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Abstract: We give, as L grows to infinity, an explicit lower bound of order L
n
m for

the expected Betti numbers of the vanishing locus of a random linear combination of
eigenvectors of P with eigenvalues below L . Here, P denotes an elliptic self-adjoint
pseudo-differential operator of order m > 0, bounded from below and acting on the
sections of a Riemannian line bundle over a smooth closed n-dimensional manifold M
equipped with some Lebesgue measure. In fact, for every closed hypersurface � of Rn ,
we prove that there exists a positive constant p� depending only on �, such that for
every large enough L and every x ∈ M , a component diffeomorphic to � appears with
probability at least p� in the vanishing locus of a random section and in the ball of

radius L− 1
m centered at x . These results apply in particular to Laplace–Beltrami and

Dirichlet-to-Neumann operators.
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Introduction

Let M be a smooth closed manifold of positive dimension n and E be a real line bundle
over M . We equip M with a Lebesgue measure |dy|, that is a positive measure that can
be locally expressed as the absolute value of some smooth volume form, and E with
a Riemannian metric hE . These induce an L2-scalar product on the space �(M, E) of
smooth global sections of E , which reads

∀(s, t) ∈ �(M, E)2, 〈s, t〉 =
∫
M
hE
(
s(y), t (y)

)|dy|. (0.1)

Let P : �(M, E) → �(M, E) be a self-adjoint elliptic pseudo-differential operator
of positive order m that is bounded from below. The spectrum of such an operator is
thus real, discrete and bounded from below. Its eigenspaces are finite dimensional with
smooth eigenfunctions, see [9]. We set, for every L ∈ R, UL = ⊕λ≤L ker(P − λI d).

The dimension NL of UL satisfies Weyl’s asymptotic law 1
L

n
m
NL →

L→+∞
1

(2π)n
V ol{ξ ∈

T ∗M, | σP (ξ) ≤ 1}, where σP denotes the homogenized principal symbol of P , see
[9] and Definition A.8 of [6]. The space UL inherits by restriction the L2-scalar product
(0.1) and its associated Gaussian measure defined by the density

∀s ∈ UL , dμ(s) = 1√
π
NL

exp(−‖s‖2)|ds|, (0.2)

where |ds| denotes the Lebesgue measure of UL associated to its scalar product. The
measure of the discriminant �L = {s ∈ UL , s does not vanish transversally} vanishes
when L is large enough, see Lemma A.1 of [6]. Recall that a section s ∈ �(M, E) is
said to vanish transversally if and only if for every x ∈ s−1(0), ∇s|x is onto, where ∇
denotes any connection on E .

Our purpose is to study the topology of the vanishing locus s−1(0) ⊂ M of a section
s ∈ UL taken at random. More precisely, for every closed hypersurface � of Rn not
necessarily connected, and every s ∈ UL\�L , we denote by N�(s) the maximal number
of disjoint open subsets of M with the property that every such open subsetU ′ contains
a hypersurface �′ such that �′ ⊂ s−1(0) and (U ′, �′) is diffeomorphic to (Rn, �)

(compare [7]). We then consider

E(N�) =
∫
UL\�L

N�(s)dμ(s) (0.3)

the mathematical expectation of the function N� . Note that when � is connected, the
expected number of connected components diffeomorphic to � of the vanishing locus
of a random section of UL is bounded from below by E(N�).

Theorem 0.1. Let M be a smooth closed manifold of positive dimension n, equipped
with a Lebesgue measure |dy|. Let E be a real line bundle over M equipped with a
Riemannian metric hE . Let P : �(M, E) → �(M, E) be an elliptic pseudo-differential
operator of positive order m, which is self-adjoint and bounded from below. Let � be
a closed hypersurface of Rn , not necessarily connected. Then, there exists a positive
constant c�(P), such that

lim inf
L→+∞

1

L
n
m
E(N�) ≥ c�(P).

The constant c�(P) is in fact explicit, given by (2.3).
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Now, as in [7], we denote by Hn the space of diffeomorphism classes of closed
connected hypersurfaces of Rn . For every [�] ∈ Hn and every i ∈ {0, . . . , n − 1}, we
denote by bi (�) = dim Hi (�,R) the i-th Betti number of � with real coefficients.
Likewise, for every s ∈ UL\�L , bi (s−1(0)) denotes the i-th Betti number of s−1(0),
and we set

E(bi ) =
∫
UL\�L

bi (s
−1(0))dμ(s) (0.4)

for its mathematical expectation.

Corollary 0.2. Let M be a smooth closed manifold of positive dimension n equipped
with a Lebesgue measure |dy|. Let E be a real line bundle over M equipped with a
Riemannian metric hE . Let P : �(M, E) → �(M, E) be an elliptic pseudo-differential
operator of positive order m, which is self-adjoint and bounded from below. Then, for
every i ∈ {0, . . . , n − 1},

lim inf
L→∞

1

L
n
m
E(bi ) ≥

∑
[�]∈Hn

sup
�∈[�]

(
c�(P)

)
bi (�),

where c�(P) is defined in Theorem 0.1.

Note that an upper bound for E(bi ) of the same order in L is given by Theorem 0.2 of
[6].

Theorem 0.1 is in fact a consequence of Theorem 0.3, which is local andmore precise.
Let Met|dy|(M) be the space of Riemannian metrics of M whose associated Lebesgue
measure equals |dy|. For every g ∈ Met|dy|(M), every R > 0 and every point x ∈ M ,
we set

Probx�(R) = μ
{
s ∈ UL\�L | (s−1(0) ∩ Bg(x, RL

− 1
m )
) ⊃ �L

with
(
Bg(x, RL

− 1
m ),�L

)
diffeomorphic to (Rn, �)

}
, (0.5)

where Bg(x, RL− 1
m ) denotes the ball centered at x of radius RL− 1

m for the metric g.

Theorem 0.3. Under the hypotheses of Theorem 0.1, let g ∈ Met|dy|(M). Then, for
every x ∈ M and every R > 0, there exists px�(R) ≥ 0 for which

lim inf
L→+∞ Probx�(R) ≥ px�(R).

Moreover, p�(R) = inf x∈M px�(R) is positive as soon as R is large enough.

It is worthwhile to get quantitative versions of the lower estimates in Theorems 0.1 and
0.3, and in particular to compare Corollary 0.2 with the quantitative upper estimates for
the expected Betti numbers obtained in [6]. In fact, the constant p� defined in Theorem
0.3 as well as c�(P) defined in Theorem 0.1 turn out to be explicit, see (2.2) (see
also (1.7) and (1.8)) and (2.3) (see also (2.4)). In the following Theorem 0.4, we give
quantitative estimates of these constants in the case where � is the product of spheres
Si × Sn−i−1, i ∈ {0, . . . , n− 1}. Indeed, these manifolds embed as hypersurfaces in Rn

and
∀i ∈ {0, . . . , n − 1}, bi (S

i × Sn−i−1) ≥ 1. (0.6)

These estimates only depend on the principal symbol of P , the volume of M and its
dimension.
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Theorem 0.4. Under the hypotheses of Theorem 0.1, let g ∈ Met|dy|(M) and cP,g ,

dP,g > 0 be such that for every ξ ∈ T ∗M , d−1
P,g‖ξ‖ ≤ σP (ξ)

1
m ≤ c−1

P,g‖ξ‖, where σP

denotes the homogenized principal symbol of P. Then, for every i ∈ {0, . . . , n − 1} and
every R ≥ 48

√
5n

cP,g
,

cSi×Sn−i−1(P) ≥ e−(2τ+1)2

2n+1
√

πVol(B(0, 48
√
5n))

cnP,gV ol|dy|(M) and

pSi×Sn−i−1(R) ≥ 1

2
√

π
exp
(− (2τ + 1)2

)
,

where τ = 20 (n+6)11/2√
�( n2 +1)

(
48n

dP,g
cP,g

) n+2
2 exp

(
48

√
5n3/2

dP,g
cP,g

)
.

Remark 0.5. Note that for any g ∈ Met|dy|(M), constants cP,g and dP,g satisfying the
hypotheses ofTheorem0.4 do exist, sinceσP is smooth, homogeneous andM is compact.

In the case of Laplace–Beltrami operators, using (0.6) we obtain the following
corollary.

Corollary 0.6. Let (M, g) be a smooth closed n-dimensional Riemannian manifold and
let � be its associated Laplace–Beltrami operator acting on functions. Then for every
i ∈ {0, . . . , n − 1},

lim inf
L→+∞

1√
L
n E(bi ) ≥ cSi×Sn−i−1(�) ≥ exp

(− exp(257n3/2)
)
Volg(M).

As a second example, Theorem 0.4 specializes to the case of the Dirichlet-to-Neumann
operator on the boundary M of some (n+1)-dimensional compact Riemannian manifold
(W, g).

Corollary 0.7. Let (W, g) be a smooth compact Riemannianmanifold of dimension n+1
with boundary M and let 
g be the associated Dirichlet-to-Neumann operator on M.
Then, for every i ∈ {0, . . . , n − 1},

lim inf
L→+∞

1

Ln
E(bi ) ≥ cSi×Sn−i−1(
g) ≥ exp

(− exp(257n3/2)
)
Volg(M).

Note that the double exponential decay in Corollaries 0.6 and 0.7 has to be compared
with the exponential decay observed in Proposition 0.4 of [6] and with the analogous
double exponential decay already observed in Corollary 1.3 of [7].

Let us mention some related works. In [12], Nazarov and Sodin proved that the
expected number of components of the vanishing locus of random eigenfunctions with
eigenvalue L of the Laplace operator on the round 2-sphere is asymptotic to a constant
times L . In the recent [13], they obtain similar results in a more general setting, in
particular for all round spheres and flat tori (see also [15]). In [10], Lerario and Lundberg
proved, for the Laplace operator on the round n-sphere, the existence of a positive
constant c such that E(b0) ≥ c

√
L
n
for large values of L . We got in [6] upper estimates

for lim supL→+∞ L− n
m E(bi ) under the same hypotheses as Corollary 0.2, and previously

obtained similar upper and lower estimates for the expected Betti numbers or N�’s
of random real algebraic hypersurfaces of real projective manifolds (see [4,5,7,8]).
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In [11], Letendre proved, under the hypotheses of Corollary 0.6, that the mean Euler
characteristics (for odd n) is asymptotic to a constant times

√
L
n
. Let us finally mention

[14], where Sarnak and Wigman announce a convergence in probability for N� in the
case of Laplace–Beltrami operators (see also [1]).

In the first section, we introduce the space of Schwartz functions ofRn whose Fourier
transforms have supports in the compact set Kx = {ξ ∈ T ∗

x M | σP (ξ) ≤ 1}, where
x ∈ M is given and T ∗

x M is identified with Rn via some isometry. This space appears to
be asymptotically a localmodel for the spaceUL . Indeed, any function f in this space can
be implemented in UL , in the sense that there exists a family of sections (sL ∈ UL)L�1

whose restriction to a ball of radius of order L− 1
m centered at x converges to f after

rescaling, see Corollary 1.11. The vanishing locus of f then gets implemented as the
vanishing locus of the sections sL for L large enough. The second section is devoted to
the proofs of Theorems 0.1 and 0.3, and of Corollary 0.2. For this purpose we follow
the approach used in [7] (see also [5]), which was itself partially inspired by the works
[3,12], see also [10]. We begin by estimating the expected local C1-norm of elements of
UL , see Proposition 2.1, and then compare it with the amount of transversality of sL . We
can then prove Theorem 0.3, see Sect. 2.2, and finally Theorem 0.1 and its Corollary 0.2,
see §2.3. The last section is devoted to the explicit estimates and the proofs of Theorem
0.4 and Corollaries 0.6 and 0.7.

1. The Local Model and Its Implementation

In Sect. 1.1, we associate to any closed hypersurface � of Rn and any symmetric com-
pact subset K of Rn with the origin in its interior, a Schwartz function f vanishing
transversally along a hypersurface isotopic to � and whose Fourier transform has sup-
port in K . In Sect. 1.3, we implement the function f in the neighbourhood of every
point x0 in M , as the limit after rescaling of a sequence of sections ofUL . Here, K is the
pull-back of Kx0 under some measure-preserving isomorphism between T ∗

x0M and R
n .

As a consequence, these sections of UL vanish in a neighbourhood Ux0 of x0 along a
hypersurface�L of M such that the pair (Ux0 , �L) is diffeomorphic to (Rn, �). In Sect.
1.2, we quantify the transversality of the vanishing of the function f and thus of the
associated sequence of sections, in order to prepare the estimates of the second section
which involve perturbations.

1.1. The local model. Let K be a measurable subset of Rn and let χK be its char-
acteristic function, so that χK (ξ) = 1 if ξ ∈ K and χK (ξ) = 0 otherwise. This
function χK induces the restriction f ∈ L2(Rn) �→ χK f ∈ L2(Rn). After conju-
gation by the Fourier transform F of L2(Rn), defined for every f ∈ L2(Rn) and
every ξ ∈ R

n by F( f )(ξ) = ∫
Rn e−i〈y,ξ〉 f (y)dy ∈ L2(Rn), we get the projector

πK : L2(Rn) → L2(Rn), defined for every f ∈ L2(Rn) and every x ∈ R
n by

πK ( f )(x) = 1
(2π)n

∫
ξ∈K

∫
y∈Rn ei〈x−y,ξ〉 f (y)dξdy. Note that for K = R

n , πK is the

identity map. Denote by L2
K (Rn) the image of πK . This is a Hilbert subspace of L2(Rn),

the kernel of the continuous operator I d − πK = πRn\K . Denote by C∞
0 (K ) the space

of smooth functions on R
n whose support is included in K . Write S(Rn) for the space

of Schwartz functions of Rn and set

SK (Rn) = F−1(C∞
0 (K )). (1.1)
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Lemma 1.1. Let K be a bounded measurable subset ofRn. Then, SK (Rn) ⊂ L2
K (Rn)∩

S(Rn).

Proof. Since K is bounded,C∞
0 (K ) ⊂ S(Rn) so that SK (Rn) ⊂ F−1(S(Rn)) = S(Rn).

Likewise, for every f ∈ C∞
0 (K ), χK f = f , so that by definition, f ∈ L2

K (Rn). ��

Lemma 1.2. Let � be a closed hypersurface of Rn , not necessarily connected. Let K
be a bounded measurable subset of Rn , symmetric with respect to the origin and which
contains the origin in its interior. Then, there exists a hypersurface �̃ of Rn , isotopic to
�, and a function f� in SK (Rn) such that f� vanishes transversally along �̃.

Recall that �̃ is said to be isotopic to � if and only if there exists a continuous family
(φt )t∈[0,1] of diffeomorphisms of Rn such that φ0 = I d and φ1(�) = �̃.

Proof. Let f ∈ C∞
0 (Rn) be a smooth compactly supported function of Rn which van-

ishes transversally along � and let χ̃ ∈ C∞
0 (Rn) be an even function which equals 1 in

a neighbourhood of the origin. For every R > 0, we set χ̃R : ξ ∈ R
n �→ χ̃ (ξ R−1) ∈

R. Then F( f ) ∈ S(Rn) and χ̃RF( f ) converges to F( f ) in S(Rn) as R grows to
infinity. Thus, F−1(χ̃RF( f )) converges to f in S(Rn) as R grows to infinity, and
F−1(χ̃RF( f )) takes real values. We deduce that when R is large enough, the func-
tion fR = F−1(χ̃RF( f )) is real and vanishes transversally in a neighbourhood of �

along a hypersurface isotopic to �. By construction, the support of F( fR) is compact.
By hypotheses, there exists thus ρ > 0 such that the function Fρ( fR) : ξ ∈ R

n �→
F( fR)(

ξ
ρ
) ∈ R has compact support in K . The function f� = F−1(Fρ( fR)) then

belongs to SK (Rn) and vanishes transversally along a hypersurface isotopic to �. ��

1.2. Quantitative transversality. We now proceed as in [7] to introduce our needed
quantitative transversality estimates.

Definition 1.3. LetW be a bounded open subset ofRn and f ∈ S(Rn). The pair (W, f )
is said to be regular if and only if zero is a regular value of the restriction of f to W and
the vanishing locus of f in W is compact.

Example 1.4. Let f� ∈ SK (Rn) ⊂ S(Rn) be a function given by Lemma 1.2. Then,
there exists a tubular neighbourhood W of �̃ ⊂ f −1

� (0) such that (W, f�) is a regular
pair in the sense of Definition 1.3.

Definition 1.5. For every regular pair (W, f ) given by Definition 1.3, we denote by
T(W, f ) the set of pairs (δ, ε) ∈ (R+)

2 such that

1. There exists a compact subset KW of W such that infW\KW | f | > δ.
2. For every z ∈ W , if | f (z)| ≤ δ then ‖d|z f ‖ > ε, where ‖d|z f ‖2 =∑n

i=1 | ∂ f
∂xi

|2(z).

The quantities and functions that are going to appear in the proof of our theorems are
the following. Let K be a bounded measurable subset of Rn . We set, for every positive
R and every j ∈ {1, . . . , n},
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ρK (R) =
√
2� n

2 + 1�√
2π

n inf
t∈R∗

+

⎛
⎜⎜⎜⎝
( R + t

t

) n
2

� n
2 +1�∑
i=0

t i

i !
( ∑

( j1,..., ji )
∈{1,...,n}i

∫
K

i∏
k=1

|ξ jk |2|dξ |
) 1

2

⎞
⎟⎟⎟⎠ (1.2)

θ
j
K (R) =

√
2� n

2 + 1�√
2π

n inf
t∈R∗

+

⎛
⎜⎜⎜⎝
( R + t

t

) n
2

� n
2 +1�∑
i=0

t i

i !
( ∑

( j1,..., ji )
∈{1,...,n}i

∫
K

|ξ j |2
i∏

k=1

|ξ jk |2|dξ |
) 1

2

⎞
⎟⎟⎟⎠ .

(1.3)

Remark 1.6. Writingν(K ) = ∫K |dξ | for the totalmeasure of K andd(K ) = supξ∈K ‖ξ‖,
we note that for every ( j1, . . . , ji ) ∈ {1, . . . , n}i and every j ∈ {1, . . . , n},

∫
K

i∏
k=1

|ξ jk |2|dξ | ≤ d(K )2iν(K )

and
∫
K |ξ j |2∏i

k=1 |ξ jk |2 ≤ d(K )2(i+1)ν(K ). It follows, after evaluation at t = R, that
for every j ∈ {1, . . . , n},

ρK (R) ≤ 1√
π
n

√
2ν(K )�n

2
+ 1� exp (Rd(K )

√
n
)

(1.4)

θ
j
K (R) ≤ 1√

π
n

√
2ν(K )�n

2
+ 1�d(K ) exp

(
Rd(K )

√
n
)
. (1.5)

For every regular pair (W, f ) we set RW = supz∈W ‖z‖ and for every bounded
measurable subset K of Rn define

τ K
(W, f ) = ‖ f ‖L2(Rn) inf

(δ,ε)∈T(W, f )

(1
δ
ρK (RW ) +

n
√
n

ε

n∑
i=1

θ
j
K (RW )

)
(1.6)

and pK(W, f ) = 1√
π

sup
T∈[τ K

(W, f ),+∞[

(
1 − τ K

(W, f )

T

) ∫ +∞

T
e−t2dt . (1.7)

Remark 1.7. Note that pK(W, f ) ≥ 1
2
√

π
exp
(− (2τ K

(W, f ) + 1)2
)
.

Now, let � be a closed hypersurface of Rn , not necessarily connected.

Definition 1.8. LetIK
� be the set of regular pairs (W, f ) given byDefinition 1.3 such that

f ∈ SK (Rn) and such that the vanishing locus of f inW contains a hypersurface isotopic
to � in Rn . Likewise, for every R > 0, we set IK ,R

� = {(W, f ) ∈ IK
� | RW ≤ R}.

Finally, for every positive R we set

pK� (R) = sup
(W, f )∈IK ,R

�

pK(W, f ). (1.8)

Remark 1.9. It follows from Lemma 1.2 and Example 1.4 that when R is large enough
and K satisfies the hypotheses of Lemma 1.2, IK ,R

� is not empty, and in particular
pK� (R) > 0. Note moreover that if K ⊂ K ′, then pK� ≤ pK

′
� .
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1.3. Implementation of the local model. In this paragraph, we prove that for every x0 ∈
M and every measure-preserving linear isomorphism A between R

n and T ∗
x0M , every

function f in SA∗Kx0
(Rn) can be implemented in UL as a sequence of sections, see

Proposition 1.10. Corollary 1.11 then estimates the amount of transversality of these
sections along their vanishing locus, in terms of the one of f .

Proposition 1.10. Under the hypotheses of Corollary 0.2, let x0 ∈ M , φx0 : (Ux0 , x0) ⊂
M → (V, 0) ⊂ R

n be a measure-preserving chart and χ̃V ∈ C∞
c (V ) be an even

function with support in V which equals 1 in a neighbourhood of 0. Then, for every
f ∈ S

(d|x0φ−1
x0 )∗Kx0

(Rn), there exists a family (sL ∈ UL)L∈R∗
+
such that

1. ‖sL‖L2(M) →
L→+∞ ‖ f ‖L2(Rn)

2. the function z ∈ R
n �→ L− n

2m χ̃V (L− 1
m z)(sL ◦ φ−1

x0 )(L− 1
m z) ∈ R converges to f in

S(Rn).

Note that the isomorphism (d|x0φx0)
−1 : R

n → Tx0M defines by the pull-back an
isomorphism ((d|x0φx0)

−1)∗ : T ∗
x0M → R

n thatmakes it possible to identify the compact

Kx0 = {ξ ∈ T ∗
x0M |σP (ξ) ≤ 1} (1.9)

with the compact
(
(d|x0φx0)

−1
)∗
Kx0 of R

n . Moreover, the Riemannian metric hE of E
given in the hypotheses of Corollary 0.2 provides a trivialization of E in the neighbour-
hoodUx0 of x0, choosing a smallerUx0 if necessary, unique up to sign. This trivialization
makes it possible to identify χ̃V sL ◦ φ−1

x0 with a function from V to R.

Proof. For every L ∈ R
∗
+, we set s̃L : x ∈ Ux0 �→ L

n
2m χ̃V (φx0(x)) f (L

1
m φx0(x)) ∈ E|x

that we extend by zero to a global section of E . We denote then by sL the orthogonal
projection of s̃L in UL ⊂ L2(M, E). This section reads

sL = 〈eL , s̃L〉 =
∫
M
hE
(
eL(x, y), s̃L (y)

)|dy|,
where eL denotes the Schwartz kernel of the orthogonal projection onto UL . Then, for

every z ∈ R
n , L− 1

m z belongs to V when L is large enough and

L− n
2m sL ◦ φ−1

x0 (L− 1
m z) = L− n

2m

∫
M
hE

(
eL
(
φ−1
x0 (L− 1

m z), y
)
, s̃L(y)

)
|dy|

=
∫
Ux0

χ̃V
(
φx0(y)

)
eL
(
φ−1
x0 (L− 1

m z), y
)
f
(
L

1
m φx0(y)

)
(y)|dy|

= L− n
m

∫
Rn

χ̃V (L− 1
m h)(φ−1

x0 )∗eL(L− 1
m z, L− 1

m h) f (h)|dh|,

where we performed the substitution h = L
1
m φx0(y), so that |dh| = L

n
m |dy|. From

Theorem 4.4 of [9],

L− n
m (φ−1

x0 )∗eL(L− 1
m z, L− 1

m h) →
L→+∞

1

(2π)n

∫
K ′
x0

ei〈z−h,ξ〉|dξ |,

where K ′
x0 = (d|x0φ−1

x0 )∗Kx0 . Moreover, there exists ε > 0 such that this convergence
holds in C∞(Rn × R

n) for the semi-norms family defined by the supremum of the
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derivatives of the functions on the bidisc B̄(εL
1
m )2, where B̄(εL

1
m ) denotes the closed

ball of Rn of radius εL
1
m , see [6]. As a consequence, after perhaps taking a smaller V

so that V is contained in the ball of radius ε,

L− n
m χ̃V (L− 1

m h)(φ−1
x0 )∗eL(L− 1

m z, L− 1
m h) f (h) →

L→+∞
1

(2π)n

∫
K ′
x0

ei〈z−h,ξ〉 f (h)|dξ |

in this same sense, which implies convergence in the Schwartz space S(Rn) for each
fixed z. After integration, it follows that

L− n
2m sL ◦ φ−1

x0 (L− 1
m z) →

L→+∞
1

(2π)n

∫
K ′
x0

ei〈z,ξ〉F( f )(ξ)|dξ |

in C∞(Rn) for our family of semi-norms on B̄(εL
1
m ). Since f ∈ SK ′

x0
(Rn),

1

(2π)n

∫
K ′
x0

ei〈z,ξ〉F( f )(ξ)|dξ | = f (z),

so that z �→ L− n
2m sL ◦ φ−1

x0 (L− 1
m z) converges to f in S(Rn). This proves the second

assertion.
If χ̃U = χ̃V ◦ φx0 , we deduce that ‖sL χ̃U‖L2(M) →

L→+∞ ‖ f ‖L2(Rn). We still need to

prove that ‖sL(1− χ̃U )‖L2(M) →
L→+∞ 0. Since sL is the orthogonal projection of s̃L onto

UL ,

‖sL‖L2(M) ≤ ‖s̃L‖L2(M) →
L→+∞ ‖ f ‖L2(Rn).

The result follows. ��
Corollary 1.11. Under the hypotheses of Theorem 0.3, let x0 ∈ M andφx0 : (Ux0 , x0) ⊂
M → (V, 0) ⊂ R

n be ameasure-preserving chart such that A = d|x0φ−1
x0 is an isometry.

Let (W, f�) ∈ I A∗Kx0
� (see Definition 1.5) and (δ, ε) ∈ T(W, f�) (see Definition 1.8).

Then, there exist L0 ∈ R and (sL)L≥L0 such that for every L ≥ L0,

1. sL ∈ UL and ‖sL‖L2(M) →
L→+∞ ‖ f�‖L2(Rn)

2. The vanishing locus of sL contains a hypersurface �L included in the ball Bg(x0,

RW L− 1
m ) such that the pair

(
B(x0, RW L− 1

m ),�L
)
is diffeomorphic to the pair

(Rn, �).
3. There exist two neighbourhoods KL and WL of �L such that KL is compact, WL is

open, �L ⊂ KL ⊂ WL ⊂ Bg(x0, RW L− 1
m ), infWL\KL |sL | > δL

n
2m and for every

y ∈ WL,

|sL(y)| < δL
n
2m ⇒ ‖d|y(sL ◦ φ−1

x0 )‖ > εL
n+2
2m .

Proof. Let L0 ∈ R and (sL)L≥L0 be a family given by Proposition 1.10 for f = f� .
Then, the first condition is satisfied and the family of functions z ∈ B(0, RW ) �→
L− n

2m sL ◦φ−1
x0 (L− 1

m z) converges to f� in C∞(B(0, RW )). Let K be the compact given

by Definition 1.5, KL = φ−1
x0 (L− 1

m K ) and WL = φ−1
x0 (L− 1

m W ). The conditions 2 and
3 in the corollary follow from this convergence and from Definition 1.5. ��
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2. Probability of the Local Presence of a Hypersurface

In this section, we follow the method of [7] partially inspired by [3,12] (see also [5,10])
in order to prove Theorem 0.3. If � is a smooth closed hypersurface of Rn , x ∈ M and
sL ∈ UL is given by Proposition 1.10 and vanishes transversally along �L in a small

ball B(x, RL− 1
m ), then we decompose any random section s ∈ UL as s = asL + σ ,

where a ∈ R is Gaussian and σ is taken at random in the orthogonal complement of
RsL in UL . In Sect. 2.1, we estimate the average of the values of σ and its derivatives

on B(x, RL− 1
m ), see Proposition 2.1. In Sect. 2.2, we prove that with a probability

greater than a positive number px�(R)which is independent of L , s vanishes in the latter
ball along a hypersurface isotopic to �L . This follows from Proposition 2.1 and the
quantitative estimates of the transversality of sL given in Corollary 1.11.

2.1. Expected local C1-norm of sections. Recall that for x0 ∈ M ,

Kx0 = {ξ ∈ T ∗
x0M |σP (ξ) ≤ 1}. (2.1)

Proposition 2.1. Under thehypotheses of Theorem0.3, let x0 ∈ M andφx0 : (Ux0 , x0) ⊂
M → (V, 0) ⊂ R

n be a measure-preserving map such that A = d|x0φ−1
x0 is an isometry.

Then, for every positive R and every j ∈ {1, . . . , n},

lim sup
L→+∞

L− n
2m E

(
‖s‖

L∞(Bg(x0,RL
− 1
m ))

)
≤ ρA∗Kx0

(R)

and lim sup
L→+∞

L− n+2
2m E

(∥∥∥∂(s ◦ φ−1
x0 )

∂x j

∥∥∥
L∞(Bg(0,RL− 1

m ))

)
≤ θ

j
A∗Kx0

(R),

where ρA∗Kx0
and θ

j
A∗Kx0

are defined by (1.2) and (1.3).

Proof. Let t ∈ R
∗
+.When L is large enough, the ball B(0, (R+t)L− 1

m ) ofRn is contained
in V . From the Sobolev inequality (see §2.4 of [2]), we deduce that for every s ∈ UL ,

every k > n/2 and every z ∈ B(0, RL− 1
m ),

|s ◦ φ−1
x0 (z)| ≤ 2k

Vol(B(0, t L− 1
m ))

1
2

k∑
i=0

(t L− 1
m )i

×
(
1

i !
∫
B(0,(R+t)L− 1

m )

|Di (s ◦ φ−1
x0 )|2(x)|dx |

)1/2
,

where by definition, the norm of the i-th derivative Di (s ◦ φ−1
x0 ) of s ◦ φ−1

x0 satisfies

i !|Di (s ◦ φ−1
x0 )(x)|2 =

∑
( j1,..., ji )
∈{1,...,n}i

∣∣∣ ∂ i

∂x j1 · · · ∂x ji
(s ◦ φ−1

x0 )(x)
∣∣∣2.

Note indeed that the metric hE of the bundle E makes it possible to identify s|Ux0
with

a real valued function well defined up to a sign. As a consequence, we deduce from the
Cauchy–Schwarz inequality that
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E

(
‖s ◦ φ−1

x0 ‖
L∞(B(0,RL− 1

m ))

)
≤ 2k

Vol(B(0, t L− 1
m ))

1
2

k∑
i=0

1

i ! (t L
− 1

m )i

(∫
B(0,(R+t)L− 1

m )

i !E(|Di (s ◦ φ−1
x0 )|2(x))|dx |

)1/2
.

Given ( j1, . . . ji ) ∈ {1, . . . , n}i and z ∈ B(0, (R + t)L− 1
m ), we can choose an ortho-

normal basis (s1, . . . , sNL ) of UL such that ∂ i

∂x j1 ···∂x ji (sl ◦ φ−1
x0 )(z) = 0 for every l > 1.

Since the spectral function reads (x, y) ∈ M × M �→ eL(x, y) =∑NL
i=0 si (x)s

∗
i (y), we

deduce, using the decomposition of s in the basis (s1, . . . , sNL ), that

E

(∣∣∣ ∂ i

∂x j1 · · · ∂x ji
(s ◦ φ−1

x0 )

∣∣∣2(z)
)

=
(∫

R

a2e−a2 da√
π

)
∂2i

∂x j1 · · · ∂x ji ∂y j1 · · · ∂y ji
(eL ◦ φ−1

x0 )(z, z).

Choosing k = � n
2 + 1� and noting that

∫
R
a2e−a2 da√

π
= 1

2 , we deduce that for L large

enough, E
(‖s ◦ φ−1

x0 ‖
L∞(B(0,RL− 1

m ))

)
is bounded from above by

inf
t∈R∗

+

√
2� n

2 + 1�
Vol(B(0, t L− 1

m ))
1
2

� n
2 +1�∑
i=0

1

i ! (t L
− 1

m )i

×
( ∫

B(0,(R+t)L− 1
m )

∑
( j1,..., ji )
∈{1,...,n}i

∂2i eL(x, x)

∂x j1 · · · ∂x ji ∂y j1 · · · ∂y ji
|dx |

)1/2
.

Likewise, for every j ∈ {1, . . . , n}, E
(
‖ ∂(s◦φ−1

x0
)

∂z j
‖
L∞(B(0,RL− 1

m ))

)
is bounded from

above by

inf
t∈R∗

+

√
2� n

2 + 1�
Vol(B(0, t L− 1

m ))
1
2

� n
2 +1�∑
i=0

1

i ! (t L
− 1

m )i

×
( ∫

B(0,(R+t)L− 1
m )

∑
( j1,..., ji )
∈{1,...,n}i

∂2i+2eL(x, x)

∂x j∂x j1 · · · ∂x ji ∂y j y j1 · · · ∂y ji
|dx |

)1/2
.

Now, the result is a consequence of the asymptotic estimate

∂2i eL(x, x)

∂x j1 · · · ∂x ji ∂y j1 · · · ∂y ji
∼

L→+∞
1

(2π)n
L

n+2i
m

∫
K0

|ξ j1 |2 · · · |ξ ji |2|dξ |,

see Theorem 2.3.6 of [6]. We used here that the balls Bg(x0, RL− 1
m ) and φ−1

x0 (B(0,

RL− 1
m )) coincide to first order in L . ��
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2.2. Proof of Theorem 0.3. Let x0 ∈ M , R > 0 and A ∈ I somg(R
n, Tx0M). Let

φx0 : (Ux0 , x0) ⊂ M → (V, 0) ⊂ R
n be a measure-preserving map such that A =

d|x0φ−1
x0 . Let (W, f�) ∈ I A∗Kx0,R

� and (δ, ε) ∈ T(W, f�). Let (sL)L≥L0 be a family given
by Corollary 1.11 associated to f� , where Kx0 is defined by (2.1). Denote by s⊥

L the
hyperplane orthogonal to sL in UL . Then,∫

s⊥L
‖s ◦ φ−1

x0 ‖
L∞(B(0,RW L− 1

m ))
dμ(s) ≤

∫
UL

‖s ◦ φ−1
x0 ‖

L∞(B(0,RW L− 1
m ))

dμ(s)

and for every j ∈ {1, . . . , n},∫
s⊥L

∥∥∥ ∂

∂x j
(s ◦ φ−1

x0 )

∥∥∥
L∞(B(0,RW L− 1

m ))
dμ(s) ≤

∫
UL

∥∥∥ ∂

∂x j
(s ◦ φ−1

x0 )

∥∥∥
L∞(B(0,RW L− 1

m ))
dμ(s),

compare the proof of Proposition 3.1 of [7]. From Proposition 2.1 andMarkov’s inequal-
ity we deduce that for every T ∈ R

∗
+,

μ
{
s ∈ s⊥

L | sup
Bg(x0,RW L− 1

m )

|s| ≥ T δL
n
2m

‖ f�‖L2(Rn)

}
≤ ‖ f�‖L2(Rn)

T δ
ρA∗Kx0

(RW ) + o(1)

and for every j ∈ {1, . . . , n},

μ
{
s ∈ s⊥

L | sup
B(0,RW L− 1

m )

| ∂

∂x j
(s ◦ φ−1

x0 )| ≥ T εL
n+2
2m√

n‖ f�‖L2(Rn)

}

≤
√
n‖ f�‖L2(Rn)

T ε
θ
j
A∗Kx0

(RW ) + o(1).

It follows that the measure of the set

Es⊥L =
{
s∈s⊥

L | sup
Bg(x0,RW L− 1

m )

|s| <
T δL

n
2m

‖ f�‖L2(Rn)

and sup
B(0,RW L− 1

m )

|d(s ◦ φ−1
x0 )|< T εL

n+2
2m

‖ f�‖L2(Rn)

}

satisfies μ(Es⊥L )≥1−‖ f�‖L2(Rn )

T

(
1
δ
ρA∗Kx0

(RW )+ n
√
n

ε

∑n
j=1 θ

j
A∗Kx0

(RW )
)
+o(1), where

the o(1) term can be chosen independently of x0 since M is compact. Taking the supre-
mumover the pairs (δ, ε) ∈ T(W, f�) and taking liminf, we deduce from (1.6) the estimate

lim inf
L→+∞ μ(Es⊥L ) ≥ 1 − τ

A∗Kx0
(W, f�)

T
.

Now, let FT =
{
a sL‖sL‖L2(M)

+ σ | a > T and σ ∈ Es⊥L
}
. From Lemma 3.6 of [7],

every section s ∈ FT vanishes transversally in Bg(x0, RW L− 1
m ) along a hypersuface

�L such that (Bg(x0, RW L− 1
m ),�L) is diffeomorphic to (Rn, �). Moreover, since μ

is a product measure, lim infL→+∞ μ(FT ) ≥
(

1√
π

∫ +∞
T e−t2dt

)(
1 − τ

A∗Kx0
(W, f�)

T

)
. Taking

the supremum over T ∈ [τ(W, f�),+∞[, we deduce from (1.7) that

lim inf
L→+∞ Probx0,�(RW ) ≥ lim inf

L→+∞ μ(FT ) ≥ p
A∗Kx0
(W, f�).
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Taking the supremum over all pairs (W, f�) ∈ I A∗Kx0 ,R
� , see (1.8), and then over every

A ∈ I somg(R
n, Tx0M), we obtain the first part of Theorem 0.3 by choosing

px�(R) = sup
A∈I somg(Rn ,Tx M)

(pA∗Kx
� (R)). (2.2)

From Remark 0.5, there exists cP,g > 0 such that for every x ∈ M and A ∈ I somg
(Rn, TxM), the ball B(0, cP,g) is contained in A∗Kx . For every R > 0, we then have

infM px�(R) ≥ p
B(0,cP,g)

� (R), where the right hand side is positive for R large enough,
see Remark 1.9.

2.3. Proofs of Theorem 0.1 and Corollary 0.2.

Proof of Theorem 0.1. Let us denote byR = C∞(M,R+) the space of smooth positive
functions on M . Let g ∈ Met|dy|(M), ρ ∈ R, and g̃ be the normalized metric g/ρ2. For
every L large enough, let 
L be a subset of M such that the distance between any two

distinct points of 
L is larger than 2L− 1
m in the metric g̃ and which is maximal with

respect to this property. This means that 
L is not contained in any larger set having the

same property. The g̃−balls centered at points of
L and of radius L− 1
m are then disjoint,

whereas the ones of radius 2L− 1
m cover M . For every s ∈ UL\�L and every x ∈ 
L ,

we set Nx,�(s) = 1 if Bg̃(x, L
− 1

m ) contains a hypersurface �̃ such that �̃ ⊂ s−1(0)

and (Bg̃(x, L
− 1

m ), �̃) is diffeomorphic to (Rn, �), and Nx,� = 0 otherwise. Note that∫
UL\�L

Nx,�(s)dμ(s) ∼
L→+∞ Probx�(ρ(x)).

Thus,

lim inf
L→+∞

1

L
n
m
E(N�) ≥ lim inf

L→+∞
1

L
n
m

∫
UL\�L

( ∑
x∈
L

Nx,�(s)
)
dμ(s)

= lim inf
L→+∞

1

L
n
m

∑
x∈
L

Probx,�(ρ(x))

≥ 1

2n
lim inf
L→+∞

∑
x∈
L

V ol(Bg̃(x, 2L
− 1

m ))ρn(x)
( px�(ρ(x))

Voleucl B(0, ρ(x))

)

by Theorem 0.3. Now, set

M� =
{
ψ ∈ C∞(M × R+,R≥0), ∀(x, R) ∈ M × R+, ψ(x, R) ≤ px�(R)

Voleucl B(0, R)

}
.

Then, for every ψ ∈ M� ,

lim inf
L→+∞

1

L
n
m
E(N�) ≥ 1

2n
lim inf
L→+∞

∫
M

∑
x∈
L

1
Bg̃(x,2L

− 1
m ))

(y)ρn(x)ψ(x, ρ(x))|dvolg̃(y)|

≥ 1

2n
lim inf
L→+∞

∫
M

max
x∈
L∩Bg̃(y,2L

− 1
m )

(
ρnψ(x, ρ(x))

)
|dvolg̃(y)|

= 1

2n

∫
M

ψ(y, ρ(y))ρn(y)|dvolg̃(y)| = 1

2n

∫
M

ψ ◦ ρ|dy|.
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We deduce Theorem 0.1 by defining c�(P) to be the supremum

c�(P) = 1

2n
sup

(g,ρ,ψ)∈Met|dy|(M)×R×M�

∫
M

ψ(y, ρ(y))|dy|. (2.3)

Choosing ψ = inf px�
Voleucl B(0,·) ∈ M� and ρ = R we obtain

c�(P) ≥ 1

2n
V ol|dy|(M)

infM px�(R)

Voleucl B(0, R)
(2.4)

which is positive for R large enough by Theorem 0.3. ��
Remark 2.2. It might be that (2.3) can be rewritten as

c�(P) = 1

2n
sup

g∈Met|dy|(M)

∫
M
sup
R>0

( px�(R)

Voleucl(B(0, R))

)
|dx |,

but (2.3) or actually (2.4) suffices for the purpose of this paper.

Proof of Corollary 0.2. For every i ∈ {0, . . . , n − 1} and every large enough L > 0,

E(bi ) =
∫
UL\�L

bi (s
−1(0))dμ(s) ≥

∫
UL\�L

( ∑
[�]∈Hn

N�(s)bi (�)
)
dμ(s)

≥
∑

[�]∈Hn

bi (�)E(N�).

The result is a consequence of Theorem 0.1 after passing to the liminf in the latter
bound. ��

3. Explicit Estimates

The goal of this section is to obtain explicit lower bounds for the constants c�(P) and
infx∈M px�(R) appearing in Theorems 0.1 and 0.3, when � is diffeomorphic to the
product of spheres Si+1 × Sn−i−1 (whose i-th Betti number is at least one). In the first
paragraph, we approximate quantitatively the product of a polynomial function and a
Gaussian one by a functionwhose Fourier transform has compact support.We then apply
this result to a particular degree four polynomial vanishing along a product of spheres
to finally get Theorem 0.4, Corollary 0.6 and Corollary 0.7.

3.1. Key estimates for the approximation. Let χ̃c : Rn → [0, 1] be a smooth function
with support in the ball of radius c > 0, such that χ̃c = 1 on the ball of radius c/2. For

every Q ∈ R[X1, . . . , Xn] and every η > 0, we set q : x ∈ R
n �→ q(x) = Qe− ‖x‖2

2 ∈ R

and

qcη : x ∈ R
n �→ qcη(x) = 1

(2π)n

∫
Rn

χ̃c(ηξ)F(q(x))(ξ)ei〈x,ξ〉|dξ |. (3.1)

Note that qcη ∈ SB(0,c/η)(R
n), see (1.1).
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Proposition 3.1. Let Q =∑I∈Nn aI x I ∈ R[X1, . . . , Xn] and c, η > 0. Then,

1. ‖qcη − q‖L∞(Rn) ≤ √�n/2 + 1�( c
2η

) n−2
2 e− 1

4 ( c
2η )2(∑

I∈Nn |aI |
√
I !).

2. ∀k ∈ {1, . . . , n},
∥∥∥ ∂qcη

∂xk
− ∂q

∂xk

∥∥∥
L∞(Rn)

≤√�n/2 + 3�( c
2η

) n
2 e− 1

4 ( c
2η )2(∑

I∈Nn |aI |
√
I !).

3.
∥∥qcη−q

∥∥2
L2(Rn)

≤√
2π

n
N (Q)

(∑
I∈Nn a2I I !

)
e− 1

2 ( c
2η )2

,where N (Q) denotes the num-
ber of monomials of Q.

Proof. For every x ∈ R
n , we have

|qcη(x) − q(x)| ≤ 1

(2π)n

∫
‖ξ‖≥ c

2η

|F(Qe− ‖x‖2
2 )|(ξ)|dξ |

≤ 1

(2π)n

∑
I∈Nn

|aI |
∫

‖ξ‖≥ c
2η

|F(xI e
− ‖x‖2

2 )|(ξ)|dξ |.

Moreover,

F(xI e
− ‖x‖2

2 ) = i |I | ∂

∂ξI

(
F(e− ‖x‖2

2 )
) = √

2π
n
i |I |(−1)|I |

n∏
j=1

(
Hi j (ξ j )e

− ξ2j
2

)
, (3.2)

where we have set I = (i1, . . . , in) and Hj the j-th Hermite polynomial. We deduce
from Cauchy–Schwarz inequality that

|qcη(x) − q(x)|≤ 1√
2π

n

∑
I∈Nn

|aI |
( n∏

j=1

∫
R

H2
i j (ξ j )e

− ξ2j
2 dξ j

)1/2( ∫
‖ξ‖≥ c

2η

e− ‖ξ‖2
2 dξ

)1/2

≤ 1

(2π)n/4

( ∑
I∈Nn

|aI |
√
I !)√Vol(Sn−1)

( ∫ +∞
c
2η

rn−1e− r2
2 dr

)1/2
,

since
∫
R

H2
k (ξ)e− ξ2

2 dξ = k!√2π. (3.3)

Likewise, after integration by parts we obtain

∫ +∞
c
2η

rn−1e− r2
2 dr = [−rn−2e− r2

2 ]+∞
c
2η

+ (n − 2)
∫ +∞

c
2η

rn−3e− r2
2 dr

≤ ( c
2η

)n−2
e− 1

2 ( c
2η )2 + (n − 2)

( c
2η

)n−4
e− 1

2 ( c
2η )2 + · · ·

From the latter we deduce, when | c
2η | ≥ 1,

∫ +∞
c
2η

rn−1e− r2
2 dr = �n

2
+ 1�( c

2η

)n−2
e− 1

2 ( c
2η )2

(n − 2)(n − 4) · · ·
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Recall that Vol(Sn−1) =
√
2π

n

(n−2)(n−4)···2 if n is even and
√
2
√
2π

n
√

π(n−2)(n−4)···3×1
if n is odd.We

thus finally get ‖qcη − q‖L∞ ≤
√

� n
2 + 1�( c

2η

) n−2
2 e− 1

4 ( c
2η )2(∑

I∈Nn |aI |
√
I !). Likewise,

for every k ∈ {1, . . . , n},
∥∥∥∂qcη

∂xk
− ∂q

∂xk

∥∥∥
L∞(Rn)

≤ 1

(2π)n

∫
‖ξ‖≥ c

2η

|ξk ||F(Qe− ‖x‖2
2 )|(ξ)|dξ |

≤ 1√
2π

n

∑
I∈Nn

|aI |
( n∏
j=1

∫
R

H2
i j (ξ)e− ξ2j

2 dx j
) 1
2

×(
∫

‖ξ‖≥ c
2η

‖ξ‖2e− ‖ξ‖2
2 dξ

) 1
2

≤ 1

(2π)n/4

∑
I∈Nn

|aI |
√
I !Vol(Sn−1)

1
2
( ∫ +∞

c
2η

rn+1e−r2/2dr
) 1
2

≤
√

�n
2
+ 3�( c

2η

)n/2
e− 1

4 ( c
2η )2( ∑

I∈Nn

|aI |
√
I !) from (3.3).

Lastly,

‖qcη − q‖2L2(Rn)
≤ ∥∥F−1(F(Qe− ‖x‖2

2 )(1 − χ̃c(ηξ))
)∥∥2

L2(Rn)

≤ 1

(2π)n

∫
ξ≥ c

2η

|F(Qe− ‖x‖2
2 )|2|dξ |

=
∫

ξ≥ c
2η

∣∣ ∑
I∈Nn

i |I |aI
n∏
j=1

Hi j (ξ j )e
− ξ2j

2
∣∣2|dξ |

≤ N (Q)e− 1
2 ( c

2η )2
∑
I∈Nn

a2I

n∏
j=1

∫
R

H2
i j (ξ j )e

− ξ2j
2 dξ j

≤ √
2π

n
N (Q)

( ∑
I∈Nn

a2I I !
)
e− 1

2 ( c
2η )2

.

Here, we used Plancherel’s equality for the second inequality, (3.2) for the equality, and
Cauchy–Schwarz and (3.3) for the last two inequalities respectively. ��

3.2. The product of spheres. For every n > 0 and every i ∈ {0, . . . , n − 1}, let Qi :
(x, y) ∈ R

i+1 ×R
n−i−1 �→ (‖x‖2 − 2)2 + ‖y‖2 − 1 ∈ R. We recall that this polynomial

vanishes in the ball of radius
√
5 along a hypersurface diffeomorphic to the product of

spheres Si × Sn−i−1, see §2.3.2 of [7]. Let

qi : (x, y) ∈ R
i+1 × R

n−i−1 �→ Qi (x, y)e
− 1

2 (‖x‖2+‖y‖2) ∈ R.

This function belongs to the Schwartz space and has the same vanishing locus as Qi .
Let us quantify the transversality of this vanishing. We set W = {(x, y) ∈ R

i+1 ×
R
n−i−1, ‖x‖2 + ‖y‖2 ≤ 5}.
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Lemma 3.2. For every δ ≤ 1/2,
(
δe−5/2, e−5/2

2 (2 − δ)
)

∈ T(W,qi ), where T(W,qi ) is

defined in Definition 1.5.

Proof. Let (x, y) ∈ R
i−1 × R

n−i−1 be such that ‖x‖2 + ‖y‖2 ≤ 5, and δ ≤ 1
2 . If

|qi (x, y)| < δe−5/2, then |Qi (x, y)| < δ, so that 1 − δ < (‖x‖2 − 2)2 + ‖y‖2 < 1 + δ.

This implies that 12 < 2−√
1 + δ < ‖x‖2 and that either 1

2 < ‖x‖2−2 or 1
4 < ‖y‖2 since

δ ≤ 1
2 . Moreover, for every j ∈ {1, . . . , i + 1}, ∣∣ ∂qi

∂x j

∣∣ ≥ ∣∣ ∂Qi
∂x j

∣∣e−5/2 − |x j |δe−5/2 which

is greater or equal to≥ 4|x j |
∣∣‖x‖2−2

∣∣e−5/2−|x j |δe−5/2 ≥ |x j |e−5/2
(
4
∣∣‖x‖2−2

∣∣−δ
)

and for every k ∈ {1, . . . , n−i−1}, ∣∣ ∂qi
∂yk

∣∣ ≥ ∣∣ ∂Qi
∂yk

∣∣e−5/2−|yk |δe−5/2 ≥ |yk |e−5/2(2−δ).

Summing up, we deduce |d|(x,y)qi |2 ≥ ‖x‖2e−5
(
4
∣∣‖x‖2−2

∣∣−δ
)2+‖y‖2e−5(2−δ)2

which is greater or equal to e−5

2

(
4
∣∣‖x‖2 − 2

∣∣− δ
)2 + ‖y‖2e−5(2 − δ)2 ≥ e−5

4 (2 − δ)2.

Since on the boundary of the ball W , we have either ‖x‖2 ≥ 7/2 or ‖y‖2 ≥ 3/2, the
values of the function qi are greater than 1

2e
−5/2 and we get the result. ��

We now estimate the L2-norm of qi .

Lemma 3.3. For every i ∈ {0, . . . , n − 1}, ‖qi‖L2(Rn) ≤
√

3
2π

n/4(n + 6)2.

Proof. We have

‖qi‖2L2(Rn)
=
∫
Ri+1×Rn−i−1

(‖x‖4 − 4‖x‖2 + 3 + ‖y‖2)2e−‖x‖2−‖y‖2dxdy

≤ √
π
n−i−1

∫
Ri+1

(‖x‖8 + 16‖x‖4)e−‖x‖2dx

+
√

π
i+1
∫
Rn−i−1

(‖y‖4 + 6‖y‖2 + 9
)
e−‖y‖2dy

+2

(∫
Ri+1

‖x‖4e−‖x‖2dx
)(∫

Rn−i−1
(‖y‖2 + 3)e−‖y‖2dy

)
.

Now,
∫
Ri+1

(‖x‖8 + 16‖x‖4)e−‖x‖2dx = 1

2
Vol(Si )

∫ +∞

0
(t4 + 16t2)t

i−1
2 e−t dt

= 1

2
Vol(Si )

(
�

(
i + 9

2

)
+ 16�

(
i + 5

2

))
≤ 17

2
Vol(Si )�

(
i + 9

2

)

and ∫
Rn−i−1

(‖y‖4 + 6‖y‖2 + 9
)
e−‖y‖2dy

= 1

2
Vol(Sn−i−2)

∫ +∞

0
(t2 + 6t + 9)t

1
2 (n−i−3)e−t dt

= 1

2
Vol(Sn−i−2)

(
�

(
n − i + 3

2

)
+ 6�

(
n − i + 1

2

)
+ 9�

(
n − i − 1

2

))

≤ 25

2
Vol(Sn−i−2)�

(
n − i + 3

2

)
.
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Likewise
∫
Ri+1 ‖x‖4e−‖x‖2dx = 1

2Vol(Si )
∫ +∞
0 t

i+3
2 e−t dt = 1

2Vol(Si )�( i+52 ), and

∫
Rn−i−1

(‖y‖2 + 3)e−‖y‖2dy = 1

2
Vol(Sn−i−2)

∫ +∞

0
(t + 3)t

n−i−3
2 e−t dt

= 1

2
Vol(Sn−i−2)

(
�(

n − i + 1

2
) + 3�(

n − i − 1

2
)
)

≤ 7

2
Vol(Sn−i−2)�(

n − i + 1

2
).

Finally, since Vol(Si ) = 2π
i+1
2

�( i+12 )
and Vol(Sn−i−2) = 2π

n−i−1
2

�( n−i−1
2 )

, we get

‖qi‖2L2(Rn)
≤ √

π
n

(
17

�( i+92 )

�( i+12 )
+ 25

�( n−i+3
2 )

�( n−i−1
2 )

+ 14
�( n−i+1

2 )�( i+52 )

�( n−i−1
2 )�( i+12 )

)

≤ √
π
n
(17
16

(i + 7)4 +
25

4
(n − i + 1)2 +

7

4
(n − i − 1)(i + 3)2

)

≤ 3

2

√
π
n
(n + 6)4.

The last inequality follows fromn+6 ≥ 7,which implies that 254 (n−i+1)2 ≤ 25
4×49 (n+6)

4

and 7
4 (n − i − 1)(i + 3)2 ≤ 1

4 (n + 6)4. ��
We now approximate qi by a function whose Fourier transform has compact support.

For every i ∈ {0, . . . , n − 1} and c > 0, we set

qi,c,η : x ∈R �→ qi,c,η(x)=qci,η(ηx)=
1

ηn

∫
Rn

χ̃c(ξ)F(Qie
− ‖x‖2

2 )
(ξ
η

)
ei〈x,ξ〉|dξ |∈R,

(3.4)

see (3.1). By construction, qi,c,η belongs to the Schwartz space of Rn and its Fourier
transform has support in the ball of radius c, so that with the notations introduced in
Sect. 1.1, qi,c,η ∈ SB(0,c)(R

n).

Corollary 3.4. For every i ∈ {0, . . . , n − 1}, every c > 0 and every η ≤ c
48n , qi,c,η

vanishes in the ball Wη = {x ∈ R
n, ‖x‖2 ≤ 5/η2} along a hypersurface diffeomor-

phic to Si × Sn−i−1. Moreover,
(
e−5/2

4 ,
η√
2
e−5/2

)
∈ T(Wη,qi,c,η) and ‖qi,c,η‖L2(Rn) ≤

3
2ηn/2 π

n/4(n + 6)2.

Proof. We have Qi (x, y) =∑i+1
k=1 x

4
k +2

∑
1≤ j<k≤n x

2
j x

2
k −4

∑i+1
k=1 x

2
k +
∑n−i−1

k=1 y2k +3
so that, with the notations of Proposition 3.1,

∑
I∈Nn

|aI |
√
I ! = (i + 1)

√
4! + 4

(
i + 1

2

)
+ 4

√
2(i + 1) + (n − i − 1)

√
2 + 3

≤ 5n + 2n2 + 8n + 3 ≤ 18n2

and
∑

I∈Nn a2I I ! = (i +1)4!+16(i+12
)
+32(i +1)+2(n− i −1)+9 so that

∑
I∈Nn a2I I ! ≤

24n + 8n2 + 34n + 9 ≤ 75n2, whereas N (Qi ) = (i + 1) +
(i+1
2

)
+ (i + 1) + (n − i − 1) + 1
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so that N (Qi ) ≤ 2n + 1 + n(n−1)
2 ≤ 3n2. Noting that

√
� n
2 + 1� ≤

√
� n
2 + 3� ≤ 2

√
n,

that
( c
2η

) n−2
2 ≤ ( c

2η

) n
2 as soon as c

2η ≥ 1, and that 5
2 ln n +

n
2 ln(

c
2η ) ≤ 3n( c

2η ) under the
same hypothesis, we deduce from Proposition 3.1 that when η ≤ c

48n ,

‖qi,c,η(x) − qi (ηx)‖L∞(Rn) ≤ 36e− 1
8 ( c

2η )2 ≤ 36e−72n2

and for every k ∈ {1, . . . , n}, ∥∥ ∂qi,c,η
∂xk

(x) − η
∂qi
∂xk

(ηx)
∥∥
L∞(Rn)

≤ 36ηe−72n2 . For every

x ∈ R
n such that ‖x‖2 ≤ 5/η2 and every η ≤ c

48n , it follows from Lemma 3.2, after
choosing δ = 1/2, that

qi,c,η(x) ≤ e−5/2

4
⇒ qi (ηx) ≤ e−5/2

2
⇒ |d|ηxqi | > 3

e−5/2

4
⇒ |d|xqi,c,η| > η

e−5/2

√
2

,

since |d|xqi,c,η| ≥ η|d|ηxqi | − |d|xqi,c,η − ηd|ηxqi | > η 3e−5/2

4 −√∑n
k=1

∣∣ ∂qi,c,η
∂xk

(x) − η
∂qi
∂xk

(ηx)
∣∣∣2 which is greater or equal to η

( 3e−5/2

4 −36
√
ne−72n2

)
>

η e−5/2√
2

. From Lemma 3.6 of [7], qi,c,η vanishes in the ball Wη along a hypersurface dif-

feomorphic to Si × Sn−i−1 and by definition, ( e
−5/2

4 , η e−5/2√
2

) ∈ T(Wη,qi,c,η) if η ≤ c
48n .

Lastly, we estimate the L2-norm of qi,c,η. By Proposition 3.1 and the bounds given

above, ‖qci,η − qi‖2L2(Rn)
≤ √

2π
n
225n4e−288n2 . Therefore by Lemma 3.3,

‖qi,c,η‖L2(Rn) = 1

ηn/2 ‖qci,η‖L2(Rn) ≤ 1

ηn/2 (‖qi‖L2(Rn) + ‖qci,η − qi‖L2(Rn))

≤ 1

ηn/2

(√3

2
πn/4(n + 6)2 + (

√
2π

n
225n4e−288n2)1/2

)

≤ 3

2ηn/2πn/4(n + 6)2.

��

3.3. Proofs of Theorem 0.4, Corollary 0.6 and Corollary 0.7.

Proof of Theorem 0.4. Let us choose c = cP,g and η = cP,g
48n . It follows from Corollary

3.4 that for R ≥ 48
√
5n

cP,g
we have (Wη, qi,c,η) ∈ IB(0,cP,g),R

Si×Sn−1−i , see Definition 1.8 for the

definition of IK ,R
� and (3.4) for the definition of qi,c,η. This implies that (Wη, qi,c,η) ∈

I A∗Kx ,R
Si×Sn−1−i for any x ∈ M and any A ∈ I somg(R

n, TxM), since B(0, cP,g) ⊂ A∗Kx ⊂
B(0, dP,g). From Remark 1.7, we get that for every x ∈ M and every R ≥ 48

√
5n

cP,g
,

pxSi×Sn−i−1(R) ≥ 1

2
√

π
exp(−(2τ + 1)2).

From (1.4), (1.5), (1.6) and Corollary 3.4 with η = cP,g
48n , using that ν(A∗Kx ) ≤

Vol(B(0, dP,g)), we deduce
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τ ≤ 3

2
πn/4(n + 6)2

( 48n
cP,g

)n/2
( 4

e−5/2

1√
π
n

√
2Vol(B(0, dP,g))

×
⌊n
2
+ 1
⌋
exp
(
48

√
5n

√
n
dP,g

cP,g

)

+
48n

√
2

e−5/2cP,g
n
√
n

n√
π
n

√
2Vol(B(0, dP,g))

⌊n
2
+ 1
⌋
dP,g exp

(
48

√
5n

√
n
dP,g

cP,g

))

≤ 3

4πn/4 (n + 6)3(48n)n/2
√
2Vol(B(0, 1))

(
dP,g

cP,g

)n/2

exp
(
48

√
5n3/2

dP,g

cP,g

)

(
4e5/2 +

√
2e5/2n5/2(48n)

dP,g

cP,g

)

≤ 20
(n + 6)11/2√

�
( n
2 + 1

)
(
48n

dP,g

cP,g

) n+2
2

exp
(
48

√
5n3/2

dP,g

cP,g

)
.

The estimate for c[Si×Sn−i−1] follows from the above estimate with R = 48
√
5 n
cP,g

, see
(2.4). ��
Proof of Corollary 0.6. If P is the Laplace–Beltrami operator associated to ametric g on
M , thenwe choose as the Lebesguemeasure |dy| onM themeasure |dvolg| associated to
g, so that g ∈ Met|dy|(M) and the principal symbol of P equals ξ ∈ T ∗M �→ ‖ξ‖2 ∈ R.

Theorem 0.4 then applies with m = 2 and cP,g = dP,g = 1 and we deduce, using
�( n2 + 1) ≥ 1/2, that

τ ≤ 20
(7n)11/2√
�
( n
2 + 1

) (48n)
n+2
2 exp(108n3/2)

≤ exp
(
ln(20

√
2) +

11

2
ln 7 +

n + 2

2
ln 48 +

13

2
ln n +

n

2
ln n + 108n3/2

)

≤ exp

(
18 +

17

2
(n − 1) +

n

2
(2

√
n − 1) + 108n3/2

)
≤ exp(127n3/2).

Theorem 0.4 then provides, for every i ∈ {0, . . . , n − 1}, that
(
Volg(M)

)−1
c[Si×Sn−i−1](P) ≥ exp

(− (2τ + 1)2 − (n + 1) ln 2 − 1

2
ln π

−n ln(48
√
5n) − ln(πn/2) + ln(�(n/2 + 1))

)
≥ exp

(− (2τ + 1)2 − 3/2 − 6 ln n − n ln n
)

≥ exp
(

− exp(256n3/2) − exp
(
ln(17/2) + ln n + ln(ln n)

))

≥ exp(− exp(257n3/2).

��
Remark 3.5. Under the assumptions of Corollary 0.6, we get likewise for R ≥ 48

√
5n,

inf
x∈M

(
pxSi×Sn−i−1(R)

) ≥ 1

2
√

π
exp(− exp(256n3/2)) ≥ exp(− exp(257n3/2)).



Universal Components of Random Nodal Sets

Proof of Corollary 0.7. If P denotes the Dirichlet-to-Neumann operator on M , then the
principal symbol of P equals ξ ∈ T ∗M �→ ‖ξ‖ ∈ R. Theorem 0.4 then applies with
m = 1 and cP,g = dP,g = 1. Thus, the proof is the same as the one of Corollary 0.6. ��
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