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Abstract

We consider a quantum system S interacting sequentially with independent systems
Em, m = 1, 2, . . . Before interacting, each Em is in a possibly random state, and each
interaction is characterized by an interaction time and an interaction operator, both
possibly random. We prove that any initial state converges to an asymptotic state
almost surely in the ergodic mean, provided the couplings satisfy a mild effectiveness
condition. We analyze the macroscopic properties of the asymptotic state and show
that it satisfies a second law of thermodynamics.

We solve exactly a model in which S and all the Em are spins: we find the exact
asymptotic state, in case the interaction time, the temperature, and the excitation
energies of the Em vary randomly. We analyze a model in which S is a spin and the
Em are thermal fermion baths and obtain the asymptotic state by rigorous perturbation
theory, for random interaction times varying slightly around a fixed mean, and for small
values of a coupling constant.

1 Introduction

This paper is a contribution to rigorous non-equilibrium quantum statistical mechanics,
examining the asymptotic properties of random repeated interaction systems. The paradigm
of a repeated interaction system is a cavity containing the quantized electromagnetic field,
through which an atom beam is shot in such a way that only a single atom is present in
the cavity at all times. Such systems are fundamental in the experimental and theoretical
investigation of basic processes of interaction between matter and radiation, and they are
of practical importance in quantum optics and quantum state engineering [15, 16, 17].

A repeated interaction system is described by a “small” quantum system S (cavity)
interacting successively with independent quantum systems E1, E2, . . . (atoms). At each
moment in time, S interacts precisely with one Em (with increasing index as time increases),
while the other elements in the chain C = E1+E2+· · · evolve freely according to their intrinsic
(uncoupled) dynamics. The complete evolution is described by the intrinsic dynamics of S
and of Em, plus an interaction between S and Em, for each m. The latter consists of an
interaction time τm > 0, and an interaction operator Vm (acting on S and Em); during the
time interval [τ1 + · · · + τm−1, τ1 + · · · + τm), S is coupled to Em via a coupling operator
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Vm. One may view C as a “large system”, and hence S as an open quantum system.
From this perspective, the main interest is the effect of the coupling on the system S.
Does the system approach a time-asymptotic state? If so, at what rate, and what are the
macroscopic (thermodynamic) properties of the asymptotic state? Idealized models with
constant repeated interaction, where Em = E , τm = τ , Vm = V , have been analyzed in [7, 17].
It is shown in [7] that the coupling drives the system to a τ -periodic asymptotic state, at an
exponential rate. The asymptotic state satisfies the second law of thermodynamics: energy
changes are proportional to entropy changes, with ratio equal to the temperature of the
chain C. In experiments, where repeated interaction systems can be realized as “One-Atom
Masers” [15, 16, 17], S represents one or several modes of the quantized electromagnetic field
in a cavity, and the E describe atoms injected into the cavity, one by one, interacting with
the radiation while passing through the cavity, and then exiting. It is clear that neither
the interaction (τm, Vm), nor the state of the incoming elements Em can be considered
exactly the same in each interaction step m. Indeed, in experiments, the atoms are ejected
from an atom oven, then cooled down before entering the cavity – a process that cannot be
controlled entirely. It is therefore natural to build a certain randomness into the description.
For instance, we may consider the temperature of the incoming E or the interaction time τ
to be random. (Other parameters may vary randomly as well.) We develop in this work a
theory that allows us to treat repeated interaction processes with time-dependent (piecewise
constant) interactions, and in particular, with random interactions. We are not aware of
any theoretical work dealing with variable or random interactions, other than [8]. Moreover,
to our knowledge, this is the only work, next to [8], where random positive temperature
Hamiltonians (random Liouville operators) are examined.

The purpose of the present paper is twofold:
– Firstly, we establish a general framework for random repeated interaction systems and

we prove convergence results for the dynamics. The dynamical process splits into a decaying
and a flucutating part, the latter converging to an explicitly identified limit in the ergodic
mean. To prove the main convergence result, Theorem 1.2 (see also Theorems 3.2 and 3.3),
we combine techniques of non-equilibrium quantum statistical mechanics developed in [7]
with techniques of [8], developed to analyze infinite products of random operators. We
generalize results of [8] to time-dependent, “instantaneous” observables. This is necessary
in order to be able to extract physically relevant information about the final state, such as
energy- and entropy variations. We examine the macroscopic properties of the asymptotic
state and show in Theorem 1.4 that it satisfies a second law of thermodynamics. This law
is universal in the sense that it does not depend on the particular features of the repeated
interaction system, and it holds regardless of the initial state of the system.

– Secondly, we apply the general results to concrete models where S is a spin and the E
are either spins as well, or they are thermal fermion fields. We solve the spin-spin system
exactly: Theorem 1.5 gives the explicit form of the final state in case the interaction time,
the excitation level of spins E or the temperatures of the E are random. The spin-fermion
system is not exactly solvable. We show in Theorem 7.1 that, for small coupling, and
for random interaction times τ and random temperatures β of the thermal fermi fields E ,
the system approaches a deterministic limit state. We give in Theorem 1.6 the explicit,
rigorous expansion of the limit state for small fluctuations of τ around a given value τ0.
This part of our work is based on a careful execution of rigorous perturbation theory of
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certain non-normal “reduced dynamics operators”, in which random parameters as well as
other, deterministic interaction parameters must be controlled simultaneously.

1.1 Setup

The purpose of this section is to explain parts of the formalism, with the aim to make our
main results, presented in the next section, easily understandable.

We first present the deterministic description. According to the fundamental principles
of quantum mechanics, states of the systems S and Em are given by normalized vectors (or
density matrices) on Hilbert spaces HS and HEm , respectively. We assume that dimHS <
∞, while the HEm may be infinite dimensional. Observables of S and Em are bounded
operators forming von Neumann algebras MS ⊂ B(HS) and MEm ⊂ B(HEm). Observables
AS ∈ MS and AEm ∈ MEm evolve according to the Heisenberg dynamics R ∋ t 7→ αtS(AS)
and R ∋ t 7→ αtEm

(AEm) respectively, where αtS and αtEm
are ∗-automorphism groups of MS

and MEm , respectively, see e.g. [5]. The Hilbert space of the total system is the tensor
product H = HS ⊗HC , where HC =

⊗
m≥1 HEm is the Hilbert space of the chain, and the

non-interacting dynamics is defined on the algebra MS
⊗

m≥1 MEm by αtS
⊗

m≥1 α
t
Em

. The
infinite tensor product H is taken with respect to distinguished “reference states” of the
systems S and Em, represented by vectors ψS ∈ HS and ψEm ∈ HEm

1. Typically, one takes
the reference states to be equilibrium (KMS) states for the dynamics αtS , αtEm

, at inverse
temperatures βS , βEm .

It is useful to consider the dynamics in the Schrödinger picture. For this, we implement
the dynamics via unitaries, generated by self-adjoint operators LS and LEm , acting on
B(HS) and B(HEm), respectively. The generators, called Liouville operators, are uniquely
determined by

αt#(A) = eitL#A#e−itL# , t ∈ R, and L#ψ# = 0, (1.1)

where # stands for either S or Em 2. In particular, (1.1) holds if the reference states are
equilibrium states. Let τm > 0 and Vm ∈ MS⊗MEm be the interaction time and interaction
operator associated to S and Em. We define the (discrete) repeated interaction Schrödinger
dynamics of a state vector ψ ∈ H, for m ≥ 0, by

U(m)ψ = e−iτm eLm · · · e−iτ2 eL2e−iτ1 eL1ψ, (1.2)

where
L̃k = Lk +

∑

n6=k
LEn (1.3)

describes the dynamics of the system during the time interval [τ1 + · · ·+ τk−1, τ1 + · · ·+ τk),
which corresponds to the time step k of the discrete process, with

Lk = LS + LEk
+ Vk, (1.4)

1Those vectors are to be taken cyclic and separating for the algebras MS and MEm
, respectively [5].

Their purpose is to fix macroscopic properties of the system. However, since dimHS < ∞, the vector ψS

does not play any significant role. In practice, it is chosen so that it makes computations as simple as
possible.

2The existence and uniqueness of L# satisfying (1.1) is well known under general assumptions on the
reference states ψ# [5].
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acting on HS ⊗HEk
. (We understand that the operator LEn in (1.3) acts nontrivially only

on the n-th factor of the chain Hilbert space HC .)
An operator ρ on H which is self-adjoint, non-negative, and has unit trace is called a

density matrix. A state ̺(·) = Tr(ρ · ), where Tr is the trace over H, is called a normal
state. Our goal is to understand the large-time asymptotics (m→ ∞) of expectations

̺ (U(m)∗OU(m)) ≡ ̺(αm(O)), (1.5)

for normal states ̺ and certain observables O. Important physical observables are rep-
resented by operators that act either just on S or ones that describe exchange processes
between S and the chain C. The latter are represented by time-dependent operators because
they act on S and, at step m, on the element Em which is in contact with S. We define
instantaneous observables to be those of the form

O = AS ⊗r
j=−l B

(j)
m , (1.6)

where AS ∈ MS and B
(j)
m ∈ MEm+j (we do not write identity operators in the tensor

product). The class of instantaneous observables allows us to study all properties of S
alone, as well as exchange properties between S and C.

Let us illustrate our strategy to analyze (1.5) for the initial state determined by the
vector ψ0 = ψS ⊗ ψC , where ψC = ⊗m≥1ψEm . We use ideas stemming from the algebraic
approach to quantum dynamical systems far from equilibrium to obtain the following rep-
resentation for large m (Proposition 2.5)

〈ψ0, α
m(O)ψ0〉 = 〈ψ0, PM1 · · ·Mm−l−1Nm(O)Pψ0〉 . (1.7)

Here, P is the orthogonal projection onto HS , along ψC , projecting out the degrees of
freedom of C. The Mk are effective operators which act on HS only, encoding the effects of
the interactions on the system S. They are called reduced dynamics operators (RDO), and
have the form

Mk = P eiτkKkP,

whereKk is an (unbounded, non-normal) operator acting on HS⊗HEk
, satisfying eitKkAe−itKk =

eitLkAe−itLk for all A ∈ MS ⊗ MEk
, and KkψS ⊗ ψEk

= 0.3 The operator Nm(O) acts on
HS and has the expression (Proposition 2.4)

Nm(O)ψ0 = P eiτm−l
eLm−l · · · eiτm eLm(AS ⊗r

j=−l B
(j)
m )e−iτm eLm · · · e−iτm−l

eLm−lψ0. (1.8)

The asymptotics m → ∞ of (1.7) for identical matrices Mk ≡ M has been studied in [7].
In the present work we consider the Mk to be random operators. We allow for randomness
through random interactions (interaction times, interaction operators) as well as random
initial states of the Em (random temperatures, energy spectra, etc).

Let (Ω,F ,p) be a probability space. To describe the stochastic dynamic process at
hand, we introduce the standard probability measure dP on Ωext := ΩN∗

,

dP = Πj≥1dpj , where dpj ≡ dp, ∀j ∈ N
∗. (1.9)

We make the following randomness assumptions:

3These are the defining properties of Kk; Kk has an explicit form expressible in terms of the modular
data of (MS ⊗ MEk

, ψS ⊗ ψEk
), see Section 2.2.
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(R1) The reduced dynamics operators Mk are independent, identically distributed (iid)
random operators. We write Mk = M(ωk), where M : Ω → B(Cd) is an operator
valued random variable.

(R2) The operator Nm(O) is independent of the Mk with 1 ≤ k ≤ m− l− 1, and it has the
form N(ωm−l, . . . , ωm+r), where N : Ωr+l+1 → B(Cd) is an operator valued random
variable.

Since the operator Mk describes the effect of the k-th interaction on S, assumption (R1)
means that we consider iid random repeated interactions. The random variable N in (R2)
does not depend on the time step m. This is a condition on the observables, it means that

the nature of the quantities measured at time m are the same. For instance, the B
(j)
m in

(1.6) can represent the energy of Em+j , or the part of the interaction energy Vm+j belonging
to Em+j , etc. Both assumptions are verified in a wide variety of physical systems: we may
take random interaction times τk = τ(ωk), random coupling operators Vk = V (ωk), random
energy levels of the Ek encoded in LEk

= LE(ωk), random temperatures βEk
= βE(ωk) of the

initial states of Ek, and so on; see Sections 6 and 7 for concrete models.

1.2 Main results

Our main results are: the existence and identification of the limit of infinite products
of random reduced dynamics operators; the proof of the approach of a random repeated
interaction system to an asymptotic state, together with its identification; the analysis of the
macroscopic properties of the asymptotic state; explicit expressions of that state for spin-
spin and spin-fermion systems. We present here some main results and refer to subsequent
sections for more information and for proofs.

– Ergodic limit of infinite products of random operators. The asymptotics of the dy-
namics (1.7), in the random case, is encoded in the product

M(ω1) · · ·M(ωm−l−1)N(ωm−l, . . . , ωm+r).

It is not hard to see that the spectrum of the operators M(ω) is contained inside the closed
complex unit disk, and that M(ω)ψS = ψS (see Lemma 2.3).

Definition 1.1 Let M(E) denote the set of reduced dynamics operators whose spectrum on
the complex unit circle consists only of a simple eigenvalue 1.

The following is our main result on convergence of products of random reduced dynamics
operators (see also Theorem 3.3). We denote by E[M ] the expectation of M(ω).

Theorem 1.2 (Ergodic limit of infinite operator product)
Suppose that p(M(ω) ∈ M(E)) 6= 0. Then E[M ] ∈ M(E). Moreover, there exists a set

Ω̃ ⊂ ΩN∗
of probability one s.t. for any ω = (ωn)n∈N ∈ Ω̃,

lim
ν→∞

1

ν

ν∑

n=1

M(ω1) · · ·M(ωn)N(ωn+1, . . . , ωn+l+r+1) = |ψS〉〈θ| E[N ],

where θ = P ∗
1,E[M ]ψS , P1,X is the (Riesz) spectral projection of X associated to the eigenvalue

1, and ∗ denotes the adjoint.
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– Asymptotic state of random repeated interaction systems. We use the result of The-
orem 1.2 in (1.7), where we replace αm by the random dynamics, denoted αmω . It follows
that the ergodic limit of (1.7) is ̺+(E[N ]), where

̺+(A) := 〈θ,AψS〉 , A ∈ MS . (1.10)

A density argument using the cyclicity of the reference state ψ0 extends the argument
leading to (1.7) to all normal initial states ̺ on M.

Theorem 1.3 (Asymptotic State) Suppose that p(M(ω) ∈ M(E)) 6= 0. There exists a

set Ω̃ ⊂ ΩN∗
of probability one s.t. for any ω ∈ Ω̃, for any instantaneous observable O,

(1.6), and for any normal initial state ̺, we have

lim
µ→∞

1

µ

µ∑

m=1

̺
(
αmω (O)

)
= ̺+

(
E[N ]

)
. (1.11)

– Macroscopic properties of the asymptotic state. Since we deal with open systems,
it is generally not meaningful to speak about the total energy (which is typically infinite).
However, variations (fluxes) in total energy are often well defined. Using an argument of [7]
(see also [6] for a heuristic argument based on the hamiltonian approach) one shows that
the formal expression for the total energy is constant during all time-intervals [τm−1, τm),
and that it undergoes a jump

j(m,ω) := αmω (V (ωm+1) − V (ωm)) (1.12)

at time step m. The variation of the total energy between the instants 0 and m is then
∆E(m,ω) =

∑m
k=1 j(k, ω). The relative entropy of ̺ with respect to ̺0, two normal states

on M, is denoted by Ent(̺|̺0). Our definition of relative entropy differs from that given
in [5] by a sign, so that in our case, Ent(̺|̺0) ≥ 0. For a thermodynamic interpretation of
entropy and its relation to energy, we assume for the next result that ψS is a (βS , αtS)–KMS
state on MS , and that the ψEm are (βEm , α

t
Em

)–KMS state on MEm , where βS is the inverse
temperature of S, and βEm are random inverse temperatures of the Em. Let ̺0 be the state
on M determined by the vector ψS ⊗ ψC = ψS

⊗
m ψEm . The change of relative entropy is

denoted ∆S(m,ω) := Ent(̺ ◦ αm|̺0) − Ent(̺|̺0).

Theorem 1.4 (Energy and entropy productions, 2nd law of thermodynamics) Let
̺ be a normal state on M. Then

lim
m→∞

̺

(
∆E(m,ω)

m

)
=: dE+ = ̺+

(
E
[
P (LS + V − eiτL(LS + V )e−iτL)P

])
a.s.

lim
m→∞

∆S(m,ω)

m
=: dS+ = ̺+

(
E
[
βE P (LS + V − eiτL(LS + V )e−iτL)P

])
a.s.

We call dE+ and dS+ the asymptotic energy- and entropy productions; they are independent
of the initial state ̺. If βE is deterministic, i.e., ω-independent, then the system satisfies
the second law of thermodynamics: dS+ = βEdE+.
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– Explicit expressions for asymptotic states. We apply our general results to spin-spin
and spin-fermion systems, presenting here a selection of results, and referring the reader to
Sections 6 and 7 for additional results and more detail.

Spin-spin systems. Both S and E are two-level atoms with hamiltonians hS , hE having
ground state energy zero, and excited energies ES and EE , repectively. The hamiltonian
describing the interaction of S with one E is given by h = hS + hE + λv, where λ is a
coupling parameter, and v induces energy exchange processes,

v := aS ⊗ a∗E + a∗S ⊗ aE . (1.13)

Here, a# denotes the annihilation operators and a∗# the creation operators of # = S, E .
The Gibbs state at inverse temperature β is given by

̺β,#(A) =
Tr(e−βh#A)

Zβ,#
, where Zβ,# = Tr(e−βh#). (1.14)

We take the reference state to be ψ0 = ψS ⊗m≥1 ψEm,βm , where ψS is the tracial state on
S, and ψEm,βEm

is the Gibbs state of Em (represented by a single vector in an appropriate
“GNS” Hilbert space, see Section 6).

The following results deals with three situations: 1. The interaction time τ is random. It
is physically reasonable to assume that τ(ω) varies within an interval of uncertainty, since it
cannot be controlled exactly in experiments. 2. The excitation energy of E is random. This
situation occurs if various kinds of atoms are injected into the cavity, or if some impurity
atoms enter it. 3. The temperature of the incoming atoms is random. This is physically
reasonable since the incoming atom beam’s temperature cannot be controlled exactly in
experiments.

Theorem 1.5 (Random spin-spin system) Set T := 2π√
(ES−EE)2+4λ2

.

1. Random interaction time. Suppose that βEm = β is constant, and that τ(ω) > 0 is
a random variable satisfying p (τ /∈ TN) 6= 0. Then there exists a set Ω̃ ⊂ ΩN∗

of
probability one, such that for all ω ∈ Ω̃, for all normal states ̺ on M and for all
observables A of S,

lim
µ→∞

1

µ

µ∑

m=1

̺(αmω (A)) = ̺β′,S(A), (1.15)

with β′ = β1 := βEE/ES .

2. Random excitation energy of E . Suppose that τ and βEm = β are constant, and
that EE(ω) > 0 is a random variable satisfying p (τ /∈ TN) 6= 0. (Here, T = T (ω) is
random via EE(ω).) Then there exists a set Ω̃ ⊂ ΩN∗

of probability one s.t. for all
ω ∈ Ω̃, for all normal initial states ̺ on M and for all observables A of S, (1.15) holds

with β′ = β2 := −E−1
S log

(
2
{
1 − (1 − E[e0])

−1
E
[
(1 − e0)(1 − 2Z−1

βEE/ES ,S)
]}−1 − 1

)
,

and where

e0 =

∣∣∣∣∣∣∣

(
ES − EE −

√
(ES − EE)2 + 4λ2

)2
+ 4λ2eiτ

√
(ES−EE)2+4λ2

(
ES − EE −

√
(ES − EE)2 + 4λ2

)2
+ 4λ2

∣∣∣∣∣∣∣

2

. (1.16)
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3. Random temperature of E . Suppose that β(ω) is a random variable, and that τ > 0
satisfies τ /∈ TN. Then there exists a set Ω̃ ⊂ ΩN∗

of probability one s.t. for all ω ∈ Ω̃,
for all normal initial states ̺ on M and for all observables A of S, (1.15) holds with
β′ = β3 := −E−1

S log
(
E[Z−1

β(ω)EE/ES ,S ]−1 − 1
)
.

Remarks. 1. In the situation of point 1. of Theorem 1.5, we obtain the following sharper
result than (1.15). There is are constant C,α > 0, and there is a random variable n0(ω)
satisfying E[eαn0 ] < ∞ such that, for each ω ∈ Ω̃:

∣∣̺(αnω(A)) − ̺β′,S(A)
∣∣ ≤ Ce−αn, for all

n ≥ n0(ω), all observables A and all normal initial states ̺.
2. If ES = EE then β1 = β. In the case of identical interactions (no randomness), the

system S is therefore “thermalized” by the elements of the chain, a fact which was already
noticed in [2]. One might expect that for a randomly fluctuating temperature of the E ,
the system S would be thermalized at asymptotic temperature equalling the average of the
chain temperature. However, point 3. of the above theorem shows that this is not the
case: the asymptotic temperature is in general not the average temperature. The random
repeated interaction process induces a more complicated thermalization effect on S than
simple temperature averaging.

Spin-fermion systems. Let S be a spin-1/2 system with Hilbert space of pure states C
2, and

Hamiltonian given by the Pauli matrix σz. We take the systems E to be infinitely extended
thermal fermi fields. They model dispersive environments. Let a(k) and a∗(k) denote
the usual fermionic creation and annihilation operators, and let a(f) =

∫
R3 f(k)a(k)d3k,

a∗(f) =
∫

R3 f(k)a∗(k)d3k, for square-integrable f . We take the state ̺β of E to be
the equilibrium state at inverse temperature β. It is characterized by ̺β(a

∗(f)a(f)) =〈
f, (1 + eβh)−1f

〉
, where the h appearing in the scalar product is the Hamiltonian of a sin-

gle fermion. We represent the one-body fermion space as h = L2(R+,dµ(r); g), where g is
an auxiliary Hilbert space, and we take h to be the operator of multiplication by r ∈ R

+.4

At each interaction step, S interacts with a fresh system E for a duration τ . The inter-
action induces energy exchanges between the two interacting subsystems, it is represented
by the operator λV , where λ is a small coupling constant, and V = σx⊗ [a∗(g)+a(g)]. Here,
σx is the Pauli matrix and g = g(k) ∈ L2(R3,d3k) is a form factor determining the relative
strength of interaction between S and modes of the thermal field. We consider random
interaction times of the form τ(ω) = τ0 + σ(ω), where τ0 is a fixed value, and σ(ω) ∈ [−ǫ, ǫ]
is a random variable with small amplitude ǫ.

Theorem 1.6 (Random spin-fermion system) Assume that the form factor satisfies
‖(1 + eβh/2)g‖L2(R3,d3k) <∞, and that p(σ(ω) ∈ π

2 N − τ0) 6= 1. There is a constant λ0 > 0
s.t. if 0 < |λ| < λ0, then Theorem 1.3 applies, and the asymptotic state ̺+, (1.10), has the
following expansion: for any A ∈ MS ,

̺+(A) = q(σ)A00 + (1 − q(σ))A11 +Rσ,λ(A), (1.17)

where Aij = 〈i, Aj〉, i, j = 0, 1 and |0〉, |1〉 are the eigenvectors of σz with eigenvalues
±1. The remainder term satisfies |Rσ,λ(A)| ≤ C‖A‖(ǫ3 + λ2), where C is independent of
ǫ, σ, λ,A.

4 For instance, for usual non-relativistic, massive fermions, the single-particle Hilbert space is L2(R3, d3k)
(Fourier space), and the Hamiltonian is the multiplication by |k|2. This corresponds to g = L2(S2, dΣ)
(uniform measure on S2), and dµ(r) = 1

2
r1/2dr.
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The probabilities q(σ) are given by

q(σ) =
α+

α+ + α−
+ 2E[σ]

α−ξ+ − α+ξ−
τ2
0 (α+ + α−)2

+ 4(E[σ])2(ξ+ + ξ−)
α−ξ+ − α+ξ−
τ4
0 (α+ + α−)3

+E[σ2]
α−η+ − α+η−
τ2
0 (α+ + α−)2

,

where, with sinc(x) = sin(x)/x,

α± =

∫
dµ(r)

‖g(r)‖2
g

1 + e−βr

{
e−βrsinc2

[
(r ∓ 2)τ0

2

]
+ sinc2

[
(r ± 2)τ0

2

]}
(1.18)

ξ± = τ0

∫
dµ(r)

‖g(r)‖2
g

1 + e−βr

{
e−βrsinc [(r ∓ 2)τ0] + sinc [(r ± 2)τ0]

}

η± =

∫
dµ(r)

‖g(r)‖2
g

1 + e−βr

{
e−βr cos [(r ∓ 2)τ0] + cos [(r ± 2)τ0]

}
.

Expansion (1.17) shows in particular that to lowest order in λ, the final state is diagonal
in the energy basis. This is a sign of decoherence of S due to contact with the environment
C.

Organization of the paper. In Section 2 we cast the dynamical problem into a shape
suitable for further analysis. Our main result there is Proposition 2.5. Section 3 contains
the proof of Theorem 1.2, and in Sections 4 and 5 we present the proof of Theorems 1.3 and
1.4, respectively. In sections 6 and 7 we present the setup and main results for spin-spin
and spin-fermion systems. In particular, we give the proofs of Theorems 1.5 and 1.6.

2 Repeated interactions and matrix products

In this section, we link the repeated interaction dynamics to products of matrices. This
reduction is a purely “algebraic” procedure and randomness plays no role here. Throughout
the paper, we assume without further mentioning it, that

(A1) dimHS = d < ∞, and the reference vectors ψ# are cyclic and separating for M#

(# = S or Em).

Recall that cyclicity means that M#ψ# is dense in H#, and separability means that
A#ψ# = 0 ⇒ A# = 0, ∀A# ∈ M#, and is equivalent to M′

#ψ# is dense in H#, where M′
#

is the commutant von Neumann algebra of M#.

2.1 Splitting off the trivial dynamics

We isolate the “free part” of the dynamics given in (1.2)–(1.4), i.e. that of the elements Ek
which do not interact with S at a given time step m.

Proposition 2.1 For any m, we have

U(m) = U−
m e−iτmLm · · · e−iτ1L1 U+

m, (2.1)

9



where

U−
m = exp


−i

m∑

j=1

j−1∑

k=1

τjLEk


 and U+

m = exp


−i

m∑

j=1

∑

k>j

τjLEk


 (2.2)

are unitary operators which act trivially on HS and satisfy U±
mψC = ψC , ∀m ∈ N

∗.

Proof. As the interaction Liouvillean at time m, Lm, and the free Liouvillean LEk
commute

provided k 6= m, we can write successively

e−iτ1 eL1 = e−iτ1L1 e−iτ1
P

k>1 LEk ,

e−iτ2 eL2 = e−iτ2LE1 e−iτ2L2 e−iτ2
P

k>2 LEk

...

e−iτm eLm = e−iτm
P

k<m LEk e−iτmLm e−iτm
P

k>m LEk ,

(2.3)

and then use this decomposition in (1.2). 2

2.2 Choosing a suitable generator of dynamics

We follow an idea developed recently in the study of open quantum systems far from equi-
librium which allows to represent the dynamics in a suitable way [9, 7, 8, 12, 13, 14].
Let Jm and ∆m denote the modular conjugation and the modular operator of the pair
(MS ⊗ MEm , ψS ⊗ ψEm), respectively. For more detail see the above references as well as
[5] for a textbook exposition. Throughout this paper, we assume the following condition on
the interaction, without further mentioning it:

(A2) ∆
1/2
m Vm∆

−1/2
m ∈ MS ⊗ MEm , ∀m ≥ 1.

We present explicit formulae for the modular conjugation and the modular operator for
the spin-fermion system in Section 7. The Liouville operator Km at time m associated to

the reference state ψS ⊗ ψEm is defined as Km = LS + LEm + Vm − Jm∆
1/2
m Vm∆

−1/2
m Jm.

It satisfies ‖e±iKm‖ ≤ exp{‖∆1/2
m Vm∆

−1/2
m ‖}. (In [9], such operators are called C-Liouville

operators.) The main dynamical features of Km are the relations

eitLm A e−itLm = eitKm A e−itKm , ∀A ∈ MS ⊗ MC ,m ≥ 1, t ∈ R, (2.4)

Km ψS ⊗ ψEm = 0. (2.5)

Relation (2.4) means that Km implements the same dynamics as Lm. This is seen to hold by

noting that the difference Km−Lm = Jm∆
1/2
m Vm∆

−1/2
m Jm commutes with all A ∈ MS⊗MC

(since JMJ = M′, as is known from the Tomita-Takesaki theory of von Neumann algebras,
see e.g. [5]). The advantage of using Km instead of Lm is that eitKm leaves ψS ⊗ ψEm

invariant. However, while Lm is self-adjoint, Km is not even normal and unbounded.
We want to examine the large time behaviour of the evolution of a normal state ̺ on

M, defined by ̺ ◦ αm (see (1.5)). Since a normal state is a convex combination of vector
states, it is not hard to see that one has to examine the large time evolution of vector states
only. More precisely, by diagonalizing the density matrix, we can write ρ =

∑
j≥1 pj |φj〉〈φj |,
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where pj ≥ 0 and
∑

j≥1 pj = 1, and where the φj are normalized vectors in H. If we can
show that limm→∞ 〈φ, αm(A)φ〉 = ̺φ(A) exists for any normalized vector φ ∈ H, then any
normal state satisfies

lim
m→∞

̺(αm(A)) = lim
m→∞

∑

j≥1

pj 〈φj , αm(A)φj〉 =
∑

j≥1

pj̺φj (A). (2.6)

In other words, we only have to analyze vector states ̺(·) = 〈φ, ·φ〉. If the asymptotic
states ̺φ do not depend on the vector φ, i.e. ̺φ ≡ ̺+, then any normal initial state ̺ has
asymptotic state ̺+, by (2.6). The above argument works equally well if the pointwise limit
m→ ∞ is replaced by the ergodic limit.

Next, since, by assumption (A1), ψ0 = ψS ⊗ψC , where ψC = ⊗m≥1ψEm , is cyclic for the
commutant M′ (which is equivalent to being separating for M), we can approximate any
vector in H arbitrarily well by vectors

φ = B′ψ0, (2.7)

for some
B′ = B′

S ⊗N
n=1 B

′
n ⊗n>N 1lEn ∈ M′, (2.8)

with B′
S ∈ M′

S , B′
n ∈ M′

En
(with vanishing error as N → ∞; see also [7]). Hence, we may

restrict our attention to taking the limit m→ ∞ of expressions

〈
ψ0, (B

′)∗αm(A)B′ψ0

〉
=
〈
ψ0, (B

′)∗B′αm(A)ψ0

〉
. (2.9)

2.3 Observables of the small system

To present the essence of our arguments in an unencumbered way, we first consider the
Heisenberg evolution of observables AS ∈ MS , and we treat more general observables in
the next section. Consider expression (2.9). Using Proposition 2.1, we obtain

αm(AS ⊗ 1lC) = U(m)∗ (AS ⊗ 1lC) U(m) (2.10)

= (U+
m)∗ eiτ1L1 · · · eiτmLm (AS ⊗ 1lC) e−iτmLm · · · e−iτ1L1 U+

m,

where we made use of the fact that U−
m acts trivially on HS . Due to the properties of the

unitary U+(m), specified in Proposition 2.1, and due to (2.4), (2.5), we have

αm(AS ⊗ 1lC)ψ0 = (U+
m)∗ eiτ1L1 · · · eiτmLm (AS ⊗ 1lC) e−iτmLm · · · e−iτ1L1ψ0

= (U+
m)∗ eiτ1K1 · · · eiτmKm (AS ⊗ 1lC)ψ0. (2.11)

Let us introduce PN = 1lS ⊗1lE1
⊗· · · 1lEN

⊗PψEN+1
⊗PψEN+2

⊗· · · , where PψEk
= |ψEk

〉〈ψEk
|.

From the definition of B′, (2.8), we see that 〈ψ0|(B′)∗B′ = 〈ψ0|(B′)∗B′PN . Moreover,
introducing the m-independent unitary operator

Ũ+
N := exp


−i

N−1∑

j=1

N∑

k=j+1

τjLEk


 = PNU

+
m,
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we can write, for m > N ,

〈
ψ0, (B

′)∗B′αm(AS ⊗ 1lC)ψ0

〉
=
〈
ψ0, (B

′)∗B′(Ũ+
N )∗PNeiτ1K1 · · · eiτmKm(AS ⊗ 1lC)ψ0

〉

=
〈
ψ0, (B

′)∗B′(Ũ+
N )∗eiτ1K1 · · · eiτNKNPNeiτN+1KN+1 · · · eiτmKm(AS ⊗ 1lC)ψ0

〉
.

We define the projection
P = 1lS ⊗ |ψC〉〈ψC |, (2.12)

and observe that

PNeiτN+1KN+1 · · · eiτmKm(AS ⊗ 1lC)ψ0 = PNeiτN+1KN+1 · · · eiτmKmP (AS ⊗ 1lC)ψ0

= P eiτN+1KN+1 · · · eiτmKmP (AS ⊗ 1lC)ψ0.

By a simple argument using the independence of the elements Ek of C, we show exactly as
in Proposition 4.1 of [7], that for any q ≥ 1 and any distinct integers n1, · · · , nq,

P eiτn1
Kn1 eiτn2

Kn2 · · · eiτnqKnqP = P eiτn1
Kn1P eiτn2

Kn2P · · ·P eiτnqKnqP. (2.13)

Therefore, introducing operators Mj acting on HS by

P eiτjKjP = Mj ⊗ |ψC〉〈ψC |, or Mj ≃ P eiτjKjP, (2.14)

we have proven the following result.

Proposition 2.2 Let AS ∈ MS and φ = B′ψ0 with B′ as in (2.8). Then for any m > N
we have

〈φ, αm(AS ⊗ 1lC)φ〉 (2.15)

=
〈
ψ0, (B

′)∗B′(Ũ+
N )∗eiτ1K1 · · · eiτNKNPMN+1MN+2 · · ·Mm(AS ⊗ 1lC)ψ0

〉
.

Proposition 2.2 shows how the large time dynamics of a repeated interaction system is
described by products

Ψm = M1M2 · · ·Mm on HS . (2.16)

The main features of the matrices Mj , inherited from those of eiτjKj , are given in the
following lemma.

Lemma 2.3 ([7], Proposition 2.1) Assuming (A1), we have MjψS = ψS , for all j ∈ N
∗.

Moreover, to any φ ∈ HS there corresponds a unique A ∈ MS such that φ = AψS . |||φ||| :=
‖A‖B(HS) defines a norm on HS , and as operators on HS endowed with this norm, the Mj

are contractions for any j ∈ N
∗.

Remark: It follows from Lemma 2.3 that the spectrum of Mj lies in the closed complex unit
disk, and that 1 is an eigenvalue of each Mj (with common eigenvector ψS).

12



2.4 Instantaneous observables

So far, we have only considered observables of the system S. In this section, we extend the
analysis to the more general class of instantaneous observables, defined in (1.6). Those are
time-dependent observables, which, at time m, measure quantities of the system S and of a
finite number of elements Ek of the chain, namely the element interacting at the given time-
step, plus the l preceding elements and the r following elements in the chain. Physically
important instantaneous observables are those with indices j = −1, 0: they appear naturally
in the study of the energy exchange process between the system S and the chain (see Section
5); they also appear in experiments where one makes a measurement on the element right
after it has interacted with S (the atom which exits the cavity) in order to get indirect
information on the state of the latter.

The Heisenberg evolution of instantaneous observables is computed in a straightforward
way, as for observables of the form AS ⊗ 1lC . We refrain from presenting all details of the
derivation and present the main steps only. Let

αm,nk (B) := ei(
Pm

j=n τj)LEkBe−i(
Pm

j=n τj)LEk , n ≤ m, (2.17)

denote the free evolution from time n − 1 to m of an observable B acting non trivially
on HEk

only, with the understanding that αm,nk equals the identity for n > m. With this
definition and (2.2), we get

(U−
m)∗(AS ⊗r

j=−l B
(j)
m )U−

m (2.18)

= AS ⊗ αm,m−l+1
m−l (B(−l)

m ) ⊗ · · ·αm,mm−l(B
(−1)
m ) ⊗B(0)

m ⊗ · · · ⊗B(r)
m

= AS ⊗r
j=−l α

m,m+j+1
m+j (B(j)

m ).

Hence,

αm(AS ⊗r
j=−l B

(j)
m ) (2.19)

= (U+
m)∗eiτ1L1 · · · eiτmLm(AS ⊗r

j=−l α
m,m+j+1
m+j (B(j)

m ))e−iτmLm · · · e−iτ1L1U+
m.

Consider a vector state 〈φ, ·φ〉, where φ is given by (2.7). We proceed as in the previous
section to obtain
〈
φ, αm(AS ⊗r

j=−l B
(j)
m )φ

〉

=
〈
B′ψ0, B

′(Ũ+
N )∗eiτ1L1 · · · eiτmLm

(
AS ⊗r

j=−l α
m,m+j+1
m+j (B(j)

m )
)

e−iτmLm · · · e−iτ1L1ψ0

〉

=
〈
B′ψ0, B

′(Ũ+
N )∗PNeiτ1K1 · · · eiτmKm

(
AS ⊗r

j=−l α
m,m+j+1
m+j (B(j)

m )
)
ψ0

〉
(2.20)

The vector to the right of (Ũ+
N )∗ can be further expanded as

eiτ1K1 · · · eiτNKNPNeiτN+1KN+1 · · · eiτmKm(AS ⊗r
j=−l α

m,m+j+1
m+j (B(j)

m ))ψ0

= eiτ1K1 · · · eiτNKNP eiτN+1KN+1 · · · eiτmKm(AS ⊗r
j=−l α

m,m+j+1
m+j (B(j)

m ))ψ0

= eiτ1K1 · · · eiτNKNPMN+1 · · ·Mm−l−1 ×
×P eiτm−lKm−l · · · eiτmKm(AS ⊗r

j=−l α
m,m+j+1
m+j (B(j)

m ))ψ0, (2.21)
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where P has been defined in (2.12), and where we have proceeded as in the derivation
of (2.15) to arrive at the product of the matrices MN+1 · · ·Mm−l−1. We now define the
operator Nm = Nm(O), see (1.6), acting on HS by

(NmψS) ⊗ ψC := P eiτm−lKm−l · · · eiτmKm(AS ⊗r
j=−l α

m,m+j+1
m+j (B(j)

m ))ψ0. (2.22)

We will also denote the l.h.s. simply by Nmψ0. The operator Nm depends on the instanta-

neous observable, Nm = Nm(AS , B
(−l)
m , . . . , B

(r)
m ). It can be expressed as follows.

Proposition 2.4 Let αm,n denote the dynamics from time n to time m, i.e.,

αm,n(·) = U(m,n)∗ · U(m,n),

where U(m,n) = U(m)U(n)∗, and U(m) is given in (2.1). Then we have

Nmψ0 = Pαm,m−l−1
(
AS ⊗r

j=−l B
(j)
m

)
ψ0 (2.23)

= Pαm,m−l−1(AS ⊗0
j=−l B

(j)
m )ψ0

r∏

k=1

〈ψEm+k
, B(k)

m ψEm+k
〉.

Proof. The second equality is clear, since the dynamics involves only the Ek with indices
k ≤ m. To prove the first equality, we use the properties of the operators Kj and the
definition (2.22) to see that

Nmψ0 = P eiτm−lLm−l · · · eiτmLm(AS ⊗r
j=−l α

m,m+j+1
m+j (B(j)

m )) × (2.24)

×e−iτmLm · · · e−iτm−lLm−lψ0.

Next, we write the αm,m+j+1
m+j in terms of the generators LEm+j , see (2.17),

αm,m+j+1
m+j (·) = e

i(τm+j+1+···+τm)LEm+j · e
−i(τm+j+1+···+τm)LEm+j .

Inserting this expression into (2.24) we can distribute the generators LEm+j among the
propagators in (2.24), and we see that

Nmψ0 = P eiτm−l
eLm−l · · · eiτm eLm(AS ⊗r

j=−l B
(j)
m )e−iτm eLm · · · e−iτm−l

eLm−lψ0,

where the L̃k, (1.2), give the full dynamics. 2

Finally, Nm can be defined on all of HS in the following way. From Proposition 2.4, it
is immediate that for all observables A′

S in the commutant M′
S , we can set NmA

′
Sψ0 :=

A′
SNmψ0. Since M′

SψS = HS (separability of ψS), Nm is defined on all of HS . We have
proven the following result.

Proposition 2.5 Let O be an instantaneous observable, (1.6), and let φ = B′ψ0 with B′

as in (2.8). Then we have for any m > N + l + 1

〈φ, αm(O)φ〉 =
〈
ψ0, (B

′)∗B′(Ũ+
N )∗eiτ1K1 · · · eiτNKNPMN+1 · · ·Mm−l−1Nm(O)ψ0

〉
,

where the Mj are defined in (2.14), and Nm(O) is given in (2.22).

To understand the large time behaviour of instantaneous observables, we study the
n→ ∞ asymptotics of products

ΨnNn+l+1 = M1M2 · · ·MnNn+l+1 on HS , (2.25)

whereNn+l+1 involves only quantities of the systems S and Ek, with k = n+1, . . . , n+l+r+1.
The numbers l, r are determined by the instantaneous observable O (1.6).
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3 Proof of Theorem 1.2

According to Proposition 2.5, the large time dynamics is described by products of operators
of the form (2.25), in the limit n → ∞. We will use in this section our basic assumptions
(R1) and (R2), saying that the Mj form a set of iid random matrices, and that Nn+l+1 is a
random matrix independent of the Mj , j = 1, . . . , n. In this section, we review results of [8]
on products of the form M1 · · ·Mn, and we extend them to products of random matrices of
the form (2.25). Our main result here is Theorem 3.3.

3.1 Decomposition of Random Reduced Dynamics Operators

Let P1,j denote the spectral projection of Mj for the eigenvalue 1 (c.f. Lemma 2.3) and
define

ψj := P ∗
1,jψS , Pj := |ψS〉〈ψj |, (3.1)

where P ∗
1,j is the adjoint operator of P1,j . Note that 〈ψj |ψS〉 = 1 so that Pj is a projection

and, moreover, M∗
j ψj = ψj . We introduce the following decomposition:

Mj := Pj +QjMjQj , with Qj = 1l − Pj . (3.2)

The following are basic properties of products of operators Mk.

Proposition 3.1 ([8]) We define MQj := QjMjQj. For any n, we have

M1 · · ·Mn = |ψS〉〈θn| +MQ1
· · ·MQn , (3.3)

where

θn = ψn +M∗
Qn
ψn−1 + · · · +M∗

Qn
· · ·M∗

Q2
ψ1 (3.4)

= M∗
n · · ·M∗

2ψ1 (3.5)

and where 〈ψS , θn〉 = 1. Moreover, there exists C0 such that

1. For any j ∈ N
∗, ‖Pj‖ = ‖ψj‖ ≤ C0 and ‖Qj‖ ≤ 1 + C0.

2. sup {‖MQjn
MQjn−1

· · ·MQj1
‖, n ∈ N

∗, jk ∈ N
∗} ≤ C0(1 + C0).

3. For any n ∈ N
∗, ‖θn‖ ≤ C2

0 .

Typically, for matrices Mk ∈ M(E) (recall Definition 1.1), we expect the first part in
the decomposition (3.3) to be oscillatory and the second one to be decaying.

3.2 The probabilistic setting

We use the notation introduced at the end of Section 1.1. Let us define the shift T : Ωext →
Ωext by

(Tω)j = ωj+1, ∀ ω = (ωj)j∈N ∈ Ωext. (3.6)

T is an ergodic transformation of Ωext. The random reduced dynamics operators are char-
acterized by a measurable map

Ω ∋ ω1 7→M(ω1) ∈Md(C), (3.7)
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where the target space is that of all d × d matrices with complex entries, d being the
dimension of HS . With a slight abuse of notation, we write sometimes M(ω) instead of
M(ω1). Hence, for any subset B ⊂ Md(C), p(M(ω) ∈ B) = p(M−1(B)) =

∫
M−1(B) dp(ω),

and similarly for other random variables. According to (R1) the product (2.16) is Ψn(ω) :=
M(ω1)M(ω2) · · ·M(ωn) = M(T 0ω)M(T 1ω) · · ·M(Tn−1ω).

In the same way as in (3.1), we introduce the random variable ψ(ω1) ∈ C
d defined as

ψ(ω) := P1(ω)∗ψS , (3.8)

where P1(ω) denotes the spectral projection of M(ω) for the eigenvalue 1, and where ∗

stands for the adjoint. We decompose

M(ω) := |ψS〉〈ψ(ω)| +MQ(ω) = P (ω) +MQ(ω) (3.9)

as in (3.2). Note that ψ(ω) and MQ(ω) define bona fide random variables: ω 7→ P1(ω) is
measurable since ω 7→ M(ω) is [4]. In the next section, we will consider the process (see
(3.4), (3.5))

θn(ω) = M∗(Tn−1ω)M∗(Tn−2ω) · · ·M∗(Tω)ψ(ω) (3.10)

=
n∑

j=1

M∗
Q(ωn)M

∗
Q(ωn−1) · · ·M∗

Q(ωj+1)ψ(ωj).

Note that θn is a Markov process, since θn+1(ω) = M∗(ωn+1)θn(ω).
Finally, the operators Nm = Nm(O), given in (1.8) and Proposition 2.4, have the form

Nm(O) = N(ωm−l, . . . , ωm+r) = N(Tm−l−1ω), (3.11)

see also condition (R2).

3.3 Convergence results for random matrix products

We have pointed out after Lemma 2.3 that the spectrum of any RDO lies inside the complex
unit disk, and 1 is an eigenvalue (with the deterministic, i.e., ω-independent, eigenvector
ψS). The following result on the product of an iid sequence of RDO’s is the main result of
[8].

Theorem 3.2 ([8]) Let M(ω) be a random reduced dynamics operator. Suppose that p(M(ω) ∈
M(E)) 6= 0. Then we have E[M ] ∈ M(E). Moreover, there exist a set Ω1 ⊂ ΩN∗

with
P(Ω1) = 1, and constants C,α > 0, s.t. for any ω ∈ Ω1 there is an n0(ω) so that

‖MQ(ω1) · · ·MQ(ωn)‖ ≤ Ce−αn, for all n ≥ n0(ω), and (3.12)

lim
ν→∞

1

ν

ν∑

n=1

θn(ω) = θ. (3.13)

Also, n0(ω) is a random variable satisfying E[eαn0 ] <∞, and

θ = (1l − E[MQ]∗)−1
E[ψ] = P ∗

1,E[M ]E[ψ] = P ∗
1,E[M ]ψS . (3.14)
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As a consequence,

lim
ν→∞

1

ν

ν∑

n=1

M(ω1) · · ·M(ωn) = |ψS〉〈θ| = P1,E[M ]. (3.15)

Remark. In the setting of Theorem 3.2, if not only M(ω), but also M∗(ω) has a deter-
ministic eigenvector with eigenvalue 1 (denoted ψ∗

S and normalized as 〈ψ∗
S , ψS〉 = 1), then

θ = ψ∗
S and one can sharpen (3.15) as follows (see Proposition 3.1 and equation (3.12)):

There are constants C,α > 0, and there is a random variable n0(ω) with E[eαn0 ] < ∞, s.t.
for all ω ∈ Ω1 and all n ≥ n0(ω), we have ‖M(ω1) · · ·M(ωn) − |ψS〉〈ψ∗

S | ‖ ≤ Ce−αn.
While this result allows us to study the large time behaviour of observables of the

small system S (see Section 2.3), in order to study the physically relevant instantaneous
observables, we need to understand products of the form (2.25). In our probabilistic setting,
they read M(ω1) · · ·M(ωn)N(Tnω).

Theorem 3.3 Let M(ω) be a random reduced dynamics operator and let N(ω) be a random
matrix, uniformly bounded in ω. Suppose that p(M(ω) ∈ M(E)) 6= 0. Then there exists a

set Ω2 ⊂ ΩN∗
s.t. P(Ω2) = 1 and s.t. for any ω ∈ Ω2,

lim
n→∞

1

ν

ν∑

n=1

M(ω1) · · ·M(ωn)N(Tnω) = |ψS〉〈θ| E[N ]. (3.16)

Remark. In our dynamical process, N(ω) depends only on finitely many variables
ωm−l, . . . , ωm+r, see (3.11), so measurability and boundedness of the random matrix N
are easily established in concrete applications.
Proof of Theorem 3.3. Using the decomposition (3.3) together with (3.12), it suffices to
show that

lim
ν→∞

1

ν

ν∑

n=1

N∗(Tnω)θn(ω) = E[N ]∗θ. (3.17)

We follow the strategy of [8] used to prove (3.13) of the present paper. From (3.4) we get

ν∑

n=1

N∗(Tnω)θn(ω) =
ν∑

n=1

n−1∑

j=0

N∗(Tnω)M∗
Q(Tn−1ω) · · ·M∗

Q(T j+1ω)ψ(T jω)

=
ν∑

k=1

ν−k∑

j=0

N∗(T k+jω)M∗
Q(T k+j−1ω) · · ·M∗

Q(T j+1ω)ψ(T jω). (3.18)

Let us introduce the random vectors

θ(k)(ω) = N∗(T kω)M∗
Q(T k−1ω)M∗

Q(T k−2ω) · · ·M∗
Q(Tω)ψ(T 0ω), (3.19)

so that, by (3.18),

1

ν

ν∑

n=1

N∗(Tnω)θn(ω) =
ν∑

k=1

1

ν

ν−k∑

j=0

θ(k)(T jω)

=
∞∑

k=1

χ{k≤ν}

ν−k∑

j=0

θ(k)(T jω)
1

ν
=:

∞∑

k=1

g(k, ν, ω). (3.20)
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For each fixed k, by ergodicity, there exists a set Ω(k) ⊂ ΩN∗
of probability one, such that,

for all ω ∈ Ω(k), the following limit exists

lim
ν→∞

g(k, ν, ω) = lim
ν→∞

1

ν − k + 1

ν−k∑

j=0

θ(k)(T jω)
ν − k + 1

ν

= lim
J→∞

1

J + 1

J∑

j=0

θ(k)(T jω) = E[θ(k)].

Therefore, on the set Ω∞ := ∩k∈NΩ(k) of probability one, for any k ∈ N, we have by

independence of the M(ωj), 1 ≤ j ≤ k, and of N∗(T kω),

lim
ν→∞

g(k, ν, ω) = E[θ(k)] = E[N∗] E[M∗
Q]k−1

E[ψ]. (3.21)

It follows from Proposition 3.1, Theorem 3.2 and the boundedness of N(ω) that for ω ∈
Ω2 = Ω1∩Ω∞, we have ‖θ(k)(T jω)‖ ≤ Ceαn0(T jω)e−α(k−1). Therefore, for all ν large enough,
and for all 1 ≤ k ≤ ν,

‖g(k, ν, ω)‖ ≤ C
1

ν

ν−k∑

j=0

eαn0(T jω)e−α(k−1) ≤ 2CE[eαn0 ]e−α(k−1), (3.22)

where we have used ergodicity in the last estimate. Of course, the same upper bound (3.22)
holds for k > ν, since then g(k, ν, ω) = 0. The r.h.s. of (3.22) is summable w.r.t. k ∈ N,
so we can use the Lebesgue Dominated Convergence Theorem in (3.20) to conclude that,
almost surely on Ω2, limν→∞ 1

ν

∑ν
n=1N

∗(Tnω)θn(ω) = E[N∗]
∑∞

k=0 E[M∗
Q]k E[ψ]. Relation

(3.17), and thus the proof of the theorem, now follow from (3.14). 2

4 Proof of Theorem 1.3

Let φ be a normalized vector in H. Fix ǫ > 0 and ω ∈ Ωext. There exists a B′ = B′(ǫ, ω) ∈
M′ of the form (2.8) (with N depending on ǫ, ω), s.t.

‖φ−B′ψ0‖ < ǫ. (4.1)

Here, both φ and ψ0 may depend on ω. It follows that
∣∣ 〈φ, αmω (O)φ〉 −

〈
B′ψ0, α

m
ω (O)B′ψ0

〉 ∣∣ < 2ǫ ‖O‖. (4.2)

Using Proposition 2.2 and Theorem 3.3, and that B′ commutes with αmω (O), we arrive at
the relations

lim
µ→∞

1

µ

µ∑

m=1

〈
ψ0, (B

′)∗B′αmω (O)ψ0

〉
= lim

µ→∞
1

µ

µ∑

m=N+1

〈
ψ0, (B

′)∗B′αmω (O)ψ0

〉

= lim
µ→∞

1

µ

µ∑

m=N+1

〈
ψ0, (B

′)∗B′(Ũ+
N )∗eiτ(ω1)K(ω1) · · · eiτ(ωN )K(ωN )P×

×M(ωN+1) · · ·M(ωm−l−1)N(ωm−l, ωm−l+1, . . . , ωm+r)ψ0

〉

=
〈
ψ0, (B

′)∗B′ψ0

〉
〈θ,E[N(O)]ψS〉 , (4.3)
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for all ω in a set Ω2 of measure one. It follows from (4.1) that (1− ǫ)2 < 〈ψ0, (B
′)∗B′ψ0〉 =

‖B′ψ0‖2 < (1 + ǫ)2. Since ǫ is arbitrary, using the latter bound in (4.3) and taking into
account (4.2), we conclude that (1.11) holds for any vector initial state ̺(·) = 〈φ, ·φ〉.
Finally, the argument leading to (2.6) shows that (1.11) holds for all normal initial states.
The proof of Theorem 1.3 is complete. 2

5 Proof of Theorem 1.4

An easy application of Theorem 1.3 shows that for any normal initial state ̺,

lim
m→∞

̺(∆E(m,ω))

m
= ̺+(j+), a.s., (5.1)

where
j+ = E

[
PV P − P eiτLV e−iτLP

]
= E [P (V − ατ (V ))P ] . (5.2)

The energy grows linearly in time almost surely, at the rate dE+.5 In order to show the
expression for dE+ given in Theorem 1.4, it suffices to prove that ̺+[E(P (LS−ατ (LS))P )] =
0.

Let ̺ be a normal state. Although LS /∈ M, still αk(LS)−αk−1(LS) is an instantaneous
observable belonging to M. This follows from eiτkLkLSe−iτkLk −LS ∈ MS ⊗MEk

, which in
turn is proven by noting that

eiτkLkLSe−iτkLk − LS =

∫ τk

0
eitLk [iLk, LS ]e−itLkdt =

∫ τk

0
eitLk [iVk, LS ]e−itLkdt,

where [iVk, LS ] = − d
dte

itLSVke
−itLS |t=0 ∈ MS ⊗ MEk

.

As a consequence, αk(LS) − αk
′
(LS) ∈ M, and we can apply Theorem 1.3 to obtain

limm→∞ 1
m

∑m
k=1 ̺

(
αk(LS) − αk+1(LS)

)
= ̺+

(
E[P (LS − ατ (LS))P ]

)
a.s. On the other

hand, we have that
∑m

k=1 ̺
(
αk(LS) − αk+1(LS)

)
= 1

m̺
(
α1(LS) − αm+1(LS)

)
, which tends

to zero as m→ ∞. This proves the formula for dE+ given in Theorem 1.3.
Next we show the expression for dS+ in Theorem 1.3. The following result is determin-

istic, we consider ω fixed and do not display it.

Proposition 5.1 Let ̺ be a normal state on M. Then for any m ≥ 1, we have

∆S(m) := Ent(̺ ◦ αm|̺0) − Ent(̺|̺0)

= ̺

(
m∑

k=1

βEk

(
j(k) + αk−1(LS + Vk) − αk(LS + Vk+1)

)
+ βS(αm(LS) − LS)

)
,

where the energy jump j(k) has been defined in (1.12).

5The definition of dE+ differs from the one of [7] by a factor 1

τ
: here dE+ represent the asymptotic

average energy production per interaction and not per unit of time. One could also study the average energy
production per unit of time. It is easy to see that

lim
m→∞

̺(∆E(m,ω))

τ(ω1) + · · · + τ(ωm)
=

dE+

E[τ ]
, a.s.
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Proof. The proof is similar to that one of Proposition 2.6. in [7]. Using the entropy
production formula [10], we have

∆S(m) = ̺

(
αm

(
βSLS +

∑

k

βEk
LEk

)
−
∑

k

βEk
LEk

− βSLS

)
. (5.3)

Clearly, the sums in the argument of ̺ in the right hand side only extend from k = 1 to
k = m. We examine the difference of the two terms with index k.

αm(βEk
LEk

) − βEk
LEk

= αk(βEk
LEk

) − βEk
LEk

= βEk
αk(Lk) − βEk

LEk
− βEk

αk(LS + Vk)

= βEk
αk−1(Lk) − βEk

LEk
+ βEk

j(k) − βEk
αk(LS + Vk+1)

= βEk
αk−1(LS + Vk) + βEk

j(k) − βEk
αk(LS + Vk+1),

where we use αm(LEk
) = αk(LEk

) in the first step, αk(Lk) = αk−1(Lk) and (1.12) in the
third step, and in the last one αk−1(LEk

) = LEk
. 2

By Proposition 5.1, we have for all m ≥ 1, ω ∈ Ωext

∆S(m,ω)

m
=

1

m

m∑

k=1

̺ (βEk
j(k)) +

1

m

m∑

k=1

̺
(
βEk

(
αk−1(Vk) − αk(Vk+1)

))

+
1

m

m∑

k=1

̺
(
βEk

(
αk−1(LS) − αk(LS)

))
+

1

m
̺(βS(αm(LS) − LS)).

Using Theorem 1.3 we see that with probability one (and where M denotes the reduced
dynamics operator)

lim
m→∞

∆S(m,ω)

m
= ̺+

(
E[βEM ] E[PV P ] − E[βEPα

τ (V )P ]
)

+ ̺+

(
E[βEPV P ]

−E[βEM ] E[PV P ]
)

+ ̺+

(
E[βEP (LS − ατ (LS))P ]

)

= ̺+

(
E
[
βEP ((LS + V ) − ατ (LS + V ))P

])
.

This completes the proof of Theorem 1.4. 2

6 Spin-spin models and proof of Theorem 1.5

In this section, we consider both S and E to be two-level systems, with interaction given by
(1.13). This is a particular case of the third example in [7]. The main results of this section
have been anounced in [8].

The observable algebra for S and for E is AS = AE = M2(C). Let ES , EE > 0 be the
“excited” energy level of S and of E , respectively. Accordingly, the Hamiltonians are given
by

hS =

[
0 0
0 ES

]
and hE =

[
0 0
0 EE

]
.
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The dynamics are given by αtS(A) = eithSAe−ithS and αtE(A) = eithEAe−ithE . We choose
(for computational convenience) the reference state of E to be the Gibbs state at inverse
temperature β, see (1.14), and we choose the reference state for S to be the tracial state,
̺0,S(A) = 1

2Tr(A). The interaction operator is defined by λv, where λ is a coupling constant,
and v is given in (1.13). The creation and annihilation operators are represented by the
matrices

a# =

[
0 1
0 0

]
and a∗# =

[
0 0
1 0

]
.

The Heisenberg dynamics of S coupled to one element E is given by the ∗-automorphism
group t 7→ eithλAe−ithλ , A ∈ AS ⊗ AE , hλ = hS + hE + λv.

To find a Hilbert space description of the system, one performs the GNS construction
of (AS , ̺0,S) and (AE , ̺β,E), see e.g. [5, 7]. In this representation, the Hilbert spaces are
given by HS = HE = C

2 ⊗ C
2, the Von Neumann algebra by MS = ME = M2(C) ⊗ 1lC2 ⊂

B(C2 ⊗ C
2), and the vectors representing ̺0,S and ̺β,E are ψS = 1√

2
(|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉)

and ψE = 1√
Tre−βhE

(
|0〉 ⊗ |0〉 + e−βEE/2|1〉 ⊗ |1〉

)
, respectively, i.e., we have ̺β#,#(A) =

〈ψ#, (A⊗ 1l)ψ#〉, # = S, E , βE = β, βS = 0, and where |0〉 (resp. |1〉) denote the ground
(resp. excited) state of hS and hE . Finally, the Liouvillean L is given by

L = (hS ⊗ 1lC2 − 1lC2 ⊗ hS) ⊗ (1lC2 ⊗ 1lC2) + (1lC2 ⊗ 1lC2) ⊗ (hE ⊗ 1lC2 − 1lC2 ⊗ hE)

+λ(aS ⊗ 1lC2) ⊗ (a∗E ⊗ 1lC2) + λ(a∗S ⊗ 1lC2) ⊗ (aE ⊗ 1lC2).

6.1 Spectral analysis of the reduced dynamics operator M

The RDO M is defined by (2.14). However, in this example, where the hamiltonian hλ is
explicitly diagonalizable, we shall use another expression for it, which may look less simple
but has the advantage that it only makes use of the self-adjoint hamiltonian. Since ψS is
cyclic for MS and HS has finite dimension, ∀φ ∈ HS , ∃!AS = A ⊗ 1lC2 ∈ MS such that
φ = ASψS . It is then easy to see that

M(A⊗ 1lC2)ψS = (M(A) ⊗ 1lC2)ψS , (6.1)

and where the map M acts on AS and is defined as

M(A) := TrE
(
eiτhλ A⊗ 1l e−iτhλ

)
, (6.2)

where TrE(AS ⊗AE) := ̺β,E(AE)AS denotes the partial trace over E .
Similarly, if M∗ denotes the map dual to M, i.e. ∀ρ,A ∈ M2(C), Tr(ρM(A)) =

Tr(M∗(ρ)A), then we have, for any density matrix ρ

((M∗(ρ))∗ ⊗ 1l)ψS = M∗(ρ∗ ⊗ 1l)ψS . (6.3)

In particular, the spectrum of the map M∗ is in one-to-one correspondance with the spec-
trum of the operator M∗ (via complex conjugation), and if ρ is an eigenvector of M∗ for
the eigenvalue 1 (which we know to exist), then the “corresponding eigenvector” of M∗ is
ψ∗
S = (ρ∗⊗1l)ψS . A simple computation shows that the four eigenvalues of hλ are E0+ = 0,

E0− = ES + EE and

E1± =
1

2
(ES + EE) ± 1

2

√
(ES − EE)2 + 4λ2. (6.4)
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The corresponding normalized eigenvectors are given by ψ0+ = |0〉 ⊗ |0〉, ψ0− = |1〉 ⊗ |1〉,
and ψ1± = a1±|1〉 ⊗ |0〉 + b1±|0〉 ⊗ |1〉, respectively, where

a1± = − λ√
λ2 + (ES − E1±)2

, b1± =
ES − E1±√

λ2 + (ES − E1±)2
. (6.5)

We finally denote a0+ = b0− = 1 and a0− = b0+ = 0. Inserting the spectral decomposition
of hλ into (6.2) gives the following result.

Lemma 6.1 For any A ∈ A,

M(A) = Z−1
β,E

∑

n,σ,n′,σ′

eiτ(Enσ−En′σ′ )
(
ānσan′σ′〈n|An′〉 + b̄nσbn′σ′〈1 − n|A(1 − n′)〉

)

×
(
anσān′σ′ |n〉〈n′| + e−βEE bnσ b̄n′σ′ |1 − n〉〈1 − n′|

)
, (6.6)

where n, n′ ∈ {0, 1} and σ, σ′ ∈ {−,+} and Zβ,E = Tr(e−βhE ). Similarly, for any density
matrix ρ,

M∗(ρ) = Z−1
β,E

∑

n,σ,n′,σ′

eiτ(Enσ−En′σ′ )
(
anσān′σ′〈n′|ρn〉 + e−βEE bnσ b̄n′σ′〈1 − n′|ρ(1 − n)〉

)

×
(
ānσan′σ′ |n′〉〈n| + b̄nσbn′σ′ |1 − n′〉〈1 − n|

)
. (6.7)

The above lemma allows us to make a complete spectral analysis of M .

Proposition 6.2

1. The eigenvalues of M are 1, e0, e−, e+ where e0 is given in (1.16),

e− =

(
ES − EE −

√
(ES − EE)2 + 4λ2

)2
+ 4λ2eiτ

√
(ES−EE)2+4λ2

(
ES − EE −

√
(ES − EE)2 + 4λ2

)2
+ 4λ2

×eiτ(ES+EE−
√

(ES−EE)2+4λ2),

e+ = e−.

Moreover, the eigenstates of M∗ for the eigenvalues 1, e0, e−, e+ are respectively ψ∗
S =

(e−β
′hS ⊗ 1lC2)ψS where β′ := βEE/ES , φ0 = |0〉 ⊗ |0〉 − |1〉 ⊗ |1〉, φ− = |0〉 ⊗ |1〉 and

φ+ = |1〉 ⊗ |0〉.

2. The functions |e0(τ)|, |e+(τ)| and |e−(τ)| are continuous and periodic of period T :=
2π√

(ES−EE)2+4λ2
. Moreover, they have modulus strictly less than 1 if and only if τ /∈ TN.

Remark 6.3 Since e0 is positive, point 2. proves that 1 is a non degenerate eigenvalue for
M∗ if and only if τ /∈ TN, i.e. for all but a discrete set of interaction times. This condition
agrees with the corresponding assumption of [7] in the perturbative regime.

Proof. Point 2. follows from point 1. Point 1. is proven by direct computation using
(6.4)-(6.5)-(6.7). 2
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6.2 Proof of Theorem 1.5

Point 2. of Proposition 6.2 shows that M ∈ M(E) if and only if τ /∈ TN. Hence, for this
spin-spin model, Theorem 1.3 applies if and only if p(τ /∈ TN) 6= 0, which is precisely the
assumption we have in each of the three situations of Theorem 1.5. It remains to compute
the asymptotic state ̺+ in each of these three situation. Using the complete spectral
decomposition of M∗(ω) (see Proposition 6.2), we compute explicitly its expectation E[M∗]
and then the spectral projection P1,E[M∗]. After computation, we get:

1. Random interaction time: P1,E[M∗] = 2

Tr(e−β′hS )
|ψS〉〈e−β

′hS ⊗ 1lC2 ψS |,

2. Random excitation energy of E : P1,E[M∗] = |ψS〉〈ρE ⊗ 1lC2 ψS |, where

ρE =
[
1 − (1 − E(e0))

−1
E((1 − e0)(1 − 2Z−1

β′,S))
]
|0〉〈0|

+
[
1 + (1 − E(e0))

−1
E((1 − e0)(1 − 2Z−1

β′,S))
]
|1〉〈1|,

3. Random temperature of E : P1,E[M∗] = 2

Tr(e−β̃hS )
|ψS〉〈e−β̃hS ⊗ 1lC2 ψS |, where β =

−E−1
S log(E[Z−1

β′(ω),S ]−1 − 1).

Combining these formulas with (1.10) give the various expressions for the asymptotic state
̺+. Finally, when the interaction time τ is random, the map M∗(ω) has a deterministic
eigenvector for the eigenvalue 1. This allows for stronger convergence results as mentioned
in the Remark after Theorem 3.2.

7 Spin-Fermion models and proof of Theorem 1.6

We combine our convergence results with a rigorous perturbation theory in the coupling
strength between S and C. We take S to be a 2-level atom and the E are large quantum
systems, each one modeled by an infinitely extended gas of free thermal fermions. The ran-
dom parameters are the temperature of the system Ek, Tk = β−1

k , as well as the interaction
time τk.

The state space and the reference vector of S are

HS = C
2 ⊗ C

2, ψS =
1√
2

(|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉) , (7.1)

where {|0〉 = [1, 0]T , |1〉 = [0, 1]T } is the canonical basis of C
2. (7.1) gives the GNS

representation of the trace state on the algebra of complex matrices M2(C), 1
2Tr(AS) =

〈ψS , (AS ⊗ 1lS)ψS〉, for all AS ∈ M2(C). The von Neumann algebra of observables repre-
sented on HS is thus MS = M2(C)⊗1l ⊂ B(C2⊗C

2). The Heisenberg dynamics of S is given
by eitσzASe−itσz . The Pauli matrices σz and σx (the latter plays a role in the interaction)
are

σz =

[
1 0
0 −1

]
, σx =

[
0 1
1 0

]
. (7.2)
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On the algebra MS , the dynamics is implemented as τ tS(AS ⊗ 1l) = eitLS (AS ⊗ 1l)e−itLS ,
with standard Liouville operator

LS = σz ⊗ 1l − 1l ⊗ σz. (7.3)

Note that LSψS = 0, as required in (1.1). It is easily verified that the modular operator ∆S

and the modular conjugation JS are given by

∆S = 1l ⊗ 1l, JS(ψ ⊗ χ) = χ⊗ ψ, (7.4)

for vectors ψ, χ ∈ C
2, and where the bar means taking complex conjugation of coordinates

in the canonical basis.

We now describe a single element E of the chain, a free Fermi gas at inverse temperature β
in the thermodynamic limit. We refer the reader to [5] for a detailed presentation. Let h and
h be the Hilbert space and the Hamiltonian for a single fermion, respectively. We represent
h as h = L2(R+,dµ(r); g), where g is an auxiliary Hilbert space, and we take h to be the
operator of multiplication by r ∈ R

+. (See also footnote 4 at the end of Section 1). The
fermionic annihilation and creation operators a(f) and a∗(f) act on the fermionic Fock space
Γ−(h). They satisfy the canonical anti-commutation relations (CAR). As a consequence of
the CAR, the operators a(f) and a∗(f) are bounded and satisfy ‖a#(f)‖ = ‖f‖ where a#

stands for either a or a∗. The algebra of observables of a free Fermi gas is the C∗-algebra of
operators A generated by {a#(f)|f ∈ h}. The dynamics is given by τ tf (a

#(f)) = a#(eithf),
where h is the Hamiltonian of a single particle, acting on h. It is well known (see e.g. [5])
that for any β > 0, there is a unique (τf , β)−KMS state ̺β on A, determined by the two
point function ̺β(a

∗(f)a(f)) = 〈f, (1 + eβh)−1f〉. Let us denote by Ωf the Fock vacuum
vector, and by N the number operator of Γ−(h). We fix a complex conjugation (anti-unitary
involution) f → f̄ on h which commutes with the energy operator h. It naturally extends
to a complex conjugation on the Fock space Γ−(h) and we denote it by the same symbol,
i.e. Φ → Φ̄.

The GNS representation of the algebra A associated to the KMS-state ̺β is the triple
(HE , πβ , ψE) [1] where

HE = Γ−(h) ⊗ Γ−(h), ψE = Ωf ⊗ Ωf , (7.5)

and

πβ(a(f)) = a

(
eβh/2√
1+eβh

f

)
⊗ 1l + (−1)N ⊗ a∗

(
1√

1+eβh
f̄

)
=: aβ(f),

πβ(a
∗(f)) = a∗

(
eβh/2√
1+eβh

f

)
⊗ 1l + (−1)N ⊗ a

(
1√

1+eβh
f̄

)
=: a∗β(f).

(7.6)

The von Neumann algebra of observables for an element E of the chain is ME = πβ(A)′′,
acting on the Hilbert space HE . The dynamics on πβ(A) is given by τ tE(πβ(A)) = πβ(τ

t
f (A)),

it extends to ME in a unique way. The standard Liouville operator is given by

LE = dΓ(h) ⊗ 1l − 1l ⊗ dΓ(h). (7.7)

Note that LEψE = 0. Finally, the modular conjugation and the modular operator associated
to (ME , ψE) are

JE(Φ ⊗ Ψ) = (−1)N(N−1)/2Ψ̄ ⊗ (−1)N(N−1)/2Φ̄, ∆E = e−βLE . (7.8)
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The combined, uncoupled system has product structure, with Hilbert space HS ⊗ HE ,
algebra MS ⊗ ME , reference state ψS ⊗ ψE . The uncoupled dynamics is generated by the
Liouville operator

L0 = LS + LE . (7.9)

We now specify the interaction between the small system and the elements of the chain.
Let g ∈ h be a form factor. The interaction operator is given by

V := σx ⊗ 1lC2 ⊗ (aβ(g) + a∗β(g)) (7.10)

(where σx is defined in (7.2)). It produces energy exchange processes between S and E .
Using (7.4), (7.8), one readily calculates

(∆S ⊗ ∆E)1/2V (∆S ⊗ ∆E)−1/2

= σx ⊗ 1lC2 ⊗
[
a∗
(

1√
1 + eβh

g

)
⊗ 1l + a

(
eβh√

1 + eβh
g

)
⊗ 1l

+(−1)N ⊗ a∗
(

eβh/2√
1 + eβh

ḡ

)
+ (−1)N ⊗ a

(
e−βh/2√
1 + eβh

ḡ

)]
. (7.11)

We assume that eβh/2g ∈ h. Then (7.11) shows that (∆S ⊗ ∆E)1/2V (∆S ⊗ ∆E)−1/2 ∈
MS ⊗ ME , i.e., Condition (A2) of Section 2 is satisfied.

Theorem 7.1 (Convergence to asymptotic state) Let 0 < τmin < τmax < ∞ and 0 <
βmax < ∞ be given. Let τ : Ω 7→ [τmin, τmax] and β : Ω 7→ (0, βmax] be random variables.
Suppose that ‖(1 + eβmaxh/2)g‖ <∞, and that there is a δ > 0 such that

p
(
dist(τ, π2 N) > δ

)
6= 0. (7.12)

Then there is a constant λ0 > 0, depending on τmin, τmax, βmax, δ, and on the form factor g,
s.t. if 0 < |λ| < λ0, then p(M(ω) ∈ M(E)) > 0. In particular, the results of Theorem 1.3,
applied to the spin-fermion system, hold: the system approaches the repeated interaction
asymptotic state ̺+, defined in (1.10).

Proof. We expand the operator M in a power (Dyson) series in λ:

M = eiτLSP (7.13)

+
∑

n≥1

λ2n

∫ τ

0
dt1 · · ·

∫ t2n−1

0
dt2n eiτLSP eit2nK0W e−it2nK0 · · · eit1K0W e−it1K0P,

where only the even powers appear since the interaction is linear in creation and annihilation
operators, and P projects onto the vacuum. W is the operator

W = V − J∆1/2V∆−1/2J, (7.14)

where V is given in (7.10) (see also (7.11)), and J = JS ⊗JE ,∆ = ∆S ⊗∆E are the modular
conjugation and the modular operator associated to (MS ⊗ ME , ψS ⊗ ψE), see also (7.4),

(7.8). Using the Canonical Anticommutation Relations, one easily sees that ‖a#
β (g)‖ = ‖g‖
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(independent of β; see (7.6) for the definition of the thermal creation and annihilation
operators). Using (7.14) and (7.11), it is easy to find the upper bound

‖W‖ ≤ 3‖(1 + eβh/2)g‖. (7.15)

We apply standard analytic perturbation theory to the operator (7.13). For λ = 0, the
eigenvalues of M , {1, e±2iτ}, lie apart by the distance

r0(τ) := min {2| sin(2τ)|, 2| sin(τ)|} . (7.16)

(Note the spectrum of LS is {−2, 0, 0, 2}, c.f. (7.3).) We assume that the interaction time
is such that r0(τ) is strictly positive. Below, this condition appears as dist(τ, π2 N) > δ > 0.

The following result gives an estimate of the eigenvalues of M , which will be needed in
verifying that M is in the family M(E).

Proposition 7.2 Suppose that |λ| < 1
4r0(τ). Denote by 1, e0, e± the four eigenvalues of

M . We have

e0 = 1 − λ2τ2α+ ε0, (7.17)

e± = e±2iτ
[
1 − λ2τ2

2
α± iλ2τ2

∫
dµ(r)‖g(r)‖2

g ×

×
(1 − sinc(τ(2 − r))

2 − r
+

1 − sinc(τ(2 + r))

2 + r

)]
+ ε±, (7.18)

where sinc(x) = sin(x)/x and where

α =

∫
dµ(r)‖g(r)‖2

g

(
sinc2

[τ(r − 2)

2

]
+ sinc2

[τ(r + 2)

2

])
. (7.19)

The error terms ε#, # = 0,±, satisfy the bound

|ε#| ≤ 12λ4τ4‖W‖4 cosh2(|λ|τ‖W‖)
[
1 +

1 + λ2τ2‖W‖2 cosh(|λ|τ‖W‖)
r0(τ)

]
. (7.20)

Proof. Expansions (7.17), (7.18) of the eigenvalues have already been calculated in [7], Sec-
tion 4.8, but the error estimate (7.20), allowing the control of τ, β, has not been given there.
This error estimate is obtained by performing perturbation theory in a straightforward, but
careful fashion. One proceeds as in [11], Chapter II.2. 2

By knowing this expansion of the eigenvalues of M , we can impose a smallness condition
on λ which guarantees that the eigenvalues e# have modulus strictly less than one, which
is equivalent to saying that M ∈ M(E).

Proposition 7.3 Suppose that τmin < τ < τmax, β < βmax, and that dist(τ, π2 N) > δ,
for some constants 0 < τmin < τmax and βmax, δ > 0. Then there is a constant λ0 > 0,
depending on τmin, τmax, βmax, δ, as well as on the form factor g, s.t. if 0 < |λ| < λ0, then

|e#| < 1 − λ2τ2

8
α < 1, (7.21)

# = 0,±. In particular, M ∈ M(E).
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End of proof of Theorem 7.1, given Proposition 7.3. Fix τmin, τmax, βmax and δ, and
suppose that (7.12) holds. Denote by Ω′ the set of ω for which dist(τ(ω), π2 N) > δ. Then
p(Ω′) 6= 0, and for each ω ∈ Ω′, we have M(ω) ∈ M(E), by Proposition 7.3. Consequently,
p(M(ω) ∈ M(E)) ≥ p(Ω′) > 0. 2

Proof of Proposition 7.3. We impose conditions s.t. the three eigenvalues given in
(7.17), (7.18) have modulus strictly less than one. We have

|e0| < 1 − λ2τ2

2
α, (7.22)

provided

|ε0| <
λ2τ2

2
α. (7.23)

Next, since e− is the complex conjugate of e+, it suffices to consider the latter. We write,
with obvious identifications in (7.18), e+ = e2iτ [1 − x+ iy + ε+]. We have

|e+| ≤ |1 − x+ iy| + |ε+| =
√

1 − 2x+ x2 + y2 + |ε+|. (7.24)

Since x2 + y2 is just the square of the modulus of the second order (λ2) contribution to the
eigenvalue e+, it is easy to see that x2 + y2 ≤ λ4τ4‖W‖4(1 + 1

r0(τ))
2. We now impose the

condition

2λ2τ2‖W‖4

(
1 +

1

r0(τ)

)2

< α, (7.25)

which implies that x2 + y2 < x. Combining this latter inequality with (7.24) gives

|e+| <
√

1 − x+ |ε+| ≤ 1 − x/2 + |ε+|. (7.26)

Finally we impose the condition

|ε+| < x/4 =
λ2τ2

8
α, (7.27)

so that we get from (7.26)

|e+| < 1 − x/4 = 1 − λ2τ2

8
α. (7.28)

This last bound, combined with (7.22), proves that (7.21) holds, provided the conditions
(7.27), (7.25) and (7.23) are imposed. Taking into account the bound (7.20), we see that a
sufficient condition for (7.27), (7.25) and (7.23) to hold is that

96λ2τ2‖W‖4 cosh2(|λ|τ‖W‖)
[
1 +

1 + λ2τ2‖W‖2 cosh(|λ|τ‖W‖)
r0(τ)

]
< α. (7.29)

One may now use (7.15), (7.16), to find a constant λ0, depending only on the parameters as
stated in the proposition, s.t. if |λ| < λ0, then (7.29) holds. (Note that α, (7.19), does not
depend on β, and the minimum of α, taken over τ > 0 varying in any compact set, must be
strictly positive.) This completes the proof of Proposition 7.3, and hence that of Theorem
7.1. 2
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7.1 Proof of Theorem 1.6

Since E[M ] ∈ M(E) (by Theorems 7.1 and 1.2), 1 is a simple eigenvalue of E[M ]. Let ψ∗
S

denote the unique vector invariant under E[M∗], normalized as 〈ψ∗
S , ψS〉 = 1, where ψS is

given in (7.1). We have P1,E[M ] = |ψS〉〈ψ∗
S |, and thus, by (3.14), θ = ψ∗

S . To calculate ψ∗
S ,

we note first that for any ω, M(ω) is block-diagonal:

Lemma 7.4 Let P0 = |0〉〈0| + |1〉〈1| be the spectral projection of LS associated to {1}.
The operator M(ω) leaves the subspace RanP0 invariant. In the ordered orthonormal basis
{|0〉, |1〉} of RanP0, we have the representation

P0M(ω)P0 = 1l − λ2τ2(ω)

[
α−(ω) −α−(ω)
−α+(ω) α+(ω)

]
+O(λ4), (7.30)

where the α±(ω) are given by (1.18) with τ(ω) replaced by τ0. The remainder term is
uniform in τ varying in compact sets.

Proof of Lemma 7.4. As explained at the beginning of the proof of Theorem 7.1, only
even powers of the interaction are present in the Dyson series expansion for M , (7.13).
It follows from (7.10) and (7.14) that each term in the Dyson series (7.13) leaves RanP0

invariant; this is so because the operator σx shows up an even number of times, and σx|0〉 =
|1〉 and σx|1〉 = |0〉. The calculation of the explicit form (7.30) is not hard. This concludes
the proof of Lemma 7.4 2

The expansion for M∗ and hence of E[M∗] in powers of λ follow directly from (7.30). One
then performs an expansion in powers of σ and finds for the O(λ2)-term:

−λ2τ2
0

[
α− −α+

−α− α+

]
− 2λ2

E[σ]

[
ξ− −ξ+
−ξ− ξ+

]

−λ2(E[σ])2
[

η− −η+

−η− η+

]
+ λ2O(σ3).

The following expansion of the invariant vector ψ∗
S follows:

1√
2
ψ∗
S =

α+

α+ + α−
|0〉 ⊗ |0〉 +

α−
α+ + α−

|1〉 ⊗ |1〉

+2E[σ]
α−ξ+ − α+ξ−
τ2
0 (α+ + α−)2

(|0〉 ⊗ |0〉 − |1〉 ⊗ |1〉)

+4(E[σ])2(ξ− + ξ+)
α−ξ+ − α+ξ−
τ4
0 (α+ + α−)3

(|0〉 ⊗ |0〉 − |1〉 ⊗ |1〉)

+E[σ2]
α−η+ − α+η−
τ2
0 (α+ + α−)2

(|0〉 ⊗ |0〉 − |1〉 ⊗ |1〉) +O(σ3) +O(λ2). (7.31)

Formula (1.17) now follows directly from (7.31) and (1.10). This concludes the proof of
Theorem 1.6. 2
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