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1 Introduction

Consider a positive self-adjoint hamiltonian H0 on a separable Hilbert space H with discrete
spectrum {λj}j=1,···,∞ and W (t) a symmetric time dependent periodic perturbation

W (t+ 2π) = W (t) , ∀t ∈ R. (1.1)

The associated Floquet operator, defined by

F = −i ∂
∂t

+H0 +W (t) (1.2)

on L2[0, 2π]
⊗
H with periodic boundary conditions in t, has been the object of considerable

interest recently. More precisely, the nature of the spectrum of F , σ(F ), has been inves-
tigated thoroughly for specific models and for more general situations as well, as reviewed
by Bellissard [B] and more recently by Jauslin [J]. The interest of such detailed studies
for physics lies in the fact that the long time behaviour of the solutions ψ(t) of the time
dependent Schrödinger equation

i
∂

∂t
ψ(t) = (H0 +W (t))ψ(t) , ψ(0) = ϕ (1.3)

is closely related to the spectral properties of the Floquet operator. This asymptotic be-
haviour of the solutions of (1.3) is quite relevant for the study of quantum stability or
quantum chaos [B], [J]. Let U(t) be the unitary evolution associated with (1.3) such that

ψ(t) = U(t)ϕ. (1.4)

As a consequence of the periodicity of the hamiltonian H0 + W (t), the solution of (1.3)
satisfies

ψ(n2π) = U(2π)nϕ , ∀n ∈ N (1.5)

where U(2π) is the monodromy operator. The large n behaviour of ψ(n2π) is thus clearly
dependent on the spectral subspace (pure point, absolutely or singular continuous) of U(2π)
in which the initial condition ϕ is chosen, as discussed in [B] and [J]. On the other hand,
the spectral properties of the Floquet operator F and of the monodromy operator U(2π) are
equivalent, as established in [Y], [H1]. Note that this type of approach can be generalized
in order to study the stability of the quantum dynamics when the perturbation W (t) is
quasiperiodic in time, as demonstrated recently in [BJL].

From the mathematical point of view, these considerations pertain to the perturbation
theory of operators with dense pure point spectrum. Indeed, if W (t) ≡ 0, the spectrum of the
Floquet operator is given by {n+λj}n∈N

j=1,···,∞ which is generically dense on the real line. Cor-
respondingly, the spectrum of the associated monodromy operator U0(2π) consists in the set
{e−2πiλj}j=1,···,∞ which generically fills the unit circle densely. The question is the following:
does this pure point spectrum remain stable after perturbation by the time periodic operator
W (t)? Although this problem is in general rather delicate [H2], a rigorous complete positive
answer can be given for certain specific models, in some range of parameters. For example,
the pulsed rotor considered by Bellissard in [B], some time dependent quadratic hamiltoni-
ans studied by Hagedorn, Loss and Slawny [HLS], a class of time dependent perturbations
of the harmonic oscillator and discrete hamiltonians kicked periodically by some rank one
perturbations as shown by Combescure in [C1] and [C2]. On the other hand, results valid
for general systems are scarce and they provide a partial answer only to the above question.
These results are based on the search of general criteria allowing to exclude the presence of
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absolutely continuous spectrum in the Floquet operators. This approach was initiated and
developed by Howland in the series of papers [H3], [H4], [H5]. Such results yield a partial an-
swer to our question in the sense that they say nothing about singular continuous spectrum.
However, the absence of absolutely continuous component σac(F ) in the spectrum of F is
sometimes already considered as stability result. The criteria obtained are of the following
form. Assume the hamiltonian H0 has simple eigenvalues λ1 < λ2 < · · · < λj < · · · satisfying
the growth condition

λj − λj−1 ' jα (1.6)

for some α > 0 and suppose that W (t) is uniformly bounded. Then it is proven in [H4]
that σac(F ) = ∅ for any α > 0 provided W (t) is smooth enough. Actually, this result is
also true for some class of unbounded perturbations W (t), as discussed in [H5], and it is
even shown in [H3] that σ(F ) is generically dense pure point, in an appropriate probabilistic
sense, provided α > 2. However, the restriction imposed on the eigenvalues of H0 to be non
degenerate was conjectured in [H4] to be technical only. Indeed, the result is expected to hold
for the pulsed rotor of Bellissard, a case where the corresponding eigenvalues satisfy (1.6) but
are doubly degenerate. Accordingly, it was proven recently by Nenciu [N1] that σac(F ) = ∅
if the growth condition (1.6) is satisfied, and if the multiplicity mj of the eigenvalues λj is
uniformly bounded in j, provided W (t) is smooth enough. However, to prove this result, it
was necessary to impose another technical condition, namely α > 1/2.

In this paper we reconsider the absence of absolutely continuous spectrum of Floquet
operators in the generalization due to Nenciu [N1] of the framework designed by Howland
[H3], [H4], [H5] (see below). We improve the preceding results in two ways. First, we remove
the technical condition α > 1/2 to give a complete proof of the conjecture of Howland
[H4] in the degenerate case for any positive α. Second, and more important, we can allow
the degeneracy mj of the eigenvalues λj to increase with j as mj ' jβ, with β < α. This
generalization may be of interest for the study of systems of more than one degree of freedom
since in such cases the degeneracy is likely to increase with the principal quantum number.
See however the remarks following the main theorem 2.1.

2 Result and strategy

Let H0 be an operator satisfying the following spectral hypothesis S:

• H0 is densely defined on D ⊂ H, self-adjoint and positive

• σ(H0) =
⋃∞

j=1 σj

• σj consists in a finite number of finitely degenerate eigenvalues such that

• maxλ,µ∈σj
|λ− µ| ≤ c0

• dist(σj , σj−1) ≥ c1j
α , α > 0

• mult(σj) ≤ c2j
β , β ≥ 0

where c0, c1, c2, α, β are independent of j.

Let W (t) be an operator satisfying the regularity condition Rk:

• W (t) is bounded and symmetric ∀t ∈ R

• W (t) is strongly Ck ∀t ∈ R.
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The operator H0 +W (t) is thus self-adjoint, densely defined on D (thm 4.3, p.287 [Ka])
and strongly Ck, with bounded derivatives. If k ≥ 1, there exists a unitary evolution operator
U(t), strongly C1 on D, which maps D into D and satisfies for any ϕ in D and t ∈ R

i
∂

∂t
U(t)ϕ = (H0 +W (t))U(t)ϕ, U(0) = I , (2.1)

as can be deduced from theorem X70 [RS].

Theorem 2.1 Let H0 satisfy S and W (t) be 2π-periodic in t and satisfy Rk, with k ≥ 1.
If α > β ≥ 0 and k ≥

[
1+β
α

]
+ 1, then σac(U(2π)) = ∅.

Remarks:
Setting β = 0, we obtain the conjecture of Howland [H4] for any α > 0.
It is possible to weaken the spectral hypothesis S somehow since the result also holds if the
size of the spectral sets σj grows as

max
λ,µ∈σj

|λ− µ| ≤ c0j
α. (2.2)

As already noticed, the above theorem describes σ(U(2π)) only partially. However, the
result is not of perturbative nature, in the sense that the norm of the operator W (t) can be
arbitrarily large. By contrast, the complete characterization of σ(F ) performed by Bellissard
[B] and Combescure [C1] on their models can be achieved in regimes where ‖W (t)‖ is small
enough.
This result can also be useful for some cases where W (t) is unbounded. Indeed, it is shown
in [H5] how to reduce the study of the Floquet operator −i ∂

∂t + H0 + Wu(t), where Wu(t)
belongs to a certain class of unbounded operators, to the study of −i ∂

∂t +H0 +Wb(t), where
Wb(t) is bounded. And, according to the final remark of §2 in [H5], a similar procedure can
be applied when H0 has degenerate eigenvalues.
As noted in [J], this type of result is likely to apply to one degree of freedom systems
essentially, because of the growth condition on the gaps between successive eigenvalues in
hypothesis S. This impression is strengthened by the supplementary condition imposed on
the growth of the multiplicity of eigenvalues. Indeed, consider the simple two degrees of
freedom system given by a free rotator in R3. The hamiltonian of the system is H0 = J2,
where J denotes the angular momentum operator. The gaps between the eigenvalues λj =
j(j + 1) of H0 do satisfy the growth condition with exponent α = 1,

j(j + 1)− (j − 1)j = 2j , (2.3)

however the multiplicity of these eigenvalues grows as

mult(λj) = 2j + 1 (2.4)

so that the exponent β = 1 and the condition α > β is not satisfied. This is nevertheless
in agreement with the fact that multidimensional systems seem to be more inclined to in-
stabilities [J]. Note that if we consider formally H0 = J4, the corresponding eigenvalues
λj = j2(j + 1)2 and their multiplicities behave in the proper way with exponents α = 3 and
β = 1.

The strategy followed to prove results of this type, which is common to [H4], [N1] and
the present work, is based on the few general theorems of stability of absolutely continuous
spectrum. In [H4] where the Floquet operator F is considered, Howland shows by means of
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a KAM inspired procedure that F is unitarily equivalent to an operator F0 +R, where F0 is
self-adjoint and has a pure point spectrum and R is trace class. Then it remains to invoke the
Kato-Rosenblum theorem (thm. 4.4 p.540 [Ka]) stating that the absolutely continuous sub-
spaces of self-adjoint operators are unitarily equivalent if they differ by a trace class operator.
In [N1], Nenciu deals with the monodromy operator U(2π) instead of F , and uses recently
developed tools in the adiabatic theory [N2] to approximate U(2π) by V + R where V is a
unitary operator having pure point spectrum and R is trace class. The result is thus achieved
by virtue of the Birman-Krein theorem [BK], an equivalent of the Rosenblum-Kato theorem
for unitary operators, which assesses that the absolutely continuous spectral subspaces of
unitary operators are unitarily equivalent if they differ by a trace class operator. Our proof
of theorem 2.1 above follows the latter method proposed by Nenciu, however we make use of
another adiabatic approximation technique developed in [JP1],[JP2]. In the present context,
where no small parameter appears, this method proves to be very efficient as well. Indeed,
it’s relative simplicity makes it possible for us to obtain the accurate estimates which are
needed to bound operators in the trace norm and to extend the previous results as described
in theorem 2.1.

Acknowledgments: It is a pleasure to thank P.Briet, J.-M.Combes, P.Duclos, and J.Howland
for many informative discussions at various stages of this work.

3 Proof

We present in this section the proof of theorem 2.1 based on the adiabatic techniques devel-
oped in [JP2]. In doing so, we make use of some intermediate results which will be proven
in the next technical section.

3.1 Preliminaries

Let us first consider the stability of the spectral hypotheses S.

Lemma 3.1 Let H0 satisfy S and let B(t) satisfy R0. Then H0 +B(t) satisfies S uniformly
in t ∈ [0, 2π] with the same exponents α and β.

Proof: The uniform boundedness of B(t) and the growth condition on the gaps ensure that
σ(H0+B(t)) consists in the disjoint union of new sets

⋃∞
k=1 σ

′
k(t). Hence, taking into account

a possible relabelling, the gaps between these sets behave as

dist(σ′k(t), σ
′
k−1(t)) ≥ c1(k + r)α ≥ c′1k

α (3.1)

for large k’s. Moreover, it is readily seen by considering the interpolating operatorH0+xB(t),
where x ranges in [0, 1], that

mult(σ′k(t)) = mult(σk+r) ≤ c′2k
β, (3.2)

for k large enough. 2

Notation: There will appear several constants in the sequel which we shall denote generi-
cally by the same symbol c. From now on, the time derivative will be denoted by a prime.
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Consider the operator H0 +B(t) where H0 satisfies S and B(t) satisfies R0. Let R(t, λ) =
(H0 + B(t) − λ)−1. By the above lemma, for t ∈ [0, 2π], the spectrum σ(t) of H0 + B(t)
consists in spectral sets σj(t) and the associated spectral projectors Pj(t) can be written as

Pj(t) = − 1
2πi

∮
Γj

R(t, λ)dλ (3.3)

where the non-intersecting paths Γj surrounding σj(t) are chosen in such a way that

long(Γj) ≡ |Γj | ≤ cjα (3.4)

and

dist(Γj , σ(t)) ≥ cjα. (3.5)

Remark: Both estimates (3.4) and (3.5) are true for appropriate paths Γj if the length of
the sets σj(t) grows as jα, in the spirit of the first remark below theorem 2.1.

Proposition 3.1 Let H0 satisfy S, B(t) satisfy Rn, n ≥ 1, and Pj(t) be defined by (3.3).
Then, if α > β ≥ 0 the operator

K(t) =
∞∑

j=1

Pj(t)P ′j(t)

is bounded, strongly Cn−1, n ≥ 1, on [0, 2π] and such that K(t)∗ = −K(t).

Remark: The content of this proposition is nontrivial for α ≤ 1/2, see [N1].

Actually, the proposition is a consequence of the following technical

Lemma 3.2 Assume H0 satisfies S, B(t) satisfies R0 and let

G(t) =
∞∑

j=1

Pj(t)
1

2πi

∮
Γj

Aj(t, λ)R(t, λ)dλ

where
sup

t∈[0,2π]
sup
λ∈Γj

‖Aj(t, λ)‖ ≤ c

jα
.

Then, if α > β ≥ 0, G(t) is bounded and strongly continuous ∀t ∈ [0, 2π]. If, furthermore,
B(t) satisfies R1 and Aj(t, λ) is strongly C1 with

sup
t∈[0,2π]

sup
λ∈Γj

‖A′j(t, λ)‖ ≤ c

jα
,

then, G(t) is strongly C1 ∀t ∈ [0, 2π] and

G′(t) = G1(t)−G0(t)G(t)

where G0(t) and G1(t) have the same form as G(t) with

A0
j (t, λ) = R(t, λ)B′(t)

and
A1

j (t, λ) = P ′j(t)Aj(t, λ) +A′j(t, λ)−Aj(t, λ)R(t, λ)B′(t)

in place of Aj(t, λ).
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Remark: The operator G0(t) coincides with the operator K(t) of the proposition since

R′(t, λ) = −R(t, λ)B′(t)R(t, λ). (3.6)

Proof of proposition 3.1: Since H0 +B(t) satisfies S uniformly in t ∈ [0, 2π], we have by
(3.5)

‖R(t, λ)|λ∈Γj
‖ ≤ c

jα
(3.7)

which yields the required bound on A0
j (t, λ). Hence K(t) is bounded provided α > β ≥ 0.

Now, if B(t) is strongly Cn, the same is true for R(t, λ), see (3.6), and using the Leibnitz
formula or eq.(2.36) in [JP2] we get∥∥∥∥(

∂

∂t

)m

R(t, λ)|λ∈Γj

∥∥∥∥ ≤ c

jα
, ∀m ≤ n. (3.8)

Consequently, A0
j (t, λ) is strongly Cn−1 and∥∥∥∥(

∂

∂t

)m

A0
j (t, λ)

∥∥∥∥ ≤ c

jα
(3.9)

uniformly in λ ∈ Γj and t ∈ [0, 2π], for all m ≤ n − 1. Thus, as easily checked, the formula
of lemma 3.2 can be iterated since, using (3.4), (3.6) and (3.8),∥∥∥∥(

∂

∂t

)m

Pj(t)
∥∥∥∥ ≤ c

jα
, ∀1 ≤ m ≤ n. (3.10)

The identity K(t)∗ = −K(t) results from the self adjointness of the projectors Pj(t) and the
identity

0 =
∞∑

j=0

P ′j(t) =
∞∑

j=0

(P ′j(t)Pj(t) + Pj(t)P ′j(t)). (3.11)

2

3.2 Adiabatic formalism

We introduce in this section an iteration scheme which, in the adiabatic context, is also
known as superadiabatic renormalization [JP1], [JP2]. For t ∈ [0, 2π], we start with

H0(t) ≡ H0 +W (t) (3.12)

where H0 satisfies S and W (t) satisfies Rk, k ≥ 1, so that lemma 3.1 applies. The spectral
projectors of H0(t) are denoted by

P 0
j (t) = − 1

2πi

∮
Γ0

j

R0(t, λ)dλ (3.13)

where R0(t, λ) = (H0(t) − λ)−1 and Γ0
j encircles the spectral set σ0

j (t) in such a way that
(3.4) and (3.5) hold (with the obvious change of notation). We define the operator

K0(t) =
∞∑

j=1

P 0
j (t)P 0

j
′(t) (3.14)
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which is bounded and strongly Ck−1 by proposition 3.1. At the qth step, k − 1 ≥ q ≥ 1, we
set

Hq(t) ≡ H0(t) + iKq−1(t) (3.15)

which satisfies S as well. Thus we can define its spectral projectors by

P q
j (t) = − 1

2πi

∮
Γq

j

Rq(t, λ)dλ (3.16)

where Rq(t, λ) = (Hq(t) − λ)−1 and Γq
j encircles the spectral set σq

j (t) in such a way that
(3.4) and (3.5) hold. Similarly, we define

Kq(t) =
∞∑

j=1

P q
j (t)P q

j
′(t). (3.17)

Using proposition 3.1 iteratively, we find thatHq(t) is strongly Ck−q whereasKq(t) is strongly
Ck−q−1, so that this scheme is well defined provided q ≤ k − 1.

Let Vq(t) be the solution of the Schrödinger-like equation for t ∈ [0, 2π]

iV ′
q (t) = (Hq(t)− iKq(t))Vq(t) , Vq(0) = I. (3.18)

Lemma 3.3 For any q ≤ k − 1, the operator Vq(t) is unitary, maps D into D and satisfies
(3.18) strongly on D. Moreover,

Vq(t)P
q
j (0) = P q

j (t)Vq(t)

for any t ∈ [0, 2π] and any j = 1, · · · ,∞.

Remark: The first part of the lemma is nontrivial for q = k − 1 since Kk−1(t) is not
differentiable. The second part generalizes standard results [Ka], [Kr] which hold for a finite
number of projectors.

Corollary 3.1 If W (t) is 2π-periodic and q ≤ k − 1,

σac(Vq(2π)) = ∅.

Proof: The operators Hq(t) are 2π-periodic since their construction is local. Hence we have

P q
j (2π) = P q

j (0) (3.19)

so that

[Vq(2π), P q
j (0)] = 0 , ∀j = 1, · · · ,∞. (3.20)

Since the orthogonal subspaces P q
j (0)H are finite dimensional, Vq(2π) has pure point spec-

trum. 2

Let us now evaluate the difference between U(2π) and Vq(2π). For ϕ ∈ D we compute,
see (3.12),

i
(
V −1

q (t)U(t)ϕ
)′

= V −1
q (t)(−Hq(t) + iKq(t) +H0(t))U(t)ϕ

= iV −1
q (t)(Kq(t)−Kq−1(t))U(t)ϕ (3.21)
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hence

U(t)− Vq(t) = Vq(t)
∫ t

0
dsV −1

q (s)(Kq(s)−Kq−1(s))U(s). (3.22)

In order to apply the Birman-Krein theorem [BK], it remains to show that the trace norm
of U(2π)− Vq(2π) is finite. This will be true if we show that

sup
t∈[0,2π]

‖Kq(t)−Kq−1(t)‖1 ≤ c , (3.23)

where ‖ · ‖1 stands for the trace norm.

3.3 Estimations in the trace norm

We first note that

Kq(t)−Kq−1(t) =
∞∑

j=1

(
P q

j (t)P q
j
′(t)− P q−1

j (t)P q−1
j

′
(t)

)
(3.24)

where the operators P q
j (t)P q

j
′(t) − P q−1

j (t)P q−1
j

′
(t) are degenerate. And since Hq(t) and

Hq−1(t) satisfy the spectral hypothesis S, we have

dim Ran(P q
j (t)P q

j
′(t)− P q−1

j (t)P q−1
j

′
(t)) ≤ cjβ. (3.25)

Our main tools to perform estimations in the trace norm are the following lemmas to be
found in [Ka], pp. 521.

Lemmas
i) If T is degenerate, ‖T‖1 ≤ dim Ran(T )‖T‖.
ii)If ‖Tn − T‖ → 0 as n→∞ and ‖Tn‖1 ≤M uniformly in n, then ‖T‖1 ≤M .

We now state the main proposition of this section.

Proposition 3.2 The projectors P q
j (t) defined by (3.16) satisfy∥∥∥∥(

∂

∂t

)n

P q−1
j (t)

(
P q

j (t)− P q−1
j (t)

)∥∥∥∥ ≤ c

j(q+1)α

for any n and q such that n+ q ≤ k, and∥∥∥∥(
∂

∂t

)n

P q
j (t)

(
P q

j (t)P q
j
′(t)− P q−1

j (t)P q−1
j

′
(t)

)∥∥∥∥ ≤ c

j(q+1)α

for any n and q such that n+ q + 1 ≤ k.

Corollary 3.2 For q ≤ k − 1∥∥∥P q
j (t)P q

j
′(t)− P q−1

j (t)P q−1
j

′
(t)

∥∥∥ ≤ c

j(q+1)α
.
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Proof:

P q
j (t)P q

j
′(t)− P q−1

j (t)P q−1
j

′
(t) = (3.26)

P q
j (t)

(
P q

j (t)P q
j
′(t)− P q−1

j (t)P q−1
j

′
(t)

)
+

P q
j (t)P q−1

j (t)P q−1
j

′
(t)− P q−1

j (t)P q−1
j (t)P q−1

j

′
(t) =

P q
j (t)

(
P q

j (t)P q
j
′(t)− P q−1

j (t)P q−1
j

′
(t)

)
+

[
P q−1

j (t)
(
P q

j (t)− P q−1
j (t)

)]∗
P q−1

j

′
(t)

where ‖P q−1
j

′
(t)‖ ≤ c (see (3.10)). 2

We can now end the proof of theorem 2.1. On the one hand, using lemma i) and the
above corollary∥∥∥∥∥∥

n∑
j=1

(
P q

j (t)P q
j
′(t)− P q−1

j (t)P q−1
j

′
(t)

)∥∥∥∥∥∥
1

≤ c
n∑

j=1

jβ

j(q+1)α
≤M <∞ (3.27)

where M is independent of n, provided (q + 1)α− β > 1. On the other hand∥∥∥∥∥∥
n∑

j=1

(
P q

j (t)P q
j
′(t)− P q−1

j (t)P q−1
j

′
(t)

)
−

∞∑
j=1

(
P q

j (t)P q
j
′(t)− P q−1

j (t)P q−1
j

′
(t)

)∥∥∥∥∥∥
≤ c

∞∑
j=n+1

1
j(q+1)α

→ 0 as n→∞ (3.28)

provided (q + 1)α > 1. In view of lemma ii) and corollary 3.1, we can conclude by the
Birman-Krein theorem [BK] that σac(U(2π)) = ∅ if kα− β > 1, since q ≤ k − 1. 2

4 Technicalities

We present in this final section the proofs of the results stated in the previous section.
Proof of lemma 3.2: Let us show that G(t) is bounded for any α > β ≥ 0. We consider
G(t) as an infinite matrix in the orthonormal basis{

ψ
nj

j (t)
}nj=1,···,mult(σj)

j=1,···,∞
, s.t. Pj(t)ψ

nj

j (t) = ψ
nj

j (t). (4.1)

Its matrix elements are given by

g
nj ,nk

j,k (t) ≡ 〈ψnj

j (t)|G(t)ψnk
k (t)〉

= 〈ψnj

j (t)| 1
2πi

∮
Γj

Aj(t, λ)R(t, λ)dλPk(t)ψ
nk
k (t)〉. (4.2)

If j 6= k, we have, using the first resolvent identity and the Cauchy formula,∮
Γj

Aj(t, λ)R(t, λ)dλPk(t) =

− 1
2πi

∮
Γj

∮
Γk

Aj(t, λ)R(t, λ)R(t, µ)dλdµ =

− 1
2πi

∮
Γj

∮
Γk

(
Aj(t, λ)R(t, λ)

λ− µ
− Aj(t, λ)R(t, µ)

λ− µ

)
dλdµ =

1
2πi

∮
Γj

∮
Γk

Aj(t, λ)R(t, µ)
λ− µ

dλdµ. (4.3)
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As a consequence of the spectral hypothesis S (see [H4]),

|λ− µ| ≥ c((j + 1)α + (j + 2)α + · · ·+ kα) ≥ c
∣∣∣jα+1 − kα+1

∣∣∣ , (4.4)

so that by virtue of the hypothesis and our choice of paths (3.4), (3.5) we get the estimate

g
nj ,nk

j,k (t) ≤ c

|jα+1 − kα+1|
. (4.5)

If j = k, we have

g
nj ,nj

j,j (t) ≤ c

jα
. (4.6)

According to the Schur condition, [Ka] example 2.3 p.143,

‖G(t)‖ ≤ max

sup
j,nj

∞∑
k=1
nk

∣∣∣gnj ,nk

j,k (t)
∣∣∣ , sup

k,nk

∞∑
j=1
nj

∣∣∣gnj ,nk

j,k (t)
∣∣∣
 . (4.7)

Thus, since nk ≤ ckβ, we have to show that

sup
j

∞∑
k=1
k 6=j

kβ

|jα+1 − kα+1|
<∞ and sup

j

jβ

jα
<∞. (4.8)

But it is proven in the appendix of [H4] that for α > β,

∞∑
k=1
k 6=j

kβ

|jα+1 − kα+1|
= O

(
jβ−α ln j

)
(4.9)

so that (4.8) is indeed true provided α > β ≥ 0. To prove the strong continuity of G(t), we
introduce the strongly continuous approximations

GN (t) =
N∑

j=1

Pj(t)
1

2πi

∮
Γj

Aj(t, λ)R(t, λ)dλ. (4.10)

Applying the Schur condition again, and (4.9), we obtain

lim
N→∞

sup
t∈[0,2π]

‖GN (t)−G(t)‖ = 0 (4.11)

if α > β ≥ 0, which shows that G(t) is strongly continuous. Indeed, the conditions to verify
are

sup
j>N

 ∞∑
k=1
k 6=j

kβ

|jα+1 − kα+1|
+
jβ

jα

 N→∞→ 0 (4.12)

sup
k

∞∑
j=N+1

j 6=k

jβ

|jα+1 − kα+1|
+ sup

j>N

jβ

jα

N→∞→ 0. (4.13)
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According to (4.9), (4.12) is true if α > β ≥ 0 and the sum in (4.13) can be approximated
by

sup
k≤N

∞∑
j=N+1

j 6=k

jβ

|jα+1 − kα+1|
+ sup

k>N

∞∑
j=N+1

j 6=k

jβ

|jα+1 − kα+1|
≤

∞∑
j=N+1

jβ

|jα+1 −Nα+1|
+ sup

k>N

∞∑
j=N+1

j 6=k

jβ

|jα+1 − kα+1|
(4.14)

where both terms are O
(
Nβ−α lnN

)
again.

To consider the differentiability of G(t) when B(t) and Aj(t, λ) are strongly C1, we also
introduce the projector

ΠN (t) = I−
N∑

j=1

Pj(t). (4.15)

By (3.6) and a standard application of the Cauchy formula we can write

Π′
N (t) =

1
2πi

∫ ∞

−∞
idηR(t, ξN + iη)B′(t)R(t, ξN + iη) (4.16)

where ξN lies on the real axis between σN and σN+1. Hence

‖Π′
N (t)‖ ≤ c‖B′(t)‖

∫ ∞

−∞
dη

1
cN2α + η2

≤ c

Nα

∫ ∞

−∞
dy

1
1 + y2

≤ c

Nα
. (4.17)

Let us compute

∂

∂t


N∑

j=1

Pj(t)
1

2πi

∮
Γj

Aj(t, λ)R(t, λ)dλ

 =

N∑
j=1

(
P ′j(t)Pj(t) + Pj(t)P ′j(t)

) 1
2πi

∮
Γj

Aj(t, λ)R(t, λ)dλ+

N∑
j=1

Pj(t)
1

2πi

∮
Γj

(
A′j(t, λ)−Aj(t, λ)R(t, λ)B′(t)

)
R(t, λ)dλ =

N∑
j=1

Pj(t)
1

2πi

∮
Γj

(
P ′j(t)Aj(t, λ) +A′j(t, λ)−Aj(t, λ)R(t, λ)B′(t)

)
R(t, λ)dλ+

N∑
k=1

P ′k(t)Pk(t)
N∑

j=1

Pj(t)
1

2πi

∮
Γj

Aj(t, λ)R(t, λ)dλ. (4.18)

Now, using the definition (4.15),

N∑
j=1

P ′j(t) + Π′
N (t) =

N∑
j=1

P ′j(t)Pj(t) + Pj(t)P ′j(t) + Π′
N (t) ≡ 0 (4.19)

so that
N∑

j=1

P ′j(t)Pj(t) = −
N∑

j=1

Pj(t)P ′j(t)−Π′
N (t). (4.20)
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Consequently, the last term of (4.18) can be written as

−
N∑

k=1

Pk(t)P ′k(t)GN (t)−Π′
N (t)GN (t) ≡ −G0,N (t)GN (t)−Π′

N (t)GN (t), (4.21)

where G0,N approximates G0(t) as in (4.10) (see the remark below lemma 3.2). We have
thus proved the formula, with a similar notation,

G′N (t) = G1,N (t)−G0,N (t)GN (t)−Π′
N (t)GN (t) (4.22)

where G1,N (t) tends to G1(t) in norm and uniformly in t ∈ [0, 2π] by our hypothesis on
‖A′j(t, λ)‖. On the other hand,

G(s)|tt0 = GN (s)|tt0 + (G(s)−GN (s))|tt0 =∫ t

t0
G′N (s)ds+ (G(s)−GN (s))|tt0 =∫ t

t0

(
G1,N (s)−G0,N (s)GN (s)−Π′

N (s)GN (s)
)
ds+ (G(s)−GN (s))|tt0 (4.23)

where the integrand tends to G1(s) − G0(s)G(s) in norm and uniformly in s ∈ [0, 2π], by
(4.11) and (4.17). Thus we can take the limit N → ∞ inside the integral in the above
equation which eventually yields

G(t)−G(t0) =
∫ t

t0
G1(s)−G0(s)G(s)ds. (4.24)

2

Proof of lemma 3.3: In order to simplify the notation, we drop the indices q so that
we are lead to consider

H(t) = H0 +B(t) (4.25)

where H0 satisfies S with α > β ≥ 0, B(t) satisfies R1 and the operator

K(t) =
∞∑

j=1

Pj(t)P ′j(t) (4.26)

where Pj(t) is defined by (3.3). We first have to show that there exists a unitary operator
V (t) strongly C1 on D, mapping D into D such that for any ϕ ∈ D and t ∈ R

iV ′(t)ϕ = (H(t)− iK(t))V (t)ϕ , V (0) = I. (4.27)

Note that as K(t) is strongly continuous only, we cannot invoke theorem X70 of [RS] directly.
We shall instead make use of a theorem of perturbation of evolution operators, theorem 3.4
p.198 in [Kr]. Since H ′(t) = B′(t) is bounded, there exists a unitary U(t) with the above
properties such that

iU ′(t)ϕ = H(t)U(t)ϕ , U(0) = I, (4.28)

if ϕ ∈ D. Then, according to the above mentionned theorem, there exists a unitary V (t)
associated with (4.27) possessing the required properties, provided the perturbation K(t)
and the operator H(t)K(t)R(t, 0) are bounded and strongly continuous. Let ϕ ∈ D. We
have for any j ≥ 1

H(t)Pj(t)ϕ = Pj(t)H(t)ϕ (4.29)
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so that (applying lemma 1.3 p.178 [Kr] for example)

(H ′(t)Pj(t) +H(t)P ′j(t))ϕ = (P ′j(t)H(t) + Pj(t)H ′(t))ϕ. (4.30)

Hence we compute, using (4.25) and the completeness of the projectors Pj(t),

H(t)K(t)R(t, 0) =
∞∑

j=1

Pj(t)H(t)P ′j(t)R(t, 0)

=
∞∑

j=1

Pj(t)
(
P ′j(t)H(t) + Pj(t)B′(t)−B′(t)Pj(t)

)
R(t, 0)

=
∞∑

j=1

(
Pj(t)P ′j(t) + Pj(t)B′(t)R(t, 0)− Pj(t)B′(t)R(t, 0)Pj(t)

)

= K(t) +B′(t)R(t, 0)−
∞∑

j=1

Pj(t)B′(t)R(t, 0)Pj(t). (4.31)

The last operator is bounded,∥∥∥∥∥∥
∞∑

j=1

Pj(t)B′(t)R(t, 0)Pj(t)ϕ

∥∥∥∥∥∥
2

=
∞∑

j=1

∥∥Pj(t)B′(t)R(t, 0)Pj(t)ϕ
∥∥2

≤
∞∑

j=1

∥∥Pj(t)B′(t)R(t, 0)
∥∥2 ‖Pj(t)ϕ‖2 ≤

∥∥B′(t)R(t, 0)
∥∥2

∞∑
j=1

‖Pj(t)ϕ‖2

=
∥∥B′(t)R(t, 0)

∥∥2 ‖ϕ‖2 , (4.32)

and strongly continuous since it is a sum of strongly continuous operators converging uni-
formly in t ∈ [0, 2π]. Indeed, it is sufficient to note that

∞∑
j=N+1

‖Pj(t)ϕ‖2 = ‖(I−ΠN (t))ϕ‖2 =

∥∥∥∥(
I−ΠN (0)−

∫ t

0
dsΠ′

N (s)
)
ϕ

∥∥∥∥2

≤ ‖(I−ΠN (0))ϕ‖2 +
c

Nα
‖ϕ‖2 N→∞→ 0 (4.33)

uniformly in t ∈ [0, 2π], according to (4.17).
To prove the intertwining property

V (t)Pj(0) = Pj(t)V (t) , ∀t ∈ [0, 2π] and ∀j ≥ 1, (4.34)

we approximate V (t) by evolution operators VN (t), N = 1, · · · ,∞, associated with the equa-
tions

iV ′
N (t)ϕ = (H(t)− iKN (t)− iΠN (t)Π′

N (t))VN (t)ϕ , VN (0) = I (4.35)

where ϕ ∈ D and t ∈ R and

KN (t) =
N∑

j=1

Pj(t)P ′j(t) ≡ G0,N (t). (4.36)

As above, we deduce that VN (t) are unitary, strongly C1 on D and map D into D since
ΠN (t) commutes with H(t) and

N∑
j=1

Pj(t) + ΠN (t) = I. (4.37)
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Moreover, since we deal with a finite number of projectors, we have the standard property,
see e.g.[Kr] §3, Chap. IV,

VN (t)Pj(0) = Pj(t)VN (t) ∀j = 1, · · · , N
VN (t)ΠN (0) = ΠN (t)VN (t) ∀t ∈ [0, 2π]. (4.38)

We compute

V (t)Pj(0)− Pj(t)V (t) =
(V (t)− VN (t))Pj(0)− Pj(t)(V (t)− VN (t)) + (VN (t)Pj(0)− Pj(t)VN (t)) (4.39)

where the last bracket vanishes if j ≤ N . Then, for any ϕ ∈ D,

i
∂

∂t

(
V −1

N (t)V (t)ϕ
)

= iV −1
N (t)

(
KN (t)−K(t) + ΠN (t)Π′

N (t)
)
V (t)ϕ (4.40)

so that

‖V (t)− VN (t)‖ ≤
∫ t

0
ds

∥∥KN (s)−K(s) + ΠN (s)Π′
N (s)

∥∥ . (4.41)

But the integrand tends to zero uniformly in s as N tends to infinity (see (4.11) and (4.17))
so that

lim
N→∞

‖V (t)− VN (t)‖ = 0 ∀ t ∈ [0, 2π]. (4.42)

Consequently, we deduce from (4.39) that V (t)Pj(0)− Pj(t)V (t) ≡ 0 for any j ≥ 1 and any
t ∈ [0, 2π]. 2

Proof of proposition 3.2: The proof is by induction. Let us recall that W (t) is strongly
Ck and q ≤ k − 1. We first note that, at the cost of a possible relabelling, we can assume
that for j large enough the spectral sets σs

j (t), s = 0, 1, · · · , q + 1, can be surrounded by the
same path Γj such that

|Γj | ≤ cjα

dist(Γj ,∪∞j=1σ
s
j (t)) ≥ cjα , s = 0, 1, · · · , q + 1. (4.43)

Indeed, Hs(t) = H0(t) + iKs−1(t) where

max
s=1,···,q+1

sup
t∈[0,2π]

‖Ks−1(t)‖ ≤ c. (4.44)

We set, using the second resolvent identity,

T q
j (t) ≡ P q+1

j (t)− P q
j (t)

= − 1
2πi

∮
Γj

(Rq+1(t, λ)−Rq(t, λ))dλ

=
1
2π

∮
Γj

Rq(t, λ)(Kq(t)−Kq−1(t))Rq+1(t, λ)dλ. (4.45)

Lemma 4.1
a) T q

j (t) = P q+1
j (t)T q

j (t) + T q
j (t)P q

j (t)

b) P q+1
j (t)T q

j (t) = P q+1
j (t)P q

j (t)T q
j (t)(I− T q

j (t))−1.
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Proof:
a) Since the operators P s

j (t) are projectors we can write

P q+1
j (t) =

(
P q

j (t) + T q
j (t)

)2
= P q

j (t) + P q
j (t)T q

j (t) + T q
j (t)P q

j (t) + T q
j (t)T q

j (t) (4.46)

hence

T q
j (t) =

(
P q

j (t) + T q
j (t)

)
T q

j (t) + T q
j (t)P q

j (t). (4.47)

b) For the same reason we have

P q+1
j (t)T q

j (t) = P q+1
j (t)

(
P q

j (t) + T q
j (t)

)
T q

j (t)

= P q+1
j (t)P q

j (t)T q
j (t) + P q+1

j (t)T q
j (t)T q

j (t) (4.48)

so that

P q+1
j (t)T q

j (t)(I− T q
j (t)) = P q+1

j (t)P q
j (t)T q

j (t). (4.49)

From (4.45) and (4.43) we obtain the estimate

‖T q
j (t)‖ ≤ c

∥∥∥∥∥
∮
Γj

Rq(t, λ)(Kq(t)−Kq−1(t))Rq+1(t, λ)dλ

∥∥∥∥∥
≤ c|Γj |

1
j2α

‖Kq(t)−Kq−1(t)‖ ≤
c

jα
(4.50)

which shows that for j large enough the operator (I− T q
j (t)) is invertible. 2

Remark: We can deduce easily from this lemma and the self adjointness of P s
j (t) the

following estimate for j large enough

‖T q
j (t)‖ ≤ c‖P q

j (t)T q
j (t)‖ (4.51)

which yields the sharper estimate on ‖T q
j (t)‖

‖T q
j (t)‖ ≤ c

j(q+2)α
, (4.52)

provided proposition 3.2 is true.

Let us assume the proposition holds for the index q and let us check its validity for q + 1.
Thus we have to estimate for any n such that n+ q + 1 ≤ k, see (4.45),(

∂

∂t

)n

P q
j (t)T q

j (t) =
1
2π

∮
Γj

(
∂

∂t

)n

Rq(t, λ)P q
j (t)(Kq(t)−Kq−1(t))Rq+1(t, λ)dλ. (4.53)

We compute

P q
j (t)(Kq(t)−Kq−1(t)) =

P q
j (t)

(
P q

j (t)Kq(t)− P q−1
j (t)Kq−1(t)

)
+ P q

j (t)P q−1
j (t)Kq−1(t)− P q

j (t)Kq−1(t) =

P q
j (t)

(
P q

j (t)P q
j
′(t)− P q−1

j (t)P q−1
j

′
(t)

)
− P q

j (t)T q−1
j (t)Kq−1(t). (4.54)
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Using property b), we get(
∂

∂t

)n

P q
j (t)T q

j (t) = (4.55)

1
2π

∮
Γj

(
∂

∂t

)n

Rq(t, λ)P q
j (t)

(
P q

j (t)P q
j
′(t)− P q−1

j (t)P q−1
j

′
(t)

)
Rq+1(t, λ)dλ

− 1
2π

∮
Γj

(
∂

∂t

)n

Rq(t, λ)P q
j (t)P q−1

j (t)T q−1
j (t)

(
I− T q−1

j (t)
)−1

Kq−1(t)Rq+1(t, λ)dλ.

By the Leibnitz formula or eq.(2.36) in [JP2], the nth time derivative of Rs(t, λ) for s =
0, · · · , q + 1 is given by a sum of products of operators Rs(t, λ) and(

∂

∂t

)l

Hs(t) =
(
∂

∂t

)l

W (t) + i

(
∂

∂t

)l

Ks−1(t) , l = 1, · · · , n. (4.56)

Hence, provided n+ q + 1 ≤ k (see section 3.2), and making use of (4.43) we get∥∥∥∥(
∂

∂t

)n

Rs(t, λ)|λ∈Γj

∥∥∥∥ ≤ c

jα
and

∥∥∥∥(
∂

∂t

)n

P s
j (t)

∥∥∥∥ ≤ c

jα
, n ≥ 1 (4.57)

for s = 0, · · · , q + 1. The same argument can be applied to estimate the nth time derivative

of
(
I− T q−1

j (t)
)−1

. Indeed, for j large enough,(
I− T q−1

j (t)
)−1′

=
(
I− T q−1

j (t)
)−1

T q−1
j

′
(t)

(
I− T q−1

j (t)
)−1

(4.58)

and (
∂

∂t

)l

T q−1
j (t) =

1
2π

∮
Γj

(
∂

∂t

)l

Rq−1(t, λ)(Kq−1(t)−Kq−2(t))Rq(t, λ)dλ (4.59)

so that∥∥∥∥(
∂

∂t

)n (
I− T q−1

j (t)
)−1

∥∥∥∥ ≤ c , ∀n+ q + 1 ≤ k. (4.60)

Thus, invoking the induction hypothesis and (4.57), we get∥∥∥∥(
∂

∂t

)n

P q
j (t)T q

j (t)
∥∥∥∥ ≤ c

j(q+2)α
, ∀n+ q + 1 ≤ k. (4.61)

Now, if q + 2 ≤ k we compute

P q+1
j (t)

(
P q+1

j (t)P q+1
j

′
(t)− P q

j (t)P q
j
′(t)

)
=

P q+1
j (t)

(
T q

j (t)P q
j
′(t) + P q+1

j (t)T q
j
′(t)

)
=

(P q+1
j (t)T q

j (t))P q
j
′(t) + P q+1

j (t)(P q+1
j (t)T q

j (t))′ − P q+1
j (t)P q+1

j

′
(t)T q

j (t) (4.62)

where the last term can be written as

P q+1
j (t)P q+1

j

′
(t)T q

j (t) = P q+1
j

′
(t)(T q

j (t)P q
j (t)) (4.63)

using the identity Q(t)Q′(t)Q(t) ≡ 0 for any projector Q(t) and lemma 4.1 a). Then, by
lemma 4.1 b),

P q+1
j (t)

(
P q+1

j (t)P q+1
j

′
(t)− P q

j (t)P q
j
′(t)

)
=

P q+1
j (t)(P q

j (t)T q
j (t))

(
I− T q

j (t)
)−1

P q
j
′(t) +

P q+1
j (t)

{
P q+1

j (t)(P q
j (t)T q

j (t))
(
I− T q

j (t)
)−1

}′
− P q+1

j

′
(t)(P q

j (t)T q
j (t))∗. (4.64)
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Finally, considering the Leibnitz formula again, (4.61), (4.60), (4.57) and(
∂

∂t

)l

(P q
j (t)T q

j (t))∗ =

{(
∂

∂t

)l

(P q
j (t)T q

j (t))

}∗

(4.65)

we obtain similarly∥∥∥∥(
∂

∂t

)n

P q+1
j (t)

(
P q+1

j (t)P q+1
j

′
(t)− P q

j (t)P q
j
′(t)

)∥∥∥∥ ≤ c

j(q+2)α
(4.66)

for any n such that n + q + 2 ≤ k. At last, the induction hypothesis is readily verified for
q = 1 with n+ 1 ≤ k on

P 0
j (t)T 0

j (t) =
1
2π

∮
Γj

R0(t, λ)P 0
j (t)K0(t)R1(t, λ)dλ

=
1
2π

∮
Γj

R0(t, λ)P 0
j (t)P 0

j
′(t)R1(t, λ)dλ, (4.67)

see (4.57) and (4.43), which implies, as above, that it is satisfied by

P 1
j (t)

(
P 1

j (t)P 1
j
′(t)− P 0

j (t)P 0
j
′(t)

)
(4.68)

with n+ 2 ≤ k. 2
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