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1. Introduction

This paper aims at presenting a few models of quantum dynamics whose de-
scription involves the analysis of random unitary matrices for which dynamical
localization has been proven to hold. Some models come from physical approxima-
tions leading to effective descriptions of the dynamics of certain random systems
that are popular in condensed matter theoretical physics, whereas others find their
roots in more abstract considerations and generalizations. Although they may dif-
fer in details, the operators describing the models all have in common the following
key features on which their analysis relies heavily: their dynamics is generated by
unitary operators on an infinite dimensional underlying Hilbert space which have a
band structure when expressed as matrices in a certain basis and the randomness
of the models lies in phases of the matrix elements.

The focus of this note is put on the description of the models and of the
localization results available for them. The methods and tools at work in the
detailed proofs of these results are only briefly presented, with an emphasis on the
similarity with the methods used in the self-adjoint case. A detailed account of
such proofs can be found in the paper [18] to which the reader is referred for more
about technical issues.

The paper starts with a model of electronic dynamics that we call the magnetic
ring model and which, in a certain sense, is the root of the other models that follow.
The next section makes the connection between the evolution operator of the mag-
netic ring model and the CMV matrices, which play a major role in the theory of
orthogonal polynomials with respect to a measure on the unit circle. Then we intro-
duce the unitary Anderson models as natural d-dimensional generalizations based
on the structure of the evolution operator stemming from the magnetic ring model,
and on its similarity with the well known discrete Anderson model. A final section
is devoted to a model of one-dimensional quantum walk in a random environment,
another rather popular topic of study in theoretical physics and computer science.
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For all these models, we state dynamical localization results which are based on the
methods that we describe in the last section of this paper.

2. Magnetic Ring Model

Consider an electron in a metallic ring threaded by a time dependent magnetic
flux at the center of the ring. Further assume the flux grows linearly with time.
According to Maxwell’s laws, the flux induces a constant electric force tangent to
the ring. Hence the electron is submitted to the field force induced by the periodic
metallic background plus the constant force induced by the magnetic flux. A natural
question addressed in [27, 9, 3] consists in asking whether, asymptotically in time,
the electron will acquire an unbounded energy due to the constant force it feels or
if the defects of the metallic structure of the ring can prevent the growth in energy.

In order to tackle the problem, the following approximations and regime are
considered: the curvature and width of the ring are neglected and the strength of
the constant force is small. This leads to an effective one dimensional periodic model
in the angular variable, x ∈ [0, 2π), see figure 1. The corresponding Hamiltonian

Figure 1. The magnetic ring model

takes the form

H(t) = (−i∂x − αt)2 + Vp(x), on L2((0, 2π]), (2.1)

with periodic boundary conditions, where the parameter α is assumed to be small
and Vp is real valued. Note that the variable αt plays the role of the quasi-
momentum for the periodic Schrödinger operator with potential Vp extended to
R by periodicity. Therefore the spectrum of H(t) is given by the corresponding
band functions {Ek(t)}k∈N, and is periodic in t. Moreover, the effective Hamil-
tonian being slowly varying in time for α << 1, the adiabatic theorem of quantum
mechanics states that an initial condition proportional to an eigenstate of H(0)
will give rise at any later time to a solution which belongs to the corresponding
eigenspace of H(t) obtained by continuity in time, to leading order in α, provided
the eigenvalues Ek(t) are simple for all t. Therefore, over a period, such an ini-
tial state only changes by a phase which depends on the potential Vp. In order to
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describe energy growth, it is necessary to allow transitions between the (instanta-
neous) energy levels of the model. For a quantitative approach, one makes use of
the Landau-Zener formula which says that the amplitude of non adiabatic tran-
sitions between two levels is appreciable only when the gap between the levels is
small, actually of order

√
α, so that the levels experience an avoided crossing. Now,

considering that typically over one period in t each level becomes close to the level
immediately above and immediately below only once and at different times, (except
for the ground state), see figure 2, the effective evolution operator is constructed

Figure 2. The energy levels of H(t) and the different transitions considered

on the basis of the considerations above as follows: over the first half period, the
two levels with indices 2k and 2k + 1, k ≥ 0, exhibit one avoided crossing during
that time span and evolve independently of the others, according to some scattering
process. Over the next half period, the same scenario takes place, except that the
set of independent levels involved in an avoided crossing carry indices 2k − 1, 2k,
(except for the ground state). For a given set of two levels exhibiting an avoided
crossing, with indices k − 1, k, with k ≥ 1, the scattering process is encoded in a
general 2× 2 unitary matrix

Sk = e−iθk

(
rke

−iαk itke
iγk

itke
−iγk rke

iαk

)
, (2.2)

with αk, γk, θk ∈ [0, 2π), and rk, tk ∈ [0, 1], s.t. r2k + t2k = 1. The coefficient tk
gives the Landau-Zener transition amplitude associated with the avoided crossing
and depends only on the minimum gap displayed by the band functions and their
local behavior there. The phases depend in a more complicated way on the global
behaviour of the band functions. When k = 0, S0 is replaced by a phase, s0.
In principle, once Vp is given, all parameters of Sk can be computed, within the
framework and approximations adopted, see [27, 9, 3]. Altogether, the effective
evolution operator over one period, also called monodromy operator, takes the
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following matrix form on l2(N) in an orthonormal basis of eigenstates of H(0)

U = UoUe, where Uo =

⎛
⎜⎜⎜⎝
S1

S3

S5

. . .

⎞
⎟⎟⎟⎠ , Ue =

⎛
⎜⎜⎜⎝
s0

S2

S4

. . .

⎞
⎟⎟⎟⎠ .

(2.3)
We shall denote by {ek}k∈N the chosen basis such that H(0)ek = Ek(0)ek, k ∈ N.
Note that the 2 × 2 blocks in Ue are shifted by one with respect to those of Uo

along the diagonal, and that s0 represents a 1 × 1 block. Without expliciting the
elements, we have the structure

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.4)

Let us note here that not all phases appearing in the matrix U play a significant
role. Indeed, it is shown in [8] that a suitable change of phases of the basis vectors
amounts to setting all phases {γk}k∈N to zero.

On the basis of the arguments leading to the operator U describing the evolution
over one period, the large time behavior of the electrons in the ring threaded by a
linear magnetic flux is encoded in the properties of the discrete dynamics generated
by U . This is the starting point of the analysis and we shall not attempt to justify
rigorously any of the arguments outlined above.

Coming back to the original motivation, we assume that the periodic potential
Vp contains a random component due to the impurities in the metallic ring. Then
all matrices Sk are random and, in turn, the monodromy operator becomes a ran-
dom unitary operator with band structure that we denote by Uω. The subscript ω
indicates some configuration of the random parameters. We will specify below the
way the monodromy operator depends on the randomness. Since we are working in
an energy eigenbasis {ek}k∈N, the question asked at the beginning of this section
can be cast into the following form.

Question: Let ϕ ∈ l2(N) be normalized with compact support, i.e. 〈ek|ϕ〉 = 0,
if k ≥ R, for some R > 0, so that its energy is bounded above by ER(0). For a
typical configuration of impurities ω, does the random vector at time n , Un

ωϕ, travel
to high energy states or spread significantly over high energy states of the basis ek,
k ≥ 0 as n → ∞ ? Or does the vector Un

ωϕ remain close to a finite dimensional
subspace spanned by basis vectors ek with k ≤ ρ, uniformly in n ? A related but
not equivalent question is: for a typical configuration ω, does the spectrum of the
operator Uω contain a continuous component or is it pure point?

We will be able to provide a quantitative answer this question, for certain
choices of deterministic and random parameters in the model. We shall refrain
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from stating results in their full generality, referring the interested reader to the
references provided for more details. Several such choices are studied in [5, 8, 19,
17, 29, 14]... We will only discuss one of them which, on the one hand, is rich
enough for our purpose, and, on the other hand, was actually proposed to study
the physical model [27, 9, 3]. This model is defined as follows:

We assume the transition amplitudes between neighboring levels are determin-
istic and all take the same value, whereas the phases of the scattering matrices are
random. This hypothesis is certainly a simplification but it also makes the problem
more interesting, in the sense that transitions to higher and lower energy levels
are equally probable, independently of the energy. Therefore the random phases
through their interferences play the key role. See [5, 8] for discussion of cases with
variable transition amplitudes.

Assumption A:
The coefficents (tk, rr) in (2.2) all take the same value (t, r) ∈ (0, 1)2, for all k ≥ 0.

We also exclude the trivial case t = 0 such that Uω is diagonal, and r = 0 such
that the absolutely continuous spectrum of Uω coincides with the unit circle S, see
Remark 2.2 below and [8].

Next, we assume the randomness enters the operator Uω through phases which
are i.i.d. on the unit circle. We formalize this as follows. Let (Ω,F ,P) be a
probability space, where Ω is identified with {TN}, T = R/2πZ being the torus,
and P = ⊗k∈NPk, where Pk = ν for any k ∈ N and ν is a fixed probability measure
on T, and F the σ-algebra generated by the cylinders. We define a set of random
variables on (Ω,F ,P) by

θk : Ω → T, s.t. θωk = ωk, k ∈ N. (2.5)

These random variables {θk}k∈N are thus i.i.d. on T.

Assumption B:
Let Dω = diag {e−iθω

k } in the basis {ek}k∈N, where the θωk ’s are given in (2.5).
Suppose dν(τ ) = τ (θ)dθ, where 0 ≤ τ ∈ L∞([0, 2π)).

Under Assumptions A and B, we consider operators Uω of the form

Uω = DωS, with Dω = diag {e−iθω
k } (2.6)

and

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r rt −t2

−t r2 −rt
rt r2 rt −t2

−t2 −tr r2 −rt
rt r2

−t2 −tr
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.7)

In the case where all the (relevant) phases in the scattering matrices Sk are i.i.d.
and uniform on the unit circle, it can be shown that Uω takes the form (2.6) with
a uniform density τ , see [8]. This special case is argued to be physically relevant
in [9], but the result below holds for any density τ satisfying assumption B. Note
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that the operator S is obtained by formula (2.3) with blocks Sk of the form

S2k+1 =

(
r t
−t r

)
, S2(k+1) =

(
r −t
t r

)
, ∀k ∈ N, and s0 = 1. (2.8)

Theorem 2.1. [18] Consider Uω defined in (2.3), under assumptions A and
B. Let t ∈ (0, 1) be arbitrary and denote by E the expectation over ω. Then there
exist α > 0, C < ∞ such that

E

[
sup
n∈Z

|〈ej |Un
ω ek〉|

]
≤ Ce−α|j−k|. (2.9)

Consequently, for any p > 0, we have

sup
n∈Z

‖XpUn
ωϕ‖2 < ∞ almost surely, (2.10)

where the operator X is defined by Xek = kek, for all k ∈ N. Moreover, the
spectrum of Uω is pure point:

σ(Uω) = σpp(Uω) almost surely (2.11)

with exponentially decaying eigenfunctions.

The previous statement is a dynamical localization result in energy space. Fur-
ther assuming that Ek(0) ≤ C ′kp, as k → ∞ for some C ′, p < ∞, it shows that the
energy of the electron in the disordered metallic ring does not grow unboundedly
with time, despite the constant force acting on it. Also, the probability to find
the electron in high energy states, i.e. with high quantum number number, decays
faster than any inverse power of the quantum number. Note however, that there
are different circumstances where the spectrum of U may be pure point but the
energy can grow in time, [14].

Remark 2.2. It is often technically simpler to consider that the operator Uω

acts on l2(Z) rather than on l2(N). This means that all indices k are considered
as elements of Z instead of N, that Ω = {TZ}, P = ⊗k∈Zν, and that we deal with
unitary operators of the form

Uω = DωS, with Dω = diag {e−iθω
k } (2.12)

and

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . rt −t2

r2 −rt
rt r2 rt −t2

−t2 −tr r2 −rt
rt r2

−t2 −tr
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.13)

where the translation along the diagonal is fixed by 〈e2k−2|Se2k〉 = −t2, k ∈ Z.

In particular, on l2(Z), one sees rightaway that if r = 0, Uω is unitarily equiv-
alent to a direct sum of two shifts. Hence it has purely absolutely continuous
spectrum given by S. Since one can pass from Uω defined on l2(Z) to two copies
of the monodromy operator defined on l2(N) by a finite rank operator, this shows
that σa.c.(Uω) = S in either case.
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Theorem 2.1 applies to this setting as well, mutatis mutandis, as discussed in
[8, 17].

3. Orthogonal Polynomials on the Unit Circle

Before we turn to other generalizations of this model, we briefly mention in
this section that unitary operators with a band structure of the form (2.4) appear
naturally in the theory of orthogonal polynomials on the unit circle. For a detailed
account of this topic, we refer to the monograph [34]. Given an infinitely supported
probability measure dμ on S, such polynomials Φk are determined via the recursion

Φk+1(z) = zΦk(z)− αkΦ
∗
k(z), with Φ∗

k(z) = zkΦk(1/z), Φ0 = 1, (3.1)

by a sequence of complex valued coefficients {αk}k∈N, such that |αk| < 1, called
Verblunsky coefficients, which also characterize the measure dμ, see [34]. This
latter relation is encoded in a five diagonal unitary matrix C on l2(N) representing
multiplication by z ∈ S: the measure dμ arises as the spectral measure μ(Δ) =
〈e0|E(Δ)e0〉 of the cyclic vector e0 of C, where dE denotes the spectral family of
C. This matrix is the equivalent of the Jacobi matrix in the case of orthogonal
polynomials with respect to a measure on the real axis, and it is called the CMV
matrix, after [12].

Writing the Verblunsky coefficients as

αk = reiηk , and setting tk =
√
1− r2k, k = 0, 1, . . . , (3.2)

the corresponding CMV matrix reads

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r0e
−iη0 r1t0e

−iη1 t0t1
t0 −r0r1e

i(η0−η1) −r0t1e
iη0

r2t1e
−iη2 −r1r2e

i(η1−η2) r3t2e
−iη3 t2t3

t1t2 −r1t2e
iη1 −r2r3e

i(η2−η3) −r2t3e
iη2

r4t3e
−iη4 −r3r4e

i(η3−η4)

t3t4 −r3t4e
iη3

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.3)
which is a special case of (2.3), see e.g. [19]. In the same way as tri-diagonal Jacobi
matrices can be seen as paradigms for self-adjoint operators, the result of [12] shows
that five-diagonal unitary matrices (2.3) are paradigms of unitary operators. This
gives a model independent motivation for the study of such operators.

Comparing with (2.6), it was noted in [17] that if the Verblunsky coefficients
all have the same modulus and if their phases ηk = θk + θk−1 + · · ·+ θ0, then C is
unitarily equivalent to −U . Therefore, assuming the θωk are i.i.d., Theorem 1 then
directly yields the

Corollary 3.1. [17, 18]
Let αk(ω)k∈N0

be random Verblunsky coefficients of the form

αk(ω) = reiηk(ω), 0 < r < 1, k = 0, 1, 2, . . . (3.4)

whose phases are distributed on T according to

ηk(ω) ∼ dν ∗ dν ∗ · · · ∗ dν , (k + 1 convolutions) (3.5)
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where dν satisfies assumption B. Then, the random measure dμω on S with respect
to which the corresponding random polynomials Φk,ω are orthogonal is almost surely
pure point. Moreover, both (2.9) and (2.10) hold.

Remark 3.2. Other dynamical localization results for random polynomials on
the unit circle are proven for independent Verblunsky coefficients, [35, 38, 37].
The results of [37] and [35] require rotational invariance of the distribution of the
Verblunsky coefficients in the unit disk. By contrast, the corollary above holds for
strongly correlated random Verblunsky coefficients.

4. Unitary Anderson Models

When the unitary operator Uω = DωS is considered on l2(Z) according to Re-
mark 2.2, the similarity with the well known (self-adjoint) one-dimensional discrete
Anderson model is evident: The 2-translation invariant unitary operator S given
in (2.13) plays the role of the translation invariant discrete Laplacian Δ and the
diagonal random matrix Dω is similar to the diagonal random potential operator
Vω. The sum −Δ+Vω is replaced by the product DωS, since we deal with unitary
operators. Although Uω �= e−i(Δ+Vω), this operator can be viewed as an effective
generator of a discrete dynamics of a particle on the one dimensional lattice. In
that case, Theorem 2.1 can be interpreted as dynamical localization result in a
one dimensional configuration lattice, which begs to be generalized to arbitrary
dimension. Such a generalization was proposed in [20] which we now describe.

To define the multidimensional version of the unitary equivalent of the Lapla-
cian, we view l2(Zd) as ⊗d

j=1l
2(Z) and define the canonical basis vectors ek, for

k ∈ Z
d by ek � ek1

⊗ ... ⊗ ekd
. Making explicit the dependence in t in S = S(t)

from (2.13), we define Sd(t) by

Sd(t) = ⊗d
j=1S(t). (4.1)

We denote by | · | the maximum norm on Z
d. Using this norm it is easy to see that

Sd(t) inherits the band structure of S(t) so that

〈ek|Sd(t)el〉 = 0 if |k − l| > 2. (4.2)

Due to the tensor product structure, the spectrum of Sd(t) is obtained from that
of S(t), which can be determined by using Fourier transform. We get

σ(Sd(t)) = {eiϑ : ϑ ∈ [−dλ0, dλ0]}, where λ0 = arccos(1− 2t2). (4.3)

The random operator Dω keeps the same form in the canonical basis, Dω =
diag {e−iθω

k }, with the understanding that {θωk }k∈Zd are i.i.d. on T, with distribu-
tion dν.

The operator
Uω = DωSd(t) defined on l2(Zd) (4.4)

is called the generator of the unitary Anderson model.

In that framework, Theorem 2.1 is a unitary version of the statement that
dynamical localization holds true for any disorder strength in one dimension for
the Anderson model with absolutely continuous distribution of potential. As is well
known, localization results for the Anderson model in two and higher dimensions
are only available in certain asymptotic regimes of the parameters, typically large
disorder, or in certain subsets of the spectrum, the band edges. We state below two
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localization results which hold in the same regimes. The dynamical localization
property in Zd is measured in terms of the boundedness in time of all quantum
moments of the position operator on the lattice. More precisely, for p > 0 we let
|X|pe be the maximal multiplication operator such that

|X|peej = |j|peej , for j ∈ Z
d, (4.5)

where |j|e denotes the Euclidean norm on Zd.

For the unitary Anderson model the parameter t takes the role of a disorder
parameter. Small values of t correspond to large disorder in the sense that Uω is
dominated by its diagonal part, since Sd(t) tends to the identity as t → 0. The
following result says that in any dimension, dynamical localization holds throughout
the spectrum of Uω, provided t is small enough:

Theorem 4.1. [20, 18] Consider Uω defined by (4.4), under assumption B.
Then, there exists t0 > 0 such that for all t < t0, σ(Uω) = σpp(Uω) almost surely.
Moreover, there exist α > 0, C < ∞ such that for all j, k ∈ Zd

E

[
sup
n∈Z

|〈ej |Un
ω ek〉|

]
≤ Ce−α|j−k|. (4.6)

Consequently, for any p ≥ 0 and for any ϕ in l2(Zd) of compact support,

sup
n∈Z

‖|X|peUn
ωϕ‖ < ∞ almost surely. (4.7)

Let us consider now the band edge regime. At this point, it is useful to point
out that the periodicity along the diagonal of the matrix S and the definition of

Dω make the operator Uω ergodic with respect to the 2-shift in Ω = TZ
k

. By the
general theory of ergodic operators, see [13], it follows that the spectrum of Uω

is almost surely deterministic, i.e. there is a subset Σ of the unit circle such that
σ(Uω) = Σ for almost every ω. The same is true for the absolutely continuous,
singular continuous and pure point parts of the spectrum. Explicitely, there are
Σac, Σsc and Σpp such that almost surely σac(Uω) = Σac, σsc(Uω) = Σsc and
σpp(Uω) = Σpp. Moreover, Σ can be characterized in terms of the support of ν and
of the spectrum of Sd(t), [19]:

Σ = exp (−i supp ν)σ(Sd(t)) = {eiα : α ∈ [−dλ0, dλ0]− supp ν}. (4.8)

These facts also hold for the one dimensional half lattice operator (2.6).
For simplicity, and without loss of generality, we assume that supp ν ⊂ [−β, β]

with β ∈ (0, π) and −β, β ∈ supp ν. Furthermore, we will work under
Assumption C:

β + dλ0 < π. (4.9)

By (4.8), this implies the existence of a gap in the almost sure spectrum Σ of
Uω,

{eiϑ : ϑ ∈ (dλ0 + β, 2π − dλ0 − β)} ∩ Σ = ∅, (4.10)

and that ei(dλ0+β) and ei(2π−dλ0−β) are band edges of Σ. In any dimension, and
for any disorder, the result below states that localization takes place at the band
edges, at arcs denotes by I in figure 3.

To focus on specific parts of the spectrum of Uω, we introduce spectral pro-
jectors Pω

[a,b] on intervals [a, b] ⊂ T, by Pω
[a,b] = Eω([eia, eib]), where dEω is the

spectral family of Uω and [eia, eib] is a positively oriented arc on S.

125



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

10 ALAIN JOYE

Figure 3. The spectrum of Uω and regions of localization I.

Theorem 4.2. Consider Uω defined by (4.4), under assumptions B and C.
Then, there exists γ > 0 such that for the interval [a, b] = [dλ0 + β − γ, dλ0 + β] it
holds:

(a, b) ∩ Σ �= ∅ and (a, b) ∩ Σcont = ∅, (4.11)

where Σcont = Σsc ∪ Σac. In other words, almost surely Pω
[a,b]Uω has pure point

spectrum. Moreover, there exist constants C < ∞ and α > 0 such that

E[sup
n∈Z

|〈ej |Un
ωP

ω
[a,b]ek〉|] ≤ Ce−α|j−k| (4.12)

for all j, k ∈ Zd. And, consequently, for any p ≥ 0 and for any ϕ in l2(Zd) with
compact support,

sup
n∈Z

‖|X|peUn
ωP

ω
[a,b]ϕ‖ < ∞ almost surely. (4.13)

The same is true for the interval [a, b] = [2π − dλ0 − β, 2π − dλ0 − β + γ].

5. Quantum Walks in Random Environments

We now turn to another type of discrete quantum dynamics which can be shown
to display localization due to the presence of disorder. Quantum walks have become
a popular topic of study due to the role they play in theoretical quantum computing,
see e.g. [28], [24], [33], [30],..., to their use in the description of effective dynamics
of quantum systems, see [1], [22], [40], and to the nice mathematical properties
they have, [2], [26], [11].

Let us consider the simplest instance of a quantum walk, i.e. a quantum walk
on Z. Such walks simply describe the discrete dynamics of a quantum particle with
spin. In this context, the spin state is often called coin state. The Hilbert space is
thus

H = C
2 ⊗ l2(Z). (5.1)

We denote by {| ↑〉, | ↓〉} a canonical basis of C
2 and we denote the (position)

canonical basis vectors of l2(Z) by {|n〉}, n ∈ Z. The time-one dynamics of the
system is composed of two steps: a unitary evolution of the spin alone by means of
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a unitary operator C on C2, followed by the motion of the walker, conditioned on
the spin state. More precisely, if the spin is pointing up the walker moves to the
right one step, and if the spin is pointing down the walker moves to the left. The
latter step is determined by the action implemented by the unitary operator

S =
∑
k∈Z

{P↑ ⊗ |k + 1〉〈k|+ P↓ ⊗ |k − 1〉〈k|} (5.2)

where we have introduced the orthogonal projections

P↑ = |↑〉〈↑ | and P↓ = |↓〉〈↓ |. (5.3)

Altogether, the one step dynamics consists in shuffling the spin variable and then
performing the spin dependent shift S:

U = S(C ⊗ I) with C =

[
a b
c d

]
s.t. C∗ = C−1. (5.4)

The evolution operator at time n then reads Un.

Hence, if one starts form the state |↑〉⊗|k〉, the (quantum) probability to reach,
in one time step, the site |k + 1〉 equals |a|2 whereas that to reach |k − 1〉 equals
1− |a|2. Similarly, starting from |↓〉 ⊗ |k〉, the probability to reach the site |k + 1〉
equals |b|2 and that to reach |k − 1〉 is 1 − |b|2. The similarity in interpretation
with a classical random walk explains why the spin variable and the operator C are
called the coin states and coin operator. Despite the similarity of this dynamics
with that of a classical random walk, there is nothing random in the quantum
dynamical system at hand. The dynamics is invariant under translations on the
lattice Z, which implies ballistic transport.

More quantitatively, let X = I⊗x denote the operator defined on (its maximal
domain in) C2 ⊗ l2(Z), where x is the position operator given by x|k〉 = k|k〉, for
all k ∈ Z. For any p > 0, n ∈ Z, and any ϕ with compact support, we consider the
quantum mechanical expectation of the operator X at time n by

〈Xp〉ϕ(n) = 〈ϕ|U−nXpUnϕ〉 = ‖Xp/2Unϕ‖2. (5.5)

The analog definition holds for 〈|X|p〉ϕ(n). By Fourier transform methods, one gets

Lemma 5.1. For any ϕ ∈ H with compact support,

lim
n→∞

〈X2〉Ψ(n)
n2

= B ≥ 0

with B = 0 iff C is off diagonal.

When C is off diagonal, complete localization takes place.
A quantum walk in a non-trivial environment is characterized by coin operators

that depends on the position of the walker: for every k ∈ Z we have a unitary Ck

on C2, and the one step dynamics is given by

U =
∑
k∈Z

{P↑Ck ⊗ |k + 1〉〈k|+ P↓Ck ⊗ |k − 1〉〈k|} . (5.6)

We consider a random environment in which the coin operator Ck is a random
element of U(2), satisfying the following requirements:

Assumption D:
(a) {Ck}k∈Z are independent and identically distributed U(2)-valued random vari-
ables.
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(b) The quantum amplitudes of the transitions to the right and to the left are
independent random variables.
(c) The quantum transition probabilities between neighbouring sites are determin-
istic and independent of the site.

There are of course plenty of meaningful ways to define a (random) environment
for a quantum walk, see e.g. [31, 23, 39, 25, 32]. Assumption D is motivated
by simplicity and by proximity with the classical random walk. It turns out this
choice actually dictates the form of the random coin operators as follows.

Lemma 5.2. [21] Under Assumption D, the operator Uω defined by (5.6) is
unitarily equivalent to the one defined by the choice[

e−iω↑
k t −e−iω↑

kr

e−iω↓
kr e−iω↓

k t

]
where 0 ≤ t, r ≤ 1 and r2 + t2 = 1 (5.7)

and {ω↑
k}k∈Z ∪ {ω↓

k}k∈Z are i.i.d. random variables defined as in (2.5), up to mul-
tiplication by a global deterministic phase.

Let Uω be the one step dynamics of a quantum walk in a random environment

defined by (5.6) with Ck, k ∈ Z given by (5.7), where {ω#
k }k∈Z,#∈{↑,↓} are the i.i.d.

random variables defined in (2.5), distributed according to an absolutely continuous
measure ν on T. Then a statement equivalent to Theorem 2.1 in this context holds.

Theorem 5.3. [21] Assume B holds for the distribution dν. Then, for any
t ∈ (0, 1),

σ(Uω) = σpp(Uω) almost surely.

Moreover, there exist C < ∞, α > 0 such that for any j, k ∈ Z and any σ, τ ∈ {↑, ↓}

E

[
sup
n∈Z

|〈σ ⊗ j|Un
ω τ ⊗ k〉|

]
≤ Ce−α|j−k| (5.8)

and, for any p > 0, almost surely,

sup
n∈Z

〈Xp〉ωϕ(n) < ∞. (5.9)

The similarity in this result and Theorem 2.1 stems from the similarity of the
random unitary operators in the two cases considered. More specifically, Lemma
5.2 shows that, up to unitary equivalence and multiplication by a global phase, Uω

has the following representation in the ordered basis {ek}k∈Z = {. . . , |↑〉⊗|n−1〉, |↓
〉 ⊗ |n− 1〉, |↑〉 ⊗ |n〉, |↓〉 ⊗ |n〉, . . .},

Uω = DωS, with S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . r t
0 0
0 0 r t
t −r 0 0

0 0 r t
t −r 0 0

0 0 .. .t −r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.10)

Here the diagonal of S consists of zeroes and the labeling of the basis is such
that the odd rows contain r, t and the even rows contain t,−r. Moreover, upon
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relabeling the indices of the random phases, Dω is diagonal with i.i.d. entries,
Dω = diag(. . . , e−iθω

k , e−iθω
k+1 , . . .).

Note that since the random operator at hand differs from that of Remark 2.2
by the form of the deterministic matrix S, the localization result stated in Theorem
5.3 requires the separate analysis provided in [21].

6. Methods

Now that we have described several similar random unitary operators appearing
in the study of different quantum models, we want to address the methods used
to derive dynamical localization results for these operators. The paper [18] is
devoted to a detailed and hopefully pedagogical exposition of these methods, so
we only point out here the main steps of the analysis. As mentioned already, the
analysis draws on the similarity of these random unitary models with the self-
adjoint discrete Anderson model. Actually, our approach to localization proofs will
be via a unitary version of the fractional moment method, which was initiated as
a tool in the theory of selfadjoint Anderson models by Aizenman and Molchanov
in [7]. Dynamical localization will follow as a general consequence of exponential
decay of spatial correlations in the fractional moments of Green’s function.

Let us consider a random unitary matrix with a band structure in a distin-
guished basis {ek}k∈Zk of l2(Zd) of the form

Uω = DωSd, with Dω = diag {e−iθω
k } (6.1)

where the random phases {e−iθω
k }k∈Zd satisfy assumption B (adapted to the d-

dimensional setting) and the matrix Sd is a d-fold tensor product of the five-diagonal
unitary operators (2.13) invariant under the 2-shift. Again, some results hold under
weaker hypotheses, but we stick to our setting in order to keep things simple.

Let
Gω(k, l; z) = 〈ek|(Uω − z)−1el〉 (6.2)

be the Green function of Uω defined for z ∈ ρ(Uω), the resolvent set of Uω. Now,
the structure of Uω is such that a modification in one of the random parameters
corresponds to a rank one perturbation of the original operator. This leads to
the observation that while the Green function becomes singular as z approaches
the spectrum of Uω, these singularities are fractionally integrable with respect to
the random parameters: for s ∈ (0, 1) the fractional moments of the resolvent,
E(|G(k, l; z)|s), have bounds which are uniform for z arbitrarily close to the spec-
trum. This is the content of our first result.

Theorem 6.1. Suppose assumption B holds for the random variables {θk}k∈Zd .
Then for every s ∈ (0, 1) there exists C(s) < ∞ such that∫ ∫

|Gω(k, l; z)|sdν(θk)dν(θl) ≤ C(s) (6.3)

for all z ∈ C, |z| �= 1, all k, l ∈ Z
d, and arbitrary values of θj, j �∈ {k, l}. Conse-

quently,
E(|Gω(k, l; z)|s) ≤ C(s), (6.4)

for all z ∈ C, |z| �= 1.

Remark 6.2. The proof of this general result makes use of the fact that the
measure dν has a density in L∞ .
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Then, the goal is to make use of the specificities of the model under study to
identify regimes or situations where the fractional moments E(|G(k, l; z)|s) are not
just uniformly bounded, but decay exponentially in the distance between k and l.
The following general result shows that this can be used as a criterion for dynamical
localization of Uω.

Theorem 6.3. Suppose assumption B holds for the random variables {θk}k∈Zd

and that for some s ∈ (0, 1), C < ∞, α > 0, ε > 0 and an interval [a, b] ∈ T,

E(|G(k, l; z)|s) ≤ Ce−α|k−l| (6.5)

for all k, l ∈ Zd and all z ∈ C such that 1− ε < |z| < 1 and arg z ∈ [a, b].

Then there exists C̃ such that

E[ sup
f∈C(S)

‖f‖∞≤1

|〈ek|f(Uω)P
ω
[a,b]el〉|] ≤ C̃e−α|k−l|/4 (6.6)

for all k, l ∈ Zd.

Remark 6.4. That the estimate (6.6) implies almost sure spectral localization
on (a, b) can be shown by means of arguments of Enss-Veselic [15] on the geometric
characterization of bound states. Also, (6.6) directly prevents the spreading of the
wave function over all times, in the sense that for all p > 0, supn∈Z

‖|X|peUn
ωP

ω
[a,b]ϕ‖ <

∞ almost surely. Both these facts are explicitly shown in [18].

Note that specializing to the case f(z) = zn, with n ∈ Z, we get the localization
results stated in the previous sections.

The proof of Theorem 6.3 requires a link between the fractional powers of the
resolvent and the resolvent itself, so that some functional calculus can be applied
to control operators of the form f(U), for certain continuous functions f : S → C.
This is done in two steps. The first one is an estimate on the expectation of the
square of the Green function in terms of the expectation of fractional powers of
the Green function. This step is equivalent in our unitary framework to the second
moment estimate proven by Graf in [16] for the self-adjoint case.

Proposition 6.5. Assume B. Then for every s ∈ (0, 1) there exists C(s) < ∞
such that

E((1− |z|2)|G(k, l; z)|2) ≤ C(s)
∑

|m−k|≤4

E(|G(m, l; z)|s) (6.7)

for all |z| < 1 and k, l ∈ Zd.

Remark 6.6. The fact that the sum in the right hand side of the inequality
only carries over indices m a finite distance away from k is a direct consequence of
fact that the deterministic operator S has a band structure.

The second step consists in reducing bounds for f(U) to bounds on resolvents
by means of the following result.

Lemma 6.7.

f(U) = w − lim
r→1−

1− r2

2π

∫ 2π

0

(U − reiθ)−1(U−1 − re−iθ)−1f(eiθ)dθ (6.8)

for f ∈ C(S) and U a unitary operator.
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Remark 6.8. This formula is a consequence of the representation of non-
negative Borel measures on T by Poisson integrals. This can be seen by considering
the non negative spectral measure dμϕ on the torus T associated with a normalized
ϕ ∈ H such that 〈ϕ|Uϕ〉 =

∫
T
eiαdμϕ(α), and

(1− r2)〈ϕ|(U − reiθ)−1(U−1 − re−iθ)−1ϕ〉 =
∫
T

1− r2

|eiα − reiθ|2 dμϕ(α). (6.9)

For any f ∈ C(S), we thus have

〈ϕ|f(U)ϕ〉 = lim
r→1−

∫ 2π

0

∫
T

1− r2

|eiα − reiθ|2 dμϕ(α)f(e
iθ)

dθ

2π
(6.10)

and one concludes by polarization.

If the fractional moments of the resolvent are exponentially decaying, i.e. if
(6.5) holds, so is the left hand side of (6.7). Then, considering matrix elements
of (6.8) and applying Fatou’s lemma and Cauchy Schwarz, one derives the upper
bound (6.6), as shown in [18].

We have seen that showing dynamical localization for a concrete model amounts
to proving that the fractional moments of the resolvent are exponentially decaying,
i.e. that (6.5) holds. This has been done in different ways for the different regimes
and models considered. We shall not attempt to explain in details how of this
technical task is achieved in the models considered above, but we just want to
describe the methods employed to do so.

For one dimensional models, either on l2(N) or on l2(Z), one studies the gener-
alized eigenvectors of the problem, i.e. the solutions to Uωψ = zψ in l(N) or l(Z).
Because of the band structure of the operator Uω, the generalized eigenvectors are
obtained by means of a transfer matrix formalism and their behavior at infinity is
controlled by the associated Lyapunov exponent. Exploiting the way the random-
ness appears in the model, one then shows that the Lyapunov exponent is positive
and continuous in the spectral parameter z, in a neighborhood of the unit circle.
Then, by making use of the expression of the Green function in terms of certain
generalized eigenvectors, one shows that (6.5) holds throughout the spectrum, and
for all values of the parameter t ∈ (0, 1). This strategy was implemented in [18]
for the magnetic ring model and for the one dimensional unitary Anderson model,
and in [21] for the quantum walks in random environments models. Previous stud-
ies of the properties of the Lyapunov exponents for these models were performed
[8, 19, 17], which lead to spectral localization results by spectral averaging, ac-
cording to a unitary version of the argument of Simon-Wolff, [36].

For the d-dimensional unitary Anderson model, the large disorder regime was
addressed in [20]. It was shown in this paper that estimate (6.5) holds in any
dimension, provided t is small enough. To prove this estimate, the similarity in
the way the randomness appears in the model (4.4) with the discrete Anderson
model was used explicitly. The analysis is based on estimates on the expectation
of the resolvent equation raised to a fractional power s, on rank one perturbation
formulas and on a so called ”decoupling Lemma”, similar to the one shown in
[7] for the self-adjoint case. This leads to an inequality satisfied by the function
0 ≤ f(k) = E(|F (k, j; z)|s) in l∞(Zd), where F (z) = Uω(Uω−z)−1 = I+z(Uω−z)−1

is essentially equivalent to the resolvent. This inequality says that f(k) is smaller
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than a z-independent constant times the weighted average of its values around
k, with weights given by the matrix elements of Sd. The structure of Sd and
dependence in t of its matrix elements then imply the sought for bound, for t small
enough.

The band edge regime for the d-dimensional unitary Anderson model was tack-
led in the paper [18], adapting the general strategy provided in [6]. This regime,
which is the most challenging to cover, requires getting finite volume estimates
on the resolvent, close to the band edges. A first step consists in defining the
restriction Uω|Λ(L) of Uω to finite boxes Λ(L) ⊂ Z

d of side length L by means
of appropriate boundary conditions which make this restriction unitary and im-
ply certain monotony properties of the spectrum as boxes are spit by adding more
boundary conditions. Then, one needs to get accurate probabilistic bounds on the
size of the resolvent of this restriction, when the spectral parameter z is close to
the band edges. It requires showing that when L becomes large, the probability
to have eigenvalues a distance smaller than 1/Lβ away from the band edges is of
order e−γLα

, for 0 < β < 1 and α, γ > 0, i.e. a Lifshitz tail type estimate. Then a
decoupling lemma with an iterative argument allows us to prove the bound (6.5) for
the infinite volume operator Uω, in a non-empty neighborhood of the band edges.

Finally, we would like to mention that there is at least one more popular model
in condensed matter physics whose dynamics reduces to the study of a discrete time
quantum dynamics generated by a random unitary operator with a band structure:
the Chalker Coddington model and its variants, see [10]. This model can be thought
of as a unitary equivalent of the discrete Schrödinger equation on a finite width two-
dimensional strip. Some progress was made recently about the properties of this
model in [4]. But the focus of this work is more on the analysis of the associated
set of Lyapunov exponents than on dynamical localization aspects. This is why
we didn’t provide a description of the Chalker Coddington model in these notes,
eventhough it certainly belongs to the family of unitary random operators presented
here.
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