
1 0

)
, 1√

2

(
1 1
1 −1

)}
and the distribution which assigns the probability p/2 > 0 to the first and second matrices
and q = 1− p to the third one. Let r be the jump function defined by r(±1) = ±1 so that
r = 0. Then, in the ordered basis {|−1⊗−1〉, |1⊗1〉, |−1⊗1〉, |1⊗−1〉}, the corresponding
matrix E reads

E =
1

2


1 1 q q
1 1 −q −q
q −q p− q 1
q −q 1 p− q

 (3.51)

and D(−v, v) = diag(1, 1, ei2v, e−i2v). We introduce the following orthonormal basis whose
first vector is Ψ0:

{(| − 1⊗−1〉+ |1⊗ 1〉)/
√

2, (| − 1⊗−1〉 − |1⊗ 1〉)/
√

2, | − 1⊗ 1〉, |1⊗−1〉}
≡ {Ψ0, ϕ1, ϕ2, ϕ3}. (3.52)

In this basis, Mv(0) = D(−v, v)E writes

Mv(0) =


1 0 0 0
0 0 q√

2

q√
2

0 ei2v q√
2

ei2v (p−q)
2 ei2v 1

2

0 e−i2v q√
2

e−i2v 1
2 e−i2v (p−q)

2

 ≡ 1⊕Nv, (3.53)
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where Nv is the restriction ofMv(0) to the subspace orthogonal to CΨ0. In order to make
computations easier, we specialize to the case p = 1/

√
2, so that

q/
√

2 = (p− q)/2 = (
√

2− 1)/2 ≡ γ. (3.54)

This way we can write in (CΨ0)⊥

Nv − I =

 −1 γ γ
ei2vγ ei2vγ − 1 ei2v 1

2
e−i2vγ e−i2v 1

2 e−i2vγ − 1

 . (3.55)

We have det(Nv − I) = 2 cos(2v)(γ2 + γ) − (2γ3 + 3/4) < 0 for all v ∈ T so that CΨ0 is
the only invariant subspace under Mv(0). Hence Sv(1) = (Nv − I)−1. To get the diffusion
constant D(v) we need to compute 〈τ ⊗ τ |S(1)τ ′ ⊗ τ ′〉 for τ, τ ′ = ±1, where S(1) is defined
on (CΨ0)⊥ = QC4. We have Q| ± 1⊗±1〉 = ∓ϕ1/

√
2, so that

〈τ ⊗ τ |S(1)τ ′ ⊗ τ ′〉 =
ττ ′

2
〈ϕ1|(Nv − I)−1ϕ1〉 =

ττ ′

2

γ2 − 2 cos(2v)γ + 3/4

2 cos(2v)(γ2 + γ)− (2γ3 + 3/4)
. (3.56)

Taking into account the r(τ) = τ in formula (3.27), we get

D(v)y2 = −y2(1 + 4〈ϕ1|(Nv − I)−1ϕ1〉), (3.57)

which, plugging in the value of γ, eventually yields

D(v) =

(
16− 9

√
2 + 2 cos(2v)(5− 4

√
2)

5
√

2− 4− 2 cos(2v)

)
> 0. (3.58)

4 Einstein’s Relation

An interesting feature of the previous results is that the asymptotic averaged velocity r
depends on the jump function r only and is independent of the coin distribution. This is
reminiscent of the asymptotic velocity v(F ) reached by a particle subject to a deterministic
force of amplitude F in a random dissipative environment modeled by random forces. Given
an asymptotic velocity, the mobility vector µ is defined as the ratio

µ = lim
F→0

vF /F. (4.1)

This mobility µ is then related to the fluctuations of the system around the asymptotic
trajectory by Einstein’s relation which says that the diffusion matrix is proportional to
‖µ‖.

In the present framework, neither dissipation nor forces can be directly traced back to
describe the asymptotic motion

〈X〉Ψ0(n) = nr + o(n), n→∞. (4.2)

Moreover, the motion taking place on a lattice, the asymptotic velocity r has a minimal
amplitude 1/(2d), if it is non zero, which prevents a behavior similar to (4.1). Nevertheless,
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the jump function r which characterizes the deterministic motion can be thought of as an
external control parameter, similar to a driving force.

In order to get an asymptotic velocity which vanishes with the exterior control param-
eter, we rescale the lattice Zd to (Z/l)d, with l > 0. This means we consider the variable

Yn = Xn/l ∈ (Z/l)d. (4.3)

Then we introduce a parameter s ∈ N as follows. Let r1 and r0 be two non-zero jump
functions such that

r1 = 0 and r0 6= 0. (4.4)

We define a new s-dependent jump function by

rs(τ) = sr1(τ) + r0(τ) ∈ Zd such that rs = r0 (4.5)

and we will consider the large s limit. Hence the rescaled variable Yn satisfies

lim
n→∞

〈Y 〉ψ0(n)

n
=
r0

l
:= vY (4.6)

lim
n→∞

〈(Y − nrs)i(Y − nrs)j〉ψ0(n)

n
=
s2

l2

(∫
Td

D(1)
i j(v) dṽ +O(1/s)

)
:= DYi j (4.7)

where D(1)(v) is the diffusion matrix computed by means of the jump function r1 and the
remainder term is uniform in v ∈ Td. Therefore, choosing the scale l = s ∈ N, we get that
the diffusion matrix DY is finite for large s whereas the asymptotic velocity tends to zero.
Hence, setting F = 1/s, we get for s large

µ = lim
F=1/s→0

vY /F = r0 (4.8)

DY =

∫
Td

D(1)(v) dṽ + o(1/s)→ K‖µ‖, as s→∞. (4.9)

The last formula is admittedly a consequence of a rather ad hoc construction. On the other
hand, assuming that r1 6= 0, we get with the same scaling vY = r1 which never vanishes.

5 Moderate Deviations

The spectral properties of the matrix M(y − v, v) proven in Section 3.2 allow us to obtain
further results on the behavior with n of the distribution of the random variable Xn defined
by (2.2). This section is devoted to establishing some moderate deviations results on the
random variable Xn.

We consider initial conditions of the form ψ0 = ϕ0 ⊗ |0〉 and we will be concerned with
Xn − nr. Moderate deviations results depend on asymptotic behaviors in different regimes
of the logarithmic generating function of Xn − nr defined for y ∈ Rd by

Λn(y) = ln(Ew(n)(e
y(Xn−nr))) ∈ (−∞,∞]. (5.1)

This function Λn is convex and Λn(0) = 0.
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Let {an}n∈N be a positive valued sequence such that

lim
n→∞

an =∞, and lim
n→∞

an/n = 0. (5.2)

Define Yn = (Xn − nr)/
√
nan and, for any y ∈ Rd, let Λ̃n(y) = ln(Ew(n)(e

yYn)) be the
logarithmic generating function of Yn.

Proposition 5.1 Assume S and further suppose D(v) > 0 for all v ∈ Td. Let y ∈ Rd \ {0}
and assume the real analytic map Td 3 v 7→ 〈y|D(v)y〉 ∈ R+

∗ is either constant or admits a
finite set {vj(y)}j=1,··· ,J of non-degenerate maximum points in Td. Then, for any y ∈ Rd,

lim
n→∞

1

an
Λ̃n(any) =

1

2
〈y|D(v1(y))y〉 (5.3)

which is a smooth convex function of y.

Proof: This proposition essentially follows from Lemmas 3.6 and 3.7 and the asymptotic
evaluation of an integral. Let bn =

√
an/n s.t. limn→∞ bn = 0. By construction, Λ̃n(any) =

Λn(bny) where, according to Lemma 3.6 and 3.7, there exists γ > 0 s.t. for n large enough,

exp(Λn(bny)) =

∫
Td

(
1 +

b2n
2
〈y|D(v)y〉+Ov(b

3
ny

3)

)n
(1 +Ov(bny)) dṽ +O(e−γn)

=

∫
Td
e
an
2
〈y|D(v)y〉+Ov(anbny3) (1 +Ov(bny)) dṽ +O(e−γn). (5.4)

All remainder terms Ov(· · · ) are analytic in v ∈ Tν , as well as D(v). An application of
Laplace’s method around each of the non-degenerate maximum points, yields for 1/3 <
α < 1/2

exp(Λn(bny)) =
J∑
j=1

e
an
2 (〈y|D(vj(y))y〉+O(bny3))(Gj(y)/ad/2n +O(bny) +O(1/a3α−1

n ))

+O(e−γn) +O(e−Ka
1−2α
n ), (5.5)

where Gj(y) > 0, K > 0, from which the result follows. The case where D(v) is indepen-
dent of v follows directly from (5.4). The convexity of the limit follows from the convexity
of Λ̃n. The assumed non-degeneracy of the maximum point ensures that the functions
Rd \ {0} 3 y 7→ vj(y) are all smooth by the implicit function theorem.

Let us recall a few definitions notations. A rate function I is a lower semicontinuous
map from Rd to [0,∞] s.t. for all α ≥ 0, the level sets {x | I(x) ≤ α} are closed. When the
level sets are compact, the rate function I is called good. For any Γ ⊂ Rd, Γ0 denotes the
interior of Γ, while Γ denotes its closure.

As a direct consequence of Gärtner-Ellis Theorem, see [13] Section 2.3, we get
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Theorem 5.2 Define Λ∗(x) = supy∈Rd
(
〈y|x〉 − 1

2〈y|D(v1(y))y〉
)
, for all x ∈ Rd. Then, Λ∗

is a good rate function and, any positive valued sequence {an}n∈N satisfying (5.2) and all
Γ ⊂ Rd

− inf
x∈Γ0

Λ∗(x) ≤ lim inf
n→∞

1

an
ln(P((Xn − nr) ∈

√
nan Γ))

≤ lim sup
1

an
ln(P((Xn − nr) ∈

√
nan Γ)) ≤ − inf

x∈Γ
Λ∗(x). (5.6)

Remark 5.3 As a particular case, when D(v) = D > 0 is constant, we get

Λ∗(x) =
1

2
〈x|D−1x〉. (5.7)

Remark 5.4 Specializing the sequence {an}n∈N to a power law, i.e. taking an = nα, we
can express the content of Theorem 5.2 in an informal way as follows. For 0 < α < 1,

P((Xn − nr) ∈ n(α+1)/2 Γ) ' e−nα infx∈Γ Λ∗(x). (5.8)

For α close to zero, we get results compatible with the Central Limit Theorem and for α
close to one, we get results compatible with those obtained from a large deviation principle.

Let us come back to the example in section 3.3. The diffusion coefficient D(v) given in
(3.58) admits , as a function of v ∈ T, a single non-degenerate maximum at v = 0 where it
takes the value D(0) = 2

√
2− 1. Thus we get from the foregoing that a moderate deviation

principle holds for this example, with the good rate function Λ∗(x) = x2

2D(0) = x2

2(2
√

2−1)
.

6 Example of diffusive random dynamics

The results obtained so far can be viewed, essentially, as an adaptation to the quantum
walk dynamics setup of those proven in [29], [17], [15] for the averaged dynamics and as an
extension of [24], [16].

In this section we consider a specific example of measure dµ on U(2d), the set of coin
matrices, for which we can prove convergence results on the associated random quantum
dynamical system (3.1) for large times, in distribution rather than in average. In particular,
our example shows that almost sure convergence results cannot be expected in general.

As noted in Section 3.2, the spectra of V (ω) and Mω(y,−y) lying on the unit circle
and admitting 1 as a 2d-fold eigenvalue prevent us from using the same spectral methods
as above. For the same reason, the results about products of random contractions in [10]
do not apply. However, the structure of the example at hand allows for a direct approach
which, eventually, reduces the analysis to that of a central limit theorem for a Markov chain.
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6.1 Permutation matrices

Let S2d be the set of permutations of the 2d elements of I± = {±1,±2, . . . ,±d}. For
π ∈ S2d and Θ = {θj}j∈I± ∈ T2d, define

C(π,Θ) =
∑
τ∈I±

eiθπ(τ) |π(τ)〉〈τ | ∈ U(2d) so that Cστ (π,Θ) = eiθσδσ,π(τ). (6.1)

With ∆(Θ) = diag (eiθ) and C(π) ≡ C(π, 0), we can write

C(π,Θ) = ∆(Θ)C(π), (6.2)

where C(π) is a permutation matrix associated with π. We recall the following elementary
properties: For any π, σ ∈ S2d,

C(I) = I, C∗(π) = CT (π) = C(π−1), C(π)C(σ) = C(πσ). (6.3)

Moreover, Birkhoff-Von Neumann Theorem asserts that the set of doubly stochastic ma-
trices of order n is the convex hull of the set of permutation matrices of order n whose
extreme points coincide with the permutation matrices.

The matrices C(π,Θ) allow for explicit computations of the relevant quantities intro-
duced in Section 2. It is easy to derive the next

Lemma 6.1 Let r : I± → Zd be a jump function. Given a sequence of n permuta-
tions π1, π2, . . . , πn, let (τ1, τ2, . . . , τn) ∈ In± be the sequence parametrized by τ1 given by
(τ1, π2(τ1), π3(τ2), . . . , πn(τn−1)), i.e. such that

τj = (πjπj−1 · · ·π2)(τ1), j = 2, . . . , n. (6.4)

Let Θ1,Θ2, . . . ,Θn be a set of phases, Θj = (θ1(j), . . . , θn(j)). Then, with the convention
Cj = C(πj ,Θj), we get for all k ∈ Zd,

Jk(n) =
∑

τ1∈I± s.t.∑n
j=1

r(τj)=k

ei(θτ1+···+θτn )|τn〉〈π−1
1 (τ1)|, (6.5)

and Jk(n) = 0, if
∑n

j=1 r(τj) 6= k.

Consequently, the non-zero probabilities Wk(n) on Zd read for any normalized internal state
vector ϕ0 and any density matrix ρ0

Wϕ0

k (n) = ‖Jk(n)ϕ0‖2 =
∑

τ1∈I± s.t.∑n
j=1

r(τj)=k

|〈π−1
1 (τ1)|ϕ0〉|2, (6.6)

W ρ0

k (n) = Trρn(k, k) =
∑
j∈Zd

∑
τ1∈I±

j=
∑n
s=1 r(τs)

〈π−1
1 (τ1)|ρ0(k − j, k − j)π−1

1 (τ1)〉.
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Note that the sets of phases Θj , j = 1, . . . , n play no role in the computation of expectation
values of lattice observables. We set τ1 = π1(τ0) and note

ϕ0 =
∑
τ0∈I±

aτ0 |τ0〉 ⇒ |〈π−1
1 (τ1)|ϕ0〉|2 =

∑
τ0∈I±

|aτ0 |2δτ1,π1(τ0). (6.7)

Hence Wϕ0

k (n) =
∑

τ0∈I± |aτ0 |
2δ∑n

j=1 r(τj),k
so that for F = I⊗ f and ψ0 = ϕ0 ⊗ |0〉〈0|

〈F 〉ψ0(n) =
∑
k∈Zd

Wϕ0

k (n)f(k) =
∑
τ0∈I±

|aτ0 |2f(

n∑
j=1

r(τj)). (6.8)

Remark 6.2 In other words, given a set of n permutations, there is no more quantum
randomness in the variable Xn, except in the initial state.

Therefore the characteristic functions take the form

Corollary 6.3 With τj = (πjπj−1 · · ·π1)(τ0), for j = 1, . . . , n,

Φϕ0
n (y) =

∑
τ0∈I±

eiy
∑n
j=1 r(τj)|aτ0 |2, (6.9)

Φρ0
n (y) =

∑
τ0∈I±

eiy
∑n
j=1 r(τj)

∫
Td
〈τ0|R0(y − v, v)τ0〉 dṽ. (6.10)

The dynamical information is contained in the sum Sn =
∑n

j=1 r(τj) which appears in the
phase. The next section is devoted to its study, in the random version of this model where
the coin matrices are i.i.d. random variables with values in {C(π,Θ), π ∈ S2d, Θ ∈ Z2d}.

6.2 Random dynamics

Assume a random variable C(ω) with values in {C(π,Θ) ∈ U(2d), (π,Θ) ∈ S2d × T2d} is
defined on a probability space (Ω, σ, dν). The foregoing shows that only the marginal α
defined on the discrete set {C(π) ∈ U(2d), π ∈ S2d} or, equivalently on {π ∈ S2d}, matters

µ(π) ≡ µ(α(ω) = π) = ν({C(ω) = C(π,Θ) |Θ ∈ T2d}), π ∈ S2d. (6.11)

We shall use the notation α(ω) ≡ ω ∈ S2d and Ω = S2d. The corresponding process is
denoted by ω = (ω1, ω2, ω3, . . . ) ∈ ΩN∗ and dP = ⊗k∈N∗dµ.

Given ϕ0 ∈ C2d an initial internal state and a random sequence of permutation matrices
(ω1, . . . , ωn), the random variable Sn(ω) =

∑n
j=1 τj(ω) ∈ Zd is the sum of random variables

τj(ω), j = 1, . . . , n whose properties are given in the next lemma:

Lemma 6.4 Let ϕ0 =
∑

τ0
aτ0 |τ0〉 be the initial condition. The path (τ0, τ1, . . . , τn) is a

Markov chain with finite state space I± characterized by the initial probability distribution

p0(τ0 = σ0) = |aσ0 |2
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and by the stationary transition probabilities

P (σ′, σ) = Prob(τk(ω) = σ|τk−1(ω) = σ′), k = 2, 3, . . . , n (6.12)

given by

P (σ′, σ) =
∑
π∈S2d

µ(π)δσ,π(σ′). (6.13)

The corresponding transition matrix P = (P (σ′, σ)) ∈M2d(R+) is doubly stochastic and

P = E(CT (ω)). (6.14)

Remark 6.5 The transition matrix P is unitary iff µ(π) = δπ0,π for some π0.

Proof: By Lemma 6.1, τk(ω) only depends on {ωj}j=1,··· ,k and τ0 and is given by τk(ω) =
ωk(τk−1). Hence

Prob(τk(ω) = σ|τk−1(ω) = σ′) = Prob(ωk(τk−1) = σ|τk−1 = σ′) (6.15)

= µ({ω |ω(σ′) = σ}) =
∑
π∈S2d

µ(π)δσ,π(σ′),

where we used the independence of the ωk. Finally, (6.1) shows that the right hand side is
the expectation of CT (ω) w.r.t µ.

Considering the diffusive scaling (2.13), we are thus naturally lead to investigate the
large n behavior of the quantity

1√
n
Sn(ω) =

1√
n

n∑
j=1

r(τj(ω)), (6.16)

i.e. to a functional central limit theorem for the Markov chain (τ0, τ1, τ2, . . . ) with finite
state space I±, initial probability p0 and transition matrix P .

There are simple conditions under which a functional central limit theorem holds for
Markov chains with finite state space, see e.g. in [7]. Let us recall the few basic notions and
results associated to Markov chains with finite state space, F , characterized by a transition
matrix P ∈M|F |(R+) s.t.

∑
τ∈F P (σ, τ) = 1 that we will need below.

A transition matrix P is irreducible if, ∀σ, τ ∈ F , ∃n ∈ N∗ such that Pn(σ, τ) > 0. A
probability distribution p0, considered as a vector in R|F |, is invariant for the transition
matrix P if P T p0 = p0. If p0 is invariant, then the Markov process is stationary,

Prob((τ0, τ1, · · · ) ∈ B) = Prob((τk, τk+1, · · · ) ∈ B), ∀ k ∈ N, B ⊂ FN. (6.17)

If P is irreducible, the invariant distribution p0 is unique and p0(τ) > 0, ∀τ ∈ F . If P is fur-
thermore doubly stochastic, the invariant distribution u0 is uniform u0(τ) = 1/|F |,∀τ ∈ F .
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In terms of spectral properties, an irreducible stochastic matrix P admits 1 as a simple
eigenvalue. If it is furthermore doubly stochastic, the uniform vector u0 is invariant under
both P and P ∗.

Hence, if we take as initial distribution the uniform measure u0(τ) = 1/(2d) ∀ τ ∈ I±,
which is invariant for the doubly stochastic transition matrix P = Eµ(CT (ω)), the Markov
process is stationary. Moreover,

Eu0(r(τ0)) =
1

2d

∑
τ∈I±

r(τ) = r. (6.18)

From Thm 20.1 in [7] and its applications page 177, or [25], we have

Theorem 6.6 Let ϕ0 =
∑

τ∈I± aτ |τ〉 and p0 s.t. p0(τ) = |aτ |2. Assume the transition

matrix P = E(CT (ω)) is irreducible. Then, limn→∞
1
n

∑n
j=1 r(τj(ω)) = r almost surely

and, with convergence in distribution,

1√
n

n∑
j=1

(r(τj(ω))− r) n→∞
−→ Xω ' N (0,Σ), (6.19)

provided the covariance matrix

Σij = − 1

2d
〈ri|rj〉+ rirj −

1

2d
(〈ri|S(1)rj〉+ 〈rj |S(1)ri〉) (6.20)

is definite positive, where S(1) denotes the reduced resolvent of P at 1.

Remark 6.7 An alternative formulation for Σ is

Σij =
1

4d

(
〈ri|(IQ − PQ)−1(IQ + PQ)rj〉+ 〈rj |(IQ − PQ)−1(IQ + PQ)ri〉

)
, (6.21)

where the projector Q and the operator PQ are defined in the spectral decomposition of P

P = 2d|u0〉〈u0|+ PQ, with PQ = QPQ and Q = Q2 = Q∗ = I− 2d|u0〉〈u0|. (6.22)

Proof: Our assumptions imply that P is irreducible, doubly stochastic and that u0 is
invariant for P and P ∗. This together with (6.18) allows us to apply Thm 20.1 of [7] and
the remarks p.177 or the results of [25]. It remains to compute the covariance matrix. Let
us define the centered random vector

r̃(τ(ω)) = r(τ(ω))− r (6.23)

such that Eu0(r̃(τ0)) = 0, where Eu0 denotes the expectation with invariant initial measure
u0. The first mentioned reference yields the following expression for the covariance matrix

Σij = Eu0(r̃(τ0)ir̃(τ0)j) +

∞∑
k=1

Eu0(r̃(τ0)ir̃(τk(ω))j + r̃(τk(ω))ir̃(τ0)j), (6.24)
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for i, j = 1, 2, . . . , d, where r̃(τ)j denotes the jth component of r̃(τ) ∈ Zd. We compute for
any k ∈ N

Eu0(r̃(τ0)ir̃(τk)j) =
1

2d
〈ri|P krj〉 − rirj . (6.25)

Note that the right hand side of (6.25) is equal to

1

2d

(
〈ri|P k(rj − 2d rju0)〉

)
with 〈u0|(rj − 2d rju0)〉 = 0. (6.26)

By (6.22), for any v, w ∈ C2d,

v − 2d vu0 = Qv and 〈w|Qv〉 = 〈w|v〉 − 2dw v. (6.27)

Thanks to (6.26), we can write

∞∑
k=1

P k(rj − 2d rju0)〉 =
∞∑
k=1

P kQ(rj − 2d rju0)〉 = (IQ − PQ)−1PQ(rj − 2d rju0), (6.28)

where IQ is the identity reduced to the subspace QC2d. Therefore,

(IQ − PQ)−1PQ ≡ −(S(1) + IQ), (6.29)

where S(1) = QS(1)Q = (PQ − IQ)|−1
QC2d denotes the reduced resolvent of P at 1. Hence

Σij =
1

2d
〈ri|rj〉 − rirj −

1

2d
(〈ri|(S(1) + IQ)(rj − 2d rju0)〉

+〈rj |(S(1) + IQ)(ri − 2d riu0)〉)

= − 1

2d
〈ri|Qrj〉 −

1

2d
(〈ri|S(1)rj〉+ 〈rj |S(1)ri〉)

= − 1

4d
(〈ri|(Q+ 2S(1))rj〉+ 〈rj |(Q+ 2S(1))ri〉)

=
1

4d

(
〈ri|(IQ − PQ)−1(IQ + PQ)rj〉+ 〈rj |(IQ − PQ)−1(IQ + PQ)ri〉

)
. (6.30)

The convergence of 1√
n

∑n
j=1(r(τj(ω))−r) for any initial measure p0 s.t. p0(τ) = |aτ |2 in

distribution to Xω ' N (0,Σ) implies the convergence of the characteristic function and of
its derivatives, which are continuous functions of the random variable 1√

n

∑n
j=1(r(τj(ω))−r).

In particular

−∂yj∂yke
−iyr

√
nΦϕ0

n

(
y√
n

)
|y=0 =

∑
τ0∈I±

|aτ0 |2
1

n

(
n∑
l=1

(r(τl(ω))− r)j
n∑
l=1

(r(τl(ω))− r)k

)
,

(6.31)
whose limit, as n→∞ yields the elements of the random diffusion matrix.

We have

29



Corollary 6.8 Under the assumptions of Theorem 6.6, the following random variables
converge in distribution as n→∞:
The random rescaled characteristic functions

e−iyr
√
nΦϕ0

n (y/
√
n) =

∑
τ0∈I±

|aτ0 |2
(
e
iy 1√

n

∑n
j=1(r(τj(ω))−r)

)
−→ eiyX

ω
, (6.32)

e−iyr
√
nΦρ0

n (y/
√
n) =

∑
τ0∈I±

e
iy 1√

n

∑n
j=1(r(τj(ω))−r)

∫
Td
〈τ0|R0(y/

√
n− v, v)τ0〉 dṽ

−→ eiyX
ω
, where Xω ' N (0,Σ), (6.33)

and the random diffusion constants

∑
τ0∈I±

|aτ0 |2
1

n

(
n∑
l=1

(r(τl(ω))− r)j
n∑
l=1

(r(τl(ω))− r)k

)
−→ Dωjk, (6.34)

∑
τ0∈I±

∫
Td
〈τ0|R0(y/

√
n− v, v)τ0〉 dṽ

1

n

(
n∑
l=1

(r(τl(ω))− r)j
n∑
l=1

(r(τl(ω))− r)k

)
−→ Dωjk, (6.35)

where Dωjk is distributed according to the law of Xω
j X

ω
k , where Xω ' N (0,Σ).

Remark 6.9 In particular we get

Eω(Dωjk) = Σjk. (6.36)

Proof: For the case of initial density matrix ρ0, it is enough to note that∑
τ0∈I±

∫
Td
〈τ0|R0(−v, v)τ0〉 dṽ =

∫
Td

TrR0(−v, v) dṽ = Φ0(0) = 1. (6.37)

One concludes using the convergence results stated in [7], p. 28 and 30.

At this point one may wonder if the assumption P = Eµ(CT (ω)) is enough to apply The-
orem 3.10 and compare the results concerning the averaged distribution w(n) = E(Wω(n)).
The next proposition answers this question positively

Proposition 6.10 Under the hypotheses of Theorem 6.6, assumption S’ holds. Moreover,
the diffusion constant D(v) given by Theorem 3.10 is independent of v ∈ Td.

Proof: We need to consider

M(y, y′) = D(y, y′)E =
∑

τ,τ ′∈I±

ei(yr(τ)+y′r(τ ′))|τ ⊗ τ ′〉〈τ ⊗ τ ′| E , (6.38)

where E = Eν(Cω ⊗ Cω), with ν and C(ω) defined above (6.11). We first observe that the
M∗(Y )-cyclic subspace generated by Ψ1, I, is given by I = span{|σ ⊗ σ〉}σ∈I± . Indeed,
Ψ1 ∈ I and I is invariant under D(Y ) for any Y = (y, y′) ∈ T2d since D(y, y′)|σ ⊗ σ〉 =
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ei(y+y′)r(σ)|σ ⊗ σ〉. Then, for any C(π,Θ) =
∑

τ∈I± e
iθπ(τ) |π(τ)〉〈τ | and any {ασ}σ∈I± ,

ασ ∈ C, we compute

C(π,Θ)⊗ C(π,Θ)
∑
σ∈I±

ασ|σ ⊗ σ〉 =
∑
σ∈I±

ασ|π(σ)⊗ π(σ)〉

≡ C(π)⊗ C(π)
∑
σ∈I±

ασ|σ ⊗ σ〉. (6.39)

This shows that I is invariant under (Cω ⊗ Cω)∗, and thus under its expectation as well,
which is enough to prove the claim. Moreover, (6.39) shows that, when restricted to I, any
matrix C(π,Θ) ⊗ C(π,Θ) acts like C(π) ⊗ C(π) does. Consequently, we can consider the
finite measure µ on S2d defined by (6.11) instead of the original measure ν. Altogether we
get

M(−v, v)|I = D(−v, v)|I
∑
π∈S2d

µ(π)C(π)⊗ C(π)|I

=
∑
π∈S2d

µ(π)C(π)⊗ C(π)|I = E|I , (6.40)

which is independent of v ∈ Td. It remains to show that Ψ1 is the only invariant vector
under E|I . But the equation for the coefficients ασ∑

π∈S2d

µ(π)C(π)⊗ C(π)
∑
σ∈I±

ασ|σ ⊗ σ〉 =
∑
σ∈I±

ασ|σ ⊗ σ〉 (6.41)

is equivalent to
∑

π∈S2d
µ(π)απ−1(σ) = ασ, for all σ. This is in turn equivalent to requiring

that the vector α ∈ C2d with components {ασ}σ∈I± be invariant under P T . P being
irreducible by assumption, the only invariant vectors have constant components and thus
are proportional to Ψ1.

Remark 6.11 The assumption S doesn’t always hold for the case under study. In case
Θ ≡ 0, the vector Ψ =

∑
(τ,τ ′)∈I2

±
|τ ⊗ τ ′〉 is also invariant under M(0, 0) = E.

We close this section by providing a general relationship between the diffusion matrix
Dω computed by means of Wω(n) and the diffusion matrix D computed by means of the
averaged distribution w(n) = Eω(Wω(n)) in Theorem 3.10, provided both exist.

To deal with the whole diffusion matrix at once, we let z ∈ Rd\{0} be fixed and consider
the non-negative random variables

D = 〈z|Dz〉, Dω
n = 〈z|Y ω

n 〉〈Y ω
n |z〉, where Y ω

n =
Xω
n − nr√
n

. (6.42)

With these notations, Ew(n)(Dn) = EωEWω(n)(D
ω
n)→ D by Theorem 3.10 and EWω(n)(D

ω
n)→

Dω where Dω = 〈z|Dωz〉 as n→∞, if the limit exists.
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Proposition 6.12 Consider the initial condition Ψ0 = ϕ0⊗|0〉 and assume the hypotheses
of Theorem 3.10 hold for the distribution w(n). Further assume the random variables defined
in (6.42) satisfy EWω(n)(D

ω
n)→ Dω in distribution. Then

Eω(Dω) = lim
n→∞

EωEWω(n)(D
ω
n), (6.43)

which implies Eω(Dω) = D.

Proof: Let dωn = EWω(n)(D
ω
n) ≥ 0 which converges in distribution to Dω. By Theorem 5.4

of [7], if supn Eω((dωn)1+ε) < ∞, for some ε > 0, then the limit and expectation commute:
limn→∞ Eω(dωn) = Eω(Dω), which yields the result. Now, Remark 3.11 below Theorem 3.10
implies the condition with ε = 1.

Remark 6.13 When applied to the case discussed in the section, the proposition yields

Eω(Dω) = Σ =

∫
Td

D dṽ = D. (6.44)

6.3 Large Deviations

We can complete the picture for the model at hand by looking at its large deviations
properties. Because the analysis reduces to the study of a finite state Markov chain, a large
deviation principle is true for the model, see [13], Theorem 3.1.2.

For λ ∈ Rd, let Πλ ∈M2d(R+) be the matrix whose non-negative elements read

Πλ(σ, τ) = P (σ, τ)e〈λ|r(τ)〉, (6.45)

where P is the transition matrix and r is the jump function. As P is irreducible, Πλ is
irreducible as well. Hence, by Perron-Frobenius theorem, for all λ ∈ Rd, the largest real
eigenvalue of Πλ, ρ(λ) > 0, is simple and σ(Πλ) ⊂ D(0, ρ(λ)). As a function of λ ∈ Rd,
ρ(λ) is real analytic. For every x ∈ Rd, define

I(x) = sup
λ∈Rd

(〈λ|x〉 − ln(ρ(λ))). (6.46)

The function I is a good rate function.

Theorem 6.14 Under the hypotheses of Theorem 6.6, the random variable Zn = 1
n

∑n
j=1 r(τj)

satisfies a large deviation principle with convex good rate function I: For any σ ∈ I± and
any Γ ⊂ Rd

− inf
x∈Γ0

I(x) ≤ lim inf
n→∞

1

n
ln(Pσ(Zn ∈ Γ))

≤ lim sup
1

n
ln(Pσ(Zn ∈ Γ)) ≤ − inf

x∈Γ
I(x), (6.47)

where Pσ refers to the initial law p0(τ) = δσ,τ
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6.4 Example

We end this section by a simple example which allows us to make explicit all quantities
encountered so far.

In dimension d = 1, we consider the jump function r defined by r(±1) = ±1, so that
r = 0. We define the distribution µ on S2 by the Bernoulli process which assigns probability

p > 0 to the identity matrix and q = 1 − p to the matrix

(
0 1
1 0

)
. The corresponding

transition matrix reads

P =

(
p q
q p

)
s.t. (P − z)−1 =

|Ψ0〉〈Ψ0|
1− z

+
|ψ1〉〈ψ1|

(p− q)− z
, (6.48)

with Ψ0 = 1√
2

(
1
1

)
, ψ1 = 1√

2

(
1
−1

)
. Consequently S(1) = |ψ1〉〈ψ1|

(p−q)−1 . Thus, the averaged

diffusion constant D = Σ computed from (6.20) with r =

(
1
−1

)
reads

Σ = −1

2
〈r|r〉 − 1

2
2〈r|S(1)r〉 =

p

q
. (6.49)

Therefore the random variable EWω(n)(
Xω
n√
n

) converges in distribution to Xω ' N (0, p/q)

and the corresponding random diffusion constant Dω is distributed according to the chi-
square law with density p

qf(·pq ) where

f(t) =
e−t/2√

2πt
, t ≥ 0. (6.50)

Next we compute the rate function I such that Pσ(EWω(n)(
Xω
n
n ) ∈ Γ) ' e−n infx∈Γ I(x), for n

large. With our choice of jump function, the matrix Πλ reads

Πλ =

(
peλ qe−λ

qeλ pe−λ

)
s.t. det Πλ = p− q and Tr Πλ = 2p cosh(λ). (6.51)

Thus we have

ρ(λ) = p cosh(λ) +

√
p2 sinh2(λ) + q2 (6.52)

so that supλ∈R(xλ− ln(ρ(λ))) is reached at λ(x) = arsinh
(

qx

p
√

1−x2

)
for |x| < 1. Hence

I(x) = x arsinh

(
qx

p
√

1− x2

)
− ln

(
q +

√
p2 + x2(q − p)√

1− x2

)
if |x| < 1 (6.53)

and I(x) =∞ otherwise.
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7 Generalization

In the light of the last example, it is natural to generalize the results of Section 3 to the
case where the random coin matrices C(ω) are distributed according to a Markov process,
in the spirit of [29], [17], [15]. We briefly do so in this last section, mentioning the main
modifications only and considering finitely many coin matrices for simplicity.

Consider a finite set {C1, C2, · · · , CF } of unitary coin matrices on C2d and assume that
for any n ∈ N, the set of random matrices {C(ω1), · · · , C(ωn)} is determined by a Markov
chain characterized by an initial distribution {p0(j)}Fj=1 and an irreducible transition matrix

{P (j, k)}j,k∈{1,··· ,F}. Correspondingly, for any Y ∈ Td × Td, the sequence of matrices
{Mωj (Y )}j∈N has the same distribution, assuming the Cj ⊗ Ck are distinct, so that

P({Mωn(Y ),Mωn−1(Y ), · · ·Mω1(Y )} = {Mkn(Y ),Mkn−1(Y ), · · ·Mk1(Y )})
= p0(k1)P (k1, k2) · · ·P (kn−1, kn). (7.1)

We introduce the matrices

Mjk(Y ) = P T (j, k)Mk(Y ), j, k ∈ {1, · · · , F}, (7.2)

acting on C2d ⊗ C2d and the operator acting on CF ⊗ (C2d ⊗ C2d)

M(Y ) =
∑

j,k∈{1,··· ,F}

|ej〉〈ek| ⊗Mjk(Y ), (7.3)

where the ej ’s are the canonical basis vectors of CF and the ”bra”s and ”ket”s refer to the
usual scalar product in CF . Similarly, let M0(Y ) be the vector in M4d2(C)F defined by

M0(Y ) =
∑

j∈{1,··· ,F}

p0(j)|ej〉 ⊗Mj(Y ). (7.4)

If χ1 =
∑

j∈{1,··· ,F} |ej〉 ∈ CF and I is the identity operator on C2d ⊗ C2d, we obtain

E(Mωn(Y )Mωn−1(Y ) · · ·Mω1(Y )) = 〈χ1 ⊗ I|M(Y )n−1M0(Y )〉. (7.5)

Hence, with Ψ1 =
∑

τ∈I± |τ ⊗ τ〉 and Φ0 ∈ C2d ⊗ C2d, we can write

E(Φω
n(Y )) = 〈χ1 ⊗Ψ1|M(Y )n−1 M0(Y )Φ0〉, (7.6)

where χ1 ⊗Ψ1 and M0(Y )Φ0 =
∑

j p0(j)|ej〉 ⊗Mj(Y )Φ0 belong to CF ⊗ (C2d ⊗ C2d) and
”bra”s and ”ket”s should be interpreted accordingly.

This brings us back to the study of large powers of an operator, M(Y ), which has
essentially the same properties as M(Y ):

Lemma 7.1 The matrix M(Y ) acting on CF ⊗ (C2d ⊗ C2d) is analytic in Y ∈ C2d × C2d.
Assume P is irreducible, and let χp ∈ CF be the unique real valued vector s.t. P Tχp = χp
and 〈χp|χ1〉 = 1. Then for any v ∈ Td,

M(−v, v)|χp ⊗Ψ1〉 = |χp ⊗Ψ1〉 and M∗(−v, v)|χ1 ⊗Ψ1〉 = |χ1 ⊗Ψ1〉. (7.7)

For any Y ∈ Td × Td,
SprM(Y ) = SprM∗(Y ) ≤ 1. (7.8)
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Proof: The first two identities follow from explicit computations. The second prop-
erty is a consequence of the fact that if one endows CF ⊗ (C2d ⊗ C2d) with the norm
‖
∑

j ej ⊗ Ψj‖∞ := maxj ‖Ψj‖C2d⊗C2d , then M∗(Y ) becomes a contraction. This is due to

the fact that P , as a stochastic matrix, is a contraction with the sup norm on CF . The
spectral radius of M∗(Y ) thus cannot exceed one.

We shall work under the

Assumption S”: For all v ∈ Td,

σ(M(−v, v)|I∗) ∩ ∂D(0, 1) = {1} and the eigenvalue 1 is simple, (7.9)

where I∗ is the M∗(Y )-cyclic subspace generated by χ1 ⊗Ψ1.

Then we can proceed with a spectral analysis similar to that of Section 3. Ignoring the
restriction |I∗ in the notation, we note that Assumption S” implies that for all v ∈ T dν , a
complex neighborhood of Td, we can write

(M(−v, v)− z)−1 =
P̃

1− z
+ S̃v(z), z 6∈ σ(M(−v, v)), (7.10)

where P̃ = 1
d |χp ⊗Ψ1〉〈χ1 ⊗Ψ1| is independent of v, and the reduced resolvent S̃v(z) has

the same analyticity properties as that of M(−v, v). Moreover, introducing

∆(Y ) =
∑
j

|ej〉〈ej | ⊗D(Y ) (7.11)

we see that M(y − v, v) = ∆(y, 0)M(−v, v) where

∆(y, 0) =
∑
j

|ej〉〈ej | ⊗ (I + F1(y) + F2(y) +O(‖y‖3)), (7.12)

see (3.24). Therefore, if (y, v) ∈ B(0, y0)×T dν , for y0 > 0 and ν > 0 small enough, Lemma 3.6
holds for M(y − v, v). Applying the same perturbation formulas for the isolated eigenvalue
of M(y−v, v), noted λ1(y, v) again, for y ∈ Cd small enough, we reach the same conclusions
by explicit computations:

λ1(y, v) = 1 +
i

2d

∑
τ∈I±

yr(τ)− 1

2
〈y|D(v)y〉+Ov(‖y‖3), (7.13)

for all v ∈ T dν . The first order term in y is the same as the one of (3.27). On the other
hand, the explicit form of the quadratic term in y which defines the (analytic) diffusion
matrix D(v), depends on the transition matrix P

〈y|D(v)y〉 = −1

d

∑
τ∈I±

(yr(τ))2

2
(7.14)

−1

d

 ∑
τ,τ ′∈I±

(yr(τ))(yr(τ ′))

{
〈χ1 ⊗ τ ⊗ τ |S̃v(1)χp ⊗ τ ′ ⊗ τ ′〉 −

1

2d

} .
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Moreover, the corresponding rank one projector P̃ (y, v) is analytic and thus tends to P̃
uniformly in v ∈ T dν , as y → 0. With Q̃(y, v) = I − P̃ (y, v), the matrix Q̃(y, v)M(y −
v, v)Q̃(y, v) has spectral radius strictly small than one, for v ∈ T dν and y ∈ Cd small
enough.

Therefore we can state that all conclusions drawn in Section 3, e.g. Theorem 3.10, and in
Section 5, e.g. Theorem 5.2, for i.i.d coin matrices under Assumption S are true for finitely
many coin matrices forming a Markov chain, under Assumption S”, mutatis, mutandis.
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