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Abstract: We give, as L grows to infinity, an explicit lower bound of order L for
the expected Betti numbers of the vanishing locus of a random linear combination of
eigenvectors of P with eigenvalues below L. Here, P denotes an elliptic self-adjoint
pseudo-differential operator of order m > 0, bounded from below and acting on the
sections of a Riemannian line bundle over a smooth closed n-dimensional manifold M
equipped with some Lebesgue measure. In fact, for every closed hypersurface ¥ of R",
we prove that there exists a positive constant py depending only on X, such that for
every large enough L and every x € M, a component diffeomorphic to ¥ appears with
probability at least py in the vanishing locus of a random section and in the ball of

1
radius L™ m centered at x. These results apply in particular to Laplace—Beltrami and
Dirichlet-to-Neumann operators.
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Introduction

Let M be a smooth closed manifold of positive dimension # and E be a real line bundle
over M. We equip M with a Lebesgue measure |dy], that is a positive measure that can
be locally expressed as the absolute value of some smooth volume form, and E with
a Riemannian metric /. These induce an L2-scalar product on the space I'(M, E) of
smooth global sections of E, which reads

V(s,1) € T(M, E)?, (5.1) =/MhE(s<y>,t<y>)|dy|. 0.1)

Let P:I'(M, E) — I'(M, E) be a self-adjoint elliptic pseudo-differential operator
of positive order m that is bounded from below. The spectrum of such an operator is
thus real, discrete and bounded from below. Its eigenspaces are finite dimensional with
smooth eigenfunctions, see [9]. We set, for every L € R, Uy = EBK L ker(P — Ald).

The dimension Nz, of Uy satisfies Weyl’s asymptotic law L#N L, _:)roo (le),,VOZ {§ e

T*M, | op(§) < 1}, where op denotes the homogenized principal symbol of P, see
[9] and Definition A.8 of [6]. The space Uy, inherits by restriction the L2-scalar product
(0.1) and its associated Gaussian measure defined by the density

Vs € UL, du(s) = exp(—[islI*)lds], 0.2)

7t
where |ds| denotes the Lebesgue measure of Uy, associated to its scalar product. The
measure of the discriminant Ay = {s € U, s does not vanish transversally} vanishes
when L is large enough, see Lemma A.1 of [6]. Recall that a section s € I'(M, E) is
said to vanish transversally if and only if for every x € s~1(0), Vs|y is onto, where V
denotes any connection on E.

Our purpose is to study the topology of the vanishing locus s~ (0) C M of a section
s € Uy taken at random. More precisely, for every closed hypersurface ¥ of R" not
necessarily connected, and every s € Uy \ A, we denote by Ny (s) the maximal number
of disjoint open subsets of M with the property that every such open subset U’ contains
a hypersurface ¥’ such that ¥’ ¢ s~!(0) and (U’, ¥') is diffeomorphic to (R", X)
(compare [7]). We then consider

E(Ng) = / N (s)du(s) 03)
Ur\AL

the mathematical expectation of the function Ny. Note that when X is connected, the
expected number of connected components diffeomorphic to ¥ of the vanishing locus
of a random section of Uy, is bounded from below by E(Ny).

Theorem 0.1. Let M be a smooth closed manifold of positive dimension n, equipped
with a Lebesgue measure |dy|. Let E be a real line bundle over M equipped with a
Riemannian metric hg. Let P : T'(M, E) — I'(M, E) be an elliptic pseudo-differential
operator of positive order m, which is self-adjoint and bounded from below. Let ¥ be
a closed hypersurface of R", not necessarily connected. Then, there exists a positive
constant ¢y, (P), such that

1
lLim inf —E(Ng) > cs(P).

—>+00 [ m

The constant cx (P) is in fact explicit, given by (2.3).
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Now, as in [7], we denote by H,, the space of diffeomorphism classes of closed
connected hypersurfaces of R”. For every [¥] € H, and every i € {0,...,n — 1}, we
denote by b;(X) = dim H;(Z, R) the i-th Betti number of ¥ with real coefficients.
Likewise, for every s € U \ApL, b; (s’1 (0)) denotes the i-th Betti number of s 0),
and we set

E(bi) =/ bi(s~'(0)dpu(s) (0.4)
U\aL
for its mathematical expectation.

Corollary 0.2. Let M be a smooth closed manifold of positive dimension n equipped
with a Lebesgue measure |dy|. Let E be a real line bundle over M equipped with a
Riemannian metric hg. Let P : T'(M, E) — T'(M, E) be an elliptic pseudo-differential
operator of positive order m, which is self-adjoint and bounded from below. Then, for
everyi € {0,...,n — 1},

1

liminf —-E(b;) > z sup (Cz(P))b,'(E),
L—oo [m (SIeH, Te[X]

where cy (P) is defined in Theorem 0.1.

Note that an upper bound for E(b;) of the same order in L is given by Theorem 0.2 of
[6].

Theorem 0.1 is in fact a consequence of Theorem 0.3, which is local and more precise.
Let Met,4y (M) be the space of Riemannian metrics of M whose associated Lebesgue
measure equals |dy|. For every g € Met 4y (M), every R > 0 and every point x € M,
we set

Proby,(R) = M{s e U\AL | (rl(o) N Bg(x, RL*%)) DX

with (Bg (x, RL_i), EL) diffeomorphic to (R", E)}, 0.5)

where By (x, RL™ %) denotes the ball centered at x of radius RL_% for the metric g.

Theorem 0.3. Under the hypotheses of Theorem 0.1, let g € Met\qy(M). Then, for
every x € M and every R > 0, there exists py.(R) > 0 for which

liminf Probs. (R) > p%.(R).
L—+00

Moreover, ps(R) = infycp p3, (R) is positive as soon as R is large enough.

It is worthwhile to get quantitative versions of the lower estimates in Theorems 0.1 and
0.3, and in particular to compare Corollary 0.2 with the quantitative upper estimates for
the expected Betti numbers obtained in [6]. In fact, the constant py defined in Theorem
0.3 as well as ¢y (P) defined in Theorem 0.1 turn out to be explicit, see (2.2) (see
also (1.7) and (1.8)) and (2.3) (see also (2.4)). In the following Theorem 0.4, we give
quantitative estimates of these constants in the case where X is the product of spheres
St x §"~i=1 i €10, ..., n—1)}. Indeed, these manifolds embed as hypersurfaces in R"
and

Vie{0,...,n—1}, bi(S x "7y > 1. (0.6)

These estimates only depend on the principal symbol of P, the volume of M and its
dimension.
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Theorem 0.4. Under the hypotheses of Theorem 0.1, let g € Met\4y(M) and cp g,

dp s > 0 be such that for every & € T*M, d;’lg||§|| < ap(g)i < c;’lg||§||, where op

denotes the homogenized principal symbol of P. Then, for everyi € {0, ...,n — 1} and

4850
cpg

every R > ,
e—(21+1)2

Cqiygni—1(P) > c Voligy (M) and

§1xs 21+ STV ol (B(O, 48/5n)) ¢

1
Psixsi-t(R) = 77 exp (— QT +1)%),

90OV (4o dp g 1 ( 3/2@)
wheret—ZOm@Sncﬂg) exp (48+/5n e )

Remark 0.5. Note that for any g € Met|yy (M), constants cp o and dp o satisfying the
hypotheses of Theorem 0.4 do exist, since o p is smooth, homogeneous and M is compact.

In the case of Laplace—Beltrami operators, using (0.6) we obtain the following
corollary.

Corollary 0.6. Let (M, g) be a smooth closed n-dimensional Riemannian manifold and
let A be its associated Laplace—Beltrami operator acting on functions. Then for every
ief0,...,n—1},

lim inf E(bi) > cgiygni-1(A) > exp (— exp(257n°/%)) Voly(M).

L—+00 Ln

As a second example, Theorem 0.4 specializes to the case of the Dirichlet-to-Neumann
operator on the boundary M of some (n + 1)-dimensional compact Riemannian manifold

(W, 9.

Corollary 0.7. Let (W, g) be a smooth compact Riemannian manifold of dimension n+1
with boundary M and let A4 be the associated Dirichlet-to-Neumann operator on M.
Then, for everyi € {0,...,n — 1},

1
lim inf EE(bi) > Ciygni-1(Ag) > exp (— exp(257n*/?)) Voly (M).

Note that the double exponential decay in Corollaries 0.6 and 0.7 has to be compared
with the exponential decay observed in Proposition 0.4 of [6] and with the analogous
double exponential decay already observed in Corollary 1.3 of [7].

Let us mention some related works. In [12], Nazarov and Sodin proved that the
expected number of components of the vanishing locus of random eigenfunctions with
eigenvalue L of the Laplace operator on the round 2-sphere is asymptotic to a constant
times L. In the recent [13], they obtain similar results in a more general setting, in
particular for all round spheres and flat tori (see also [15]). In [10], Lerario and Lundberg
proved, for the Laplace operator on the round n-sphere, the existence of a positive
constant ¢ such that E(bg) > ev/L" for large values of L. We got in [6] upper estimates
forlimsup; _, .o, L™ " E(b;) under the same hypotheses as Corollary 0.2, and previously
obtained similar upper and lower estimates for the expected Betti numbers or Ny’s
of random real algebraic hypersurfaces of real projective manifolds (see [4,5,7,8]).
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In [11], Letendre proved, under the hypotheses of Corollary 0.6, that the mean Euler
characteristics (for odd ») is asymptotic to a constant times VL". Letus finally mention
[14], where Sarnak and Wigman announce a convergence in probability for Ny in the
case of Laplace—Beltrami operators (see also [1]).

In the first section, we introduce the space of Schwartz functions of R” whose Fourier
transforms have supports in the compact set Ky = {§ € T;M | op(§) < 1}, where
x € M is given and 7, M is identified with R” via some isometry. This space appears to
be asymptotically a local model for the space Uy . Indeed, any function f in this space can
be implemented in Uy, in the sense that there exists a family of sections (s; € Ur)rs1

whose restriction to a ball of radius of order L™ centered at x converges to f after
rescaling, see Corollary 1.11. The vanishing locus of f then gets implemented as the
vanishing locus of the sections s;, for L large enough. The second section is devoted to
the proofs of Theorems 0.1 and 0.3, and of Corollary 0.2. For this purpose we follow
the approach used in [7] (see also [5]), which was itself partially inspired by the works
[3,12], see also [10]. We begin by estimating the expected local C'-norm of elements of
Uy, see Proposition 2.1, and then compare it with the amount of transversality of s; . We
can then prove Theorem 0.3, see Sect. 2.2, and finally Theorem 0.1 and its Corollary 0.2,
see §2.3. The last section is devoted to the explicit estimates and the proofs of Theorem
0.4 and Corollaries 0.6 and 0.7.

1. The Local Model and Its Implementation

In Sect. 1.1, we associate to any closed hypersurface ¥ of R"” and any symmetric com-
pact subset K of R” with the origin in its interior, a Schwartz function f vanishing
transversally along a hypersurface isotopic to ¥ and whose Fourier transform has sup-
port in K. In Sect. 1.3, we implement the function f in the neighbourhood of every
point xo in M, as the limit after rescaling of a sequence of sections of Uy, Here, K is the
pull-back of Ky, under some measure-preserving isomorphism between 7,7 M and R".
As a consequence, these sections of U, vanish in a neighbourhood Uy, of x( along a
hypersurface X; of M such that the pair (U,,, X ) is diffeomorphic to (R", ¥). In Sect.
1.2, we quantify the transversality of the vanishing of the function f and thus of the
associated sequence of sections, in order to prepare the estimates of the second section
which involve perturbations.

1.1. The local model. Let K be a measurable subset of R” and let yx be its char-
acteristic function, so that yx(§) = 1 if &€ € K and xx (&) = O otherwise. This
function y g induces the restriction f € L2(R") — xx f € L2(R™). After conju-
gation by the Fourier transform F of L2(R"), defined for every f € L*(R") and
every £ € R" by F(f)(&) = f]Rﬂ e 108 f(y)dy € L*(R"), we get the projector
7k : L*R") — L2(R"), defined for every f € L*(R") and every x € R" by
Tk (f)(x) = ﬁféd Jyerr 'Y £(y)dedy. Note that for K = R”, 7k is the
identity map. Denote by L%( (R") the image of 7k . This is a Hilbert subspace of L (R"),
the kernel of the continuous operator /d — g = g\ g . Denote by C;°(K) the space
of smooth functions on R"” whose support is included in K. Write S(R") for the space
of Schwartz functions of R” and set

Sk (R") = F~H(CS(K)). (1.1)
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Lemma 1.1. Let K be a bounded measurable subset of R". Then, S (R") C L> xRN
S(R™).

Proof. Since K is bounded, Cj°(K) C S(R") sothat Sx (R") C F-US@RY)) = S(RM).
Likewise, for every f € CSO(K), xkx f = f, so that by definition, f € L%((]R”). m]

Lemma 1.2. Let ¥ be a closed hypersurface of R", not necessarily connected. Let K
be a bounded measurable subset of R", symmetric with respect to the origin and which
contains the origin in its interior. Then, there exists a hypersurface ¥ of R", isotopic to
¥, and a function fs in Sk (R") such that fx,. vanishes transversally along X.

Recall that ¥ is said to be isotopic to X if and only if there exists a continuous family
(#1)1e0,1) of diffeomorphisms of R” such that ¢g = Id and ¢1(X) =

Proof. Let f € CG°(R") be a smooth compactly supported function of R” which van-
ishes transversally along ¥ and let ¥ € C§°(R") be an even function which equals 1 in
a neighbourhood of the origin. For every R > 0, we set xg : £ € R" > 5(ER™!) e
R. Then F(f) € S(R") and xrF(f) converges to F(f) in S(R") as R grows to
infinity. Thus, F L (FrF () converges to f in S(R") as R grows to infinity, and
F~ Y (#rF(f)) takes real values. We deduce that when R is large enough, the func-
tion fr = F —I XrF(f)) is real and vanishes transversally in a neighbourhood of X
along a hypersurface isotopic to X. By construction, the support of F( fg) is compact.
By hypotheses, there exists thus p > 0 such that the function F,(fg) : § € R"
]—"(fR)(%) € R has compact support in K. The function fy = F‘l(}"p(fR)) then
belongs to Sk (R") and vanishes transversally along a hypersurface isotopic to X. 0O

1.2. Quantitative transversality. We now proceed as in [7] to introduce our needed
quantitative transversality estimates.

Definition 1.3. Let W be a bounded open subset of R” and f € S(R"). The pair (W, f)
is said to be regular if and only if zero is a regular value of the restriction of f to W and
the vanishing locus of f in W is compact.

Example 1.4. Let fy € Sg(R") C S(R") be a functlon given by Lemma 1.2. Then,
there exists a tubular neighbourhood W of T C fZ (0) such that (W, fx) is a regular
pair in the sense of Definition 1.3.

Definition 1.5. For every regular pair (W, f) given by Definition 1.3, we denote by
Tiw. ) the set of pairs (8, €) € (Ry)? such that

1. There exists a compact subset Ky of W such that infy\ g, | f| > 6.
2. Forevery z € W, if | f(2)| < § then ||d|; f|| > €, where ||d|zf||2 =>" | | (2).

The quantities and functions that are going to appear in the proof of our theorems are
the following. Let K be a bounded measurable subset of R"”. We set, for every positive
R andevery j € {1,...,n},
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u L3+

V2E 1] R+1\% /i ! !
pr(R) = = 25— inf. (—) Z;((j;j_)/{(glsjuzwsl) (12)

[N

i=0
e{1,..., n}i

[N

o =D o | (R S5 [ef [Tk Pue)

(1.3)

Remark 1.6. Writingv(K) = fK |d§ | for the total measure of K andd (K) = supgck [£1],
we note that for every (ji, ..., ji) € {1, ...,n}i andevery j € {1,...,n},

[ TTienPias < ack v
K=

and [ &1 [Tiey 16517 < d(K)2*Du(K). It follows, after evaluation at = R, that
forevery j € {1,...,n},

1
pR(R) = — V2U(E) LS + 1 exp (RA(K) ) (14)
j 1 n
61 (R) < ﬁn\/Zv(K)l_z + 1]d(K) exp (RA(K)/n). (1.5)

For every regular pair (W, f) we set Ry = sup,.y |Iz|| and for every bounded
measurable subset K of R” define

1 NN~

K : J
- o inf (— Rw) + > 04(R ) 1.6
Tw, f) ||f||L2(R )(6’6)67?‘”.” 6,01(( w) e & x (Rw) (1.6)

K
1 T s 0 2
K W, 1) —
and p(Wf) = ﬁ el sup (1 — T )A e d dt. (17)
elr

K
(w, py-+ool

Remark 1.7. Note that pg,v n= #; exp (— (21(15‘, Ht 1)?).

Now, let 3 be a closed hypersurface of R”, not necessarily connected.

Definition 1.8. Let I{g be the set of regular pairs (W, f) given by Definition 1.3 such that
f € Sk (R™) and such that the vanishing locus of f in W contains a hypersurface isotopic

to X in R”. Likewise, for every R > 0, we set Ig’R ={(W, f) e Ig | Rw < R}.
Finally, for every positive R we set
PSR = sup  ply g (1.8)
W.freZg®

Remark 1.9. Tt follows from Lemma 1.2 and Example 1.4 that when R is large enough
and K satisfies the hypotheses of Lemma 1.2, Ig R is not empty, and in particular
pX(R) > 0. Note moreover that if K C K', then pX < pk'.
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1.3. Implementation of the local model. In this paragraph, we prove that for every xg €
M and every measure-preserving linear isomorphism A between R" and 7 M, every
function f in Sy Ky (R™) can be implemented in Uy, as a sequence of sections, see
Proposition 1.10. Corollary 1.11 then estimates the amount of transversality of these
sections along their vanishing locus, in terms of the one of f.

Proposition 1.10. Under the hypotheses of Corollary 0.2, let xo € M, ¢y, : (U, x0) C
M — (V,0) C R" be a measure-preserving chart and xy € CZ°(V) be an even
Sfunction with support in V which equals 1 in a neighbourhood of 0. Then, for every
fe S( dg b Koy (R™), there exists a family (sy, € UL)LeRrx such that

Lo llszllz2on Pien Ifll 2wy

2. the function z € R" L‘ﬁXV(L_%z)(sL o q&;ol)(L_%z) € R converges to f in
S(R™).

Note that the isomorphism (dpcoqsx())_1 : R" — Ty M defines by the pull-back an
isomorphism ((d|xo¢xo)’1)* : T M — RR" thatmakes it possible to identify the compact

Ky ={ €eTgM |op(§) <1} (1.9)

with the compact ((d| x0 ¢XO)_1)*K xo of R". Moreover, the Riemannian metric hg of E
given in the hypotheses of Corollary 0.2 provides a trivialization of E in the neighbour-
hood Uy, of x, choosing a smaller Uy, if necessary, unique up to sign. This trivialization
makes it possible to identify xy sz o ¢;01 with a function from V to R.

Proof. Forevery L € R}, wesetsSg : x € Uy, — L Xv (@xo (x))f(L%¢>xO(x)) € Ex

that we extend by zero to a global section of E. We denote then by s the orthogonal
projection of 57, in Uy, C L?(M, E). This section reads

s = {eL,5L) = /MhE(eL(x’ ), 5L(»)ldyl,

where e, denotes the Schwartz kernel of the orthogonal projection onto Uy . Then, for
every z € R”, L_%z belongs to V when L is large enough and

_n — 1 _n — 1 ~
L Fss o W r = LF [ e (en (85 (L H2.9). 5100 )
M

=/ xv (b )eL (o5, (L™52), ) £ (L7 ey (1)) )|l

Uy,

_ Lk /R LT @Y eL (L e, LR ) f () Idh],

where we performed the substitution 7 = L%@O (y), so that |dh| = L |dy|. From
Theorem 4.4 of [9],

/R _ L _ 1
m(py, ) eL(L™mz, L™ mh)

— 1 / ei(z—h,$>|d§|
L—+oo (2m)" K, ’

where K = (d|x0¢x_01)*KX0' Moreover, there exists € > 0 such that this convergence
holds in C*°(R" x R") for the semi-norms family defined by the supremum of the
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derivatives of the functions on the bidisc B(eLi)z, where B(EL%) denotes the closed

ball of R" of radius eLi, see [6]. As a consequence, after perhaps taking a smaller V
so that V is contained in the ball of radius €,

_n 1 - R | i (z—
L™m gy (L™ mh)(¢y Ve (L™mz, L™wh) f(h) — / e &) £ (h)|dé|
L—+oo (2m)" K},
in this same sense, which implies convergence in the Schwartz space S(R") for each
fixed z. After integration, it follows that

_n — 1
L7wisp 0 g (L) Lo 2)"

/ e CEF(f)(E)1dg|
K,

in C*°(R") for our family of semi-norms on B(eLi). Since f € S K, (R™),

1
Q)"

/ O F()(E)|dE| = f(2),
K},

n 1
sothat z +> L™ 2nsy o (]);01 (L™ mz) converges to f in S(R™). This proves the second
assertion.
If Xu = Xv o ¢x,, we deduce that [|s. v | .2(pr) B = | fllz2@wny- We still need to
o0

—+
prove that [lsz. (1 — xu) |l L2(ar) L:roo 0. Since sy, is the orthogonal projection of 57 onto

UL,

s <|s — ny.
Iszllz2ny = ISLllz2any L e ILf N 22w

The result follows. O

Corollary 1.11. Under the hypotheses of Theorem 0.3, let xo € M and ¢, : (U, X9) C
M — (V,0) C R" be ameasure-preserving chart such that A = d, xo¢x_ol is an isometry.

A*K,, . ...
Let (W, fx) € Iy "0 (see Definition 1.5) and (8, €) € Tw, rs) (see Definition 1.8).
Then, there exist Ly € R and (sp) >, such that for every L > Ly,

L.sp € Up and \Is |l g2 pry L e I f2llz2@Rny

N

2. The vanishing locus of sy contains a hypersurface Xy included in the ball Bg(xo,
RWL_%) such that the pair (B(xo, RWL_%), EL) is diffeomorphic to the pair
(R™, ).

3. There exist two neighbourhoods K and Wy, of X such that K| is compact, Wy, is

open, ¥ C K C Wp C Bg(xo, RWL_%), infw,\k, IsL| > SLm and for every
y e W,

7 _ n+2

s ()] < 8L =5 ||djy(s. o )|l > L.
Proof. Let Lo € R and (s;.)1>1, be a family given by Proposition 1.10 for f = fx.
Then, the first condition is satisfied and the family of functions z € B(0, Rw) +—
L*ﬁsL o d)x_ol (L*%z) converges to fx in C*°(B(0, Ry)). Let K be the compact given

by Definition 1.5, Kz = ¢y, (L~ K) and Wy, = ;' (L™ W). The conditions 2 and
3 in the corollary follow from this convergence and from Definition 1.5. O
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2. Probability of the Local Presence of a Hypersurface

In this section, we follow the method of [7] partially inspired by [3,12] (see also [5, 10])
in order to prove Theorem 0.3. If X is a smooth closed hypersurface of R*, x € M and
sp € Uy is given by Proposition 1.10 and vanishes transversally along ¥; in a small

1 .
ball B(x, RL™ n), then we decompose any random section s € Uy as s = asy + o,
where a € R is Gaussian and o is taken at random in the orthogonal complement of
Rsz in Ug. In Sect. 2.1, we estimate the average of the values of o and its derivatives

on B(x, RL_i), see Proposition 2.1. In Sect. 2.2, we prove that with a probability
greater than a positive number p3, (R) which is independent of L, s vanishes in the latter
ball along a hypersurface isotopic to X . This follows from Proposition 2.1 and the
quantitative estimates of the transversality of s;, given in Corollary 1.11.

2.1. Expected local C'-norm of sections. Recall that for xo € M,
Ky ={§ € Ty M |op(§) < 1}. 2.1)

Proposition 2.1. Under the hypotheses of Theorem 0.3, let xg € M and ¢y, : (Uy,, x0) C
M — (V,0) C R" be a measure-preserving map such that A = d|xO¢>X_01 is an isometry.
Then, for every positive R and every j € {1, ..., n},

limsup L™ 27 E (||S||Loc(3g<x0,mr‘n)>) < Ak, (R)

L—+00

n+ d(s o —1 ;
and lim sup L~ 5%E ”MH 1 < 0hg. (R),
dx; L, 0.RL7m)) o

L—+00

where PA*Ky, and Gi*Kxo are defined by (1.2) and (1.3).

Proof. Letr € R%. When L is large enough, the ball B(0, (R+t)L_%) of R" is contained
in V. From the Sobolev inequality (see §2.4 of [2]), we deduce that for every s € Uy,

every k > n/2 and every z € B(0, RL*%),

2k k 1.
lso ¢y (2)] < (tL=m)
ek VOKBwJL—%»%gg

1 _ 1/2
x(;/ 1|Umo@pﬁuwu0 :
L2 JB(O,(R+t)L™ )

where by definition, the norm of the i-th derivative D' (s o ¢>;01) of s o ¢>;01 satisfies

i

D sop P = >
Gloeens i)
e{l,...,n}'

2
v -1
ey 2 0

Note indeed that the metric 4 g of the bundle E makes it possible to identify 81Uy, With
a real valued function well defined up to a sign. As a consequence, we deduce from the
Cauchy—Schwarz inequality that
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E(lls o o3Il . % T
( %0 ' L20(B(0,RL m))) Vol(B(0, tL™))? zz(;

) 1/2
( / L, E(D (s o ¢>xol>|2(x>)|dx|) :
B(0,(R+t)L"m)

Given (ji,...Jji) € {1,. n}i and z € B(0, (R + t)L_%) we can choose an ortho-
normal basis (sq, .. sNL) of Uz such that —ax(sl o quo )(z) = O0forevery !l > 1.

Since the spectral function reads (x, y) € M X M +— ep(x,y) = Zi:O i (x)sl.*(y), we
deduce, using the decomposition of s in the basis (sy, ..., sy, ), that

9 e
E(‘m@o% ) (z))

2i
2 _a2 da ) 3 —1
= a‘e ¥ — (eL 0 ¢ (2, 2).
(/]R V) dxjy - - 9x;dyj, - 3y, 0

2—a da __ 1
T

is bounded from above by

Choosing k = |5 + 1] and noting that fR
enough, ]E(||s ¢X01||

we deduce that for L large

LOO(B(O,RL—%)))

La+1]
V205 +1 i
inf Z L i

1eRY Vol (B(O, tL’W))z s

oy T gt e
B(O,(R+)L ™) G 9xj -+ 0xj;dyjy -+ 9yj;

e{l,..., n}’
. . . d(sogr ) .
Likewise, for every j € {1, ..., n}, E(H 0 it ) is bounded from
Zj TL(B(0,RL™m))
above by
L3+1]

V21241 1 L

2 )i

inf E .—!(tL )

teRy VOI(B(O tL™ )71))2

(/ Z 82i+2€L(.x,x) |d |)l/2
X X .
B(O.(R+)L ™) n 3x1 0xjy + -+ 0xj;0yjyjy -+ 9y,

.....

Now, the result is a consequence of the asymptotic estimate

3%er (x,x) 1 mn
3 o Tt [l Pl
Xj - '3xji3)’j1 ce 3ij L—+oo (27) Ko

see Theorem 2.3.6 of [6]. We used here that the balls B, (xo, RL_%) and ¢>;01 (B(O,
RL_i)) coincide to first orderin L. 0O



D. Gayet, J.-Y. Welschinger

2.2. Proof of Theorem 0.3. Let xo € M, R > 0 and A € Isomy(R", T\ M). Let
@xy * (Uxy.x0) C M — (V,0) C R” be a measure-preserving map such that A =

AK . .
d|xo¢x_01. Let (W, fx) € Iy, Ko v and (8, €) € T(w, f5)- Let (s1)1>1, be a family given
by Corollary 1.11 associated to fx, where Ky, is defined by (2.1). Denote by Si the
hyperplane orthogonal to s, in Uy, Then,

—1 —1
jﬁo”s°¢%o”quxQRwLénd“<s)5([;L”s°¢%o”quuQRWLé»dﬂ(ﬁ

and forevery j € {1, ..., n},

d 1
o o b au = [ |76 oad] an(s)
/si ax; (s 065, )HLOC(B(O,RWL—%)) wis) _/ ax;j (s ¢x°) Lo(B(O, Ry L)) #s)

compare the proof of Proposition 3.1 of [7]. From Proposition 2.1 and Markov’s inequal-
ity we deduce that for every 7 € R,

T8Lm }< I f2llz2Rny

1
u{s S sup Is| >
L I £l 2 TS

pasK, (Rw) +o(1)
1
Bg(xo,Rw L™ m)

and forevery j € {1,...,n},

n+2
[sest L (soghz —LLT
nys €8, sup T od Il = —}
BO.RwL~ ) dx; Vil fell 2@y
ﬁlllele(]Rn) i
< =0 (Rw)+o(l).
= Te A Kxo( w) +o(1)
It follows that the measure of the set
. T8L » TeL%r
Ssi={S€sL | sup Is| < Wand sup ld(s oy, )|<W}
By (xo Ry L) Fellzn B, Ry L™ ) felli2@n
. sl 2@mn
satisfies M(gsi) >]1-—F (épA* Ky (Rw)+™ z] ] 9//4* (RW))+0(1), where

the o(1) term can be chosen independently of x( since M is compact. Taking the supre-

mum over the pairs (8, €) € Z(w, ) and taking liminf, we deduce from (1.6) the estimate
A* Ky,

.. Tw, s 2)

it € = 1=

Now, let Fr = {a +0|a > Tando € (SSLL}. From Lemma 3.6 of [7],

SL
[BATERT
every section s € Fr vanishes transversally in By (xo, RWL*%) along a hypersuface

1
X, such that (B, (xg, RwL™ ), X ) is diffeomorphic to (R", £). Moreover, since 11

A*K
is a product measure, liminf;_, ;oo w(Fr) > (JL; f;oo e"zdt)( fw. fz)) Taking
the supremum over T € [t(w, f5), +00[, we deduce from (1.7) that

hm 1nf Proby, = (Rw) > l1m 1nf w(Fr) > p(WK;;)
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Taking the supremum over all pairs (W, fx) € Ig KXO'R, see (1.8), and then over every
A € Isomg(R", TxyM), we obtain the first part of Theorem 0.3 by choosing

PL(R) = sup (rs *(R)). (2.2)
Aelsomg(R", T M)

From Remark 0.5, there exists cp ¢ > 0 such that for every x € M and A € Isomg
(R", Ty M), the ball B(0, cp ,) is contained in A*K. For every R > 0, we then have

infy pL(R) = poere
see Remark 1. 9

(R), where the right hand side is positive for R large enough,

2.3. Proofs of Theorem 0.1 and Corollary 0.2.

Proof of Theorem 0.1. Let us denote by R = C*°(M, R.) the space of smooth positive
functions on M. Let g € Met|qy (M), p € R, and g be the normalized metric g/p?. For
every L large enough, let Ay be a subset of M such that the distance between any two

1 ~ . . . .
distinct points of Ay is larger than 2L~ = in the metric g¢ and which is maximal with
respect to this property. This means that A is not contained in any larger set having the

same property. The g—balls centered at points of Ay, and of radius L™ 7 are then disjoint,
whereas the ones of radius 2L~ cover M. For every s € U \Ar and every x € Ap,
we set Ny z(s) = 1if Bz(x, L_%) contains a hypersurface ¥ such that £ C s710)
and (Bg(x, L*%), ) is diffeomorphic to (R"?, ), and N, » = 0 otherwise. Note that

/ Ny x(s)dp(s) ~ Probg(p(x)).
Ur\AL L—+00

Thus,

1 1
liminf —E(Nyg) > hm inf — ( Z Nx,z(s))d,u(s)
L—+0c0 [ m L—+00 Lm Ur\AL

XEAL

—liminf — > Prob, (p(x))

L—+00 Lm

XEAL
... 1 Py (p(x))
> g lmint 3% Vol(Byte 215000 ()
L

by Theorem 0.3. Now, set

Ms=19 € C®°(M xR, R>q), V(x,R) e M xR,, ¥(x,R) < ﬂ] )
B VozeuclB(O, R)

Then, for every ¥ € My,

liminf Ly E(Ns) 2 5 liminf / Z sty O GV . POl dvoly ()

L—>+00 [m 21 [ —+00

v

1
—nliminf/ max (Y p())Idvolg ()
2% L>+oo M yeA,NBy(y.2L )

1 1
= 2—,,/ Y (v, p(M)P" (MIdvolz (y)| = 2—,,/ ¥ opldyl.
M M
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We deduce Theorem 0.1 by defining c¢x (P) to be the supremum

1
cs(P) = — sup /M Yy, p(y)ldyl. (2.3)

2" (g.p. W) eMetiay (M)x Rx My,

Choosing i = % € My and p = R we obtain

infy py (R)

M Py 2.4)
Voleye1 B(O, R)

1
cx(P) = 2_nV01|dy\(M)

which is positive for R large enough by Theorem 0.3. O

Remark 2.2. Tt might be that (2.3) can be rewritten as

1 (R
cxP)= 5 sup [ sup (LB aa,
2" ceMetay (M) J M R=0 NV Oleuct (B0, R))

but (2.3) or actually (2.4) suffices for the purpose of this paper.

Proof of Corollary 0.2. Foreveryi € {0,...,n — 1} and every large enough L > 0,

200 = [ b odu) = [ (3 Ne6bi)du
Ur\AL U\AL M isieh,

v

> bi(Z)E(Ns).
[Z1eH,

The result is a consequence of Theorem 0.1 after passing to the liminf in the latter
bound. O

3. Explicit Estimates

The goal of this section is to obtain explicit lower bounds for the constants ¢y (P) and
inf,cy p3.(R) appearing in Theorems 0.1 and 0.3, when X is diffeomorphic to the

product of spheres S™*! x §"~~1 (whose i-th Betti number is at least one). In the first
paragraph, we approximate quantitatively the product of a polynomial function and a
Gaussian one by a function whose Fourier transform has compact support. We then apply
this result to a particular degree four polynomial vanishing along a product of spheres
to finally get Theorem 0.4, Corollary 0.6 and Corollary 0.7.

3.1. Key estimates for the approximation. Let x. : R" — [0, 1] be a smooth function

with support in the ball of radius ¢ > 0, such that x. = 1 on the ball of radius c¢/2. For
_lxg?

every Q € R[Xy,..., X,]landeveryn > O,wesetg : x e R" > g(x) = Qe 2 €R
and

c

gy :x €R" > qp(x) =

. / XeE)F(q0)) @) D1dsl. (3.1)
(ZJT) R~

Note that q,‘]' € SB,c/m "), see (1.1).
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Proposition 3.1. Let Q = > ; arx' e R[X1,..., X,]and c,n > 0. Then,
u ,L
1 llgS — qllien < VII2+T1(5) 7 e ¥ (ZleNn |a1|f)
2Vk e(l, ..., n}, |20 _da Lw(Rn)g./iLn/zwj(z—n) e 1E (3, o lar T

xp oxp
_leey2
3. ||‘];C;_‘1 ”ian) <« 27" N(Q) ( Z,eNn a%l!)e 2(23) , where N (Q) denotes the num-
ber of monomials of Q.

Proof. For every x € R", we have

g, (x) —gq(x)| < /EI . If(Qe*u)l(é)ldé‘l

- Qo
< | 1|/ |[F(xre™ b )I(S)Idél
n
Cor S sz
Moreover,
_||«‘CH2 | 0 _Hx" |I| || _i
Foge™ ) =illom (Fem ) = &) H (Hi,Enpe). 32)
where we have set I = (iy,...,i,) and H; the j-th Hermite polynomial. We deduce

from Cauchy—Schwarz inequality that

" g 12 L2 \1/2
= [[/RHi(spe fag) ([ e a)

IeNn

-g
(D" laNT)V Vol (s~ 1)(/ Oor"*e zzdr)l/z,

IeNn 2

|q;, (x) —q(x)ls

(271’)”/4
since

/ sz(é)e_éds = kI\2r. (3.3)
R

Likewise, after integration by parts we obtain

+00 2 2
/ lem T dr = [—r" 2T +oo+(n—2)/ r3 77dr

<
2
C

(S e

From the latter we deduce, when |ﬁ| > 1,

+00 2 2 _liec
/ Pl dr = 154 10(5)" e -2 - 4
¢ n

2
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1N V2" . . V227" . .
Recall that VOl(Sn ) = )32 if niseven and m if n is odd. We

n=2 _1lccy2
thus finally get [lg; — gll~ <,/ 5 +1] (ﬁ) 7 o a(zy) (ZIGN}'! |a1|\/ﬂ). Likewise,

forevery k € {1,...,n},

qu
e
axr  Oxg llLe@®my — (2m)"

/5” IékIIF(Qe_i)I(E)IdEI

n 5/2_ 1
Z |a1| / Hiz_(’;‘)e_dej)z
v IeN" —1”R !

x(/ EE ‘@ds)f
|\a5||>;—,7

+00
< (27[)”/4 Z |a[|\/_VOZ(Sn 1 (/ n+1 —rz/zd )i

IeN? 2n
< /12 +3J(2n)"/2 1 > Jas V1) from (3.3).
IeN"

Lastly,

gy = a2y < | F~1 (F(Qe ‘*)(l—xcms)))HLz(Rn

/ Foe ) Piae|

<
- Qo

/S 2n IeN"

< N(Q)e 25 Za,H/bﬂ@»e zds,

JeNt  j=1

< V2" NO( S @1e 1 E),

IeN?

"la, H H;, <s,>e—*! |dé|

Here, we used Plancherel’s equality for the second inequality, (3.2) for the equality, and
Cauchy—Schwarz and (3.3) for the last two inequalities respectively. O

3.2. The product of spheres. For every n > 0 andeveryi € {0,...,n — 1}, let Q; :
(x,y) € RFU R =1 (||x 1> =2) +||y]I> — 1 € R. We recall that this polynomial
vanishes in the ball of radius +/5 along a hypersurface diffeomorphic to the product of
spheres §' x §"7'~1 see §2.3.2 of [7]. Let

gi - (6, y) € RH x R s 04 (x, y)e 2 IKIPH+IIP) ¢ R

This function belongs to the Schwartz space and has the same vanishing locus as Q;.
Let us quantify the transversality of this vanishing. We set W = {(x, y) € Ri+1 %
R x ] + liyl? < s).
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Lemma 3.2. For every § < 1/2, (8675/2 Gl - 8)) € Tw.q), where T(w g, is
defined in Definition 1.5.

Proof. Let (x,y) € RI™! x R~ be such that |x[|*> + [|y|*> < 5,and 8 < 1. If
|gi (x, y)| < 8¢™/2 then |Q;(x, y)| < 8,sothat 1 — & < (|x[> = 2)% +[ly|* < 1+36.

This implies that } < 2—v/T+68 < ||x||2andthateitheré < [Ix>=2o0r} < [ly|? since

§ < l . Moreover, forevery j € {1,...,i+1}, > |3Q’ |e’5/2 |x; |8e=3/2 which
is greater or equal to > 4|x;||[|x[|* — 2|e—5/2 |x |<se 32 > |xjle™>2 (4]|x > —2] -8
andforeveryk € {1,....n —1—1},|§;1;| > |f;§kf le=3/2—|ykl8e™5/2 > |yele=>/2(2— 3).

. _ 2 _
Summlngup,wededuce|d|(x wail? = IxPe> (4]l1x 12 =2|=8) " +llyll*e 7 (2—8)>

-5
which is greater or equal to % (4| ||x||2 2| — 8)2 + ||y||2e_5(2 — 8)2 > ET(Z — 5)2.

Since on the boundary of the ball W, we have either ||x||> > 7/2 or ||y||?> > 3/2, the
values of the function g; are greater than %e’S/ 2 and we get the result. O

We now estimate the L2-norm of g;.
Lemma 3.3. For every i € {0, ...,n — 1}, llgi |l p2rn) < \/gn"/d'(n +6)2.

Proof. We have
19117 > gy = (Ixl1* = 4l1x 1 + 3 + [[y)2) e M= gy
LAR™) Ri+l xRn—i—1
<V [ i e see
i+

- o
/L (6l +9)e™ Py

+2(/ ||x||4e—'X'2dx) (/ <||y||2+3>e—'y'2dy).
RHI Rn—i—l

8 4y ,—lx]? 1 iy [T 4 2y, 5t~
/ (el + 16lx e ax = Svois’y [ a4 167 e ar
Ri+l 0
1 ; i+9 i+5 17 ; i+9
_EVOZ(S)(F (—2 )+16F (—2 )) < - Vol(shr (—2 )

ivl2
/R_,_l (IyII* +6lly I +9)e I ay

Now,

and

1 . 0 1, .
= EVol(S”_’_z) / (1> + 61 +9)2"" 1Dl gy
0

1 nei2 n—i+3 n—i+1 n—i—1
= S Vol(s )(1“(T +or () +or (——5— )

25 . —i+3
S Vol(s" T Ar (u) .

IA

2
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Likewise [rit lx*e™ ¥ dx = 1voi(s?) f+°° Beotdr = IVol(§HI (H2), and

1 . oo n—i—
/ (yI2+3)e P dy = ~volr(s"—=2) / (43" T e ldt
Rr—i—1 2 0

1 i n—i+1 n—i—1
S Vol(S" (N () +30(———))

7 : n—i+1
< Vol(§" "I (———).
=< FVol( )T( 5 )
. ﬂ n—i—1 l 1
Finally, since Vol(S’): *and Vol(§"172) = 2L F(Ty s We get
T

ng17 . 4 25 o2 7 . a2
< JT (]6(z+7) + =i )i 1)(1+3))
3
Eﬁ"(n+6)4.

i+9 n—i+3 n—i+l i+5
F(.fl) +25 I« i]) +14F( j.fl)r(.i])
(%) r'—=—) L (=)' (%)

IA

The lastinequality follows fromn+6 > 7, which implies that 22 (n—l+1)2 < ifw (n+6)*
and Z(n —i — D@ +3)> < ;(n+6)*. O

We now approximate g; by a function whose Fourier transform has compact support.
Foreveryi € {0,...,n — 1} and ¢ > 0, we set
c L[ AL
Qicn : XER > qi,c,n(x)=q,-,,7(f7X)=n—,, A Xc(E)F(Qie™ 2 )(;)e SdE| eR,
(3.4)

see (3.1). By construction, ¢; ,, belongs to the Schwartz space of R" and its Fourier
transform has support in the ball of radius c, so that with the notations introduced in
Sect. 1.1, Gicp € SB(O’C)(Rn).

Corollary 3.4. For every i € {0,...,n — 1}, every ¢ > 0 and every n < @, Gic.n
vanishes in the ball W, = {x € R", x> < 5/n%} along a hypersurface diffeomor-

phic to S x §"7'=1. Moreover, (eij/z, %6_5/2) € Tw,.qic) ad |Gicpllp2@ny <
74 (n +6)2.

3
2,,71/2

i+1 i+1 1
Proof. Wehave Q; (x, y) = St xf+2 3 ;o x3x2 =4 300 x4+ 3000
so that, with the notations of Proposition 3.1,

i+ 1
> VT = (i + 1)@+4(l ; >+4«/§(i+1)+(n—i — V243
IeN"
<5n+2n°+8n+3 < 18n2
and > a1t = i+ DA+ 16('1) +32(+ D+2(n —i = D+9s0 that 3w a7 1! <
24n +8n® +34n+9 < 751, whereas N(Q;) = (i + D+ (3) + G+ D+ —i— 1) +1
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s that N(Q;) < 2n + 1+ 200 < 3n2.Notingthat\/L§+1J < \/L’%+3J <2,

n=2 o\ ) . .
that (2‘—") T < (2‘—,7)2 as soon as 5. > 1, and that%lnn+%ln(2‘—n) < 3n(y;) under the

same hypothesis, we deduce from Proposition 3.1 that when < 7,

_liey2
e () = i ) | oy < 36e 53 < 36772
d i,c, i
,qa);k" (x) — "azk (nx)||Loo(R,1 < 36ne~">"". For every
x € R” such that ||x||> < 5/5° and every n < @, it follows from Lemma 3.2, after
choosing § = 1/2, that

and for every k € {1, ..., n},

-5/2 e—3/2 -5/2 =52
‘Ii,c,n(x) < = qi(nx) < = |d|nin| >3 = |d|x‘1i,c,n| > ,
V2
. —5/2
since |dpgicyl = nldiggil — ldpGicn — ndpeqil > n¥g—
2 _
\/Zk | |8'§’x‘k” %(nx) which is greater or equal to 1 (245 i —36ﬁe_72”2) >

[ . From Lemma 3.6 of [7], g; ¢, vanishes in the ball W), along a hypersurface dif-
feomorphic to S' x §”~'~! and by definition, (¢&5— 4 1 }2) € ’T(W,7 i) 11 =

Lastly, we estimate the L>-norm of qi.c,n- By Proposition 3.1 and the bounds given
above, ||ql.017 —qi ”iZ(R") <V 27" 225n% =288 Therefore by Lemma 3.3,

1
||61i,c,n||L2(]Rn) = W”qic,n”LZ(R") = W(H%HLZ(R") + ||Clic,n —qi ||L2(]Rn))

1 /3
— (\/;71"/4@ +6)% + («/2n’1225n4e_288”2)1/2)

= nn/2
n/4 2
< 2)7”/271 (n+6)°.
O
3.3. Proofs of Theorem 0.4, Corollary 0.6 and Corollary 0.7.
Proof of Theorem 0.4. Let us choose ¢ = cp g and n = g . It follows from Corollary

0,
3.4 that for R > #Y51 we have (W), gic.,) € > S”,,”f),R,

definition of Z and (3.4) for the definition of g;  ,. This implies that (W), gj c.y) €

I?,XKSXn \_; forany x € M and any A € Isomg(R", T, M), since B(0, cpy) C A*K, C

B(0,dp,4). From Remark 1.7, we get that for every x € M and every R > M,

Cp.g

see Definition 1.8 for the

exp(— Q21 + 1)?).

1
Pissn-i1(R) = N

From (1.4), (1.5), (1.6) and Corollary 3.4 with n = WT:’ using that v(A*K,) <
Vol(B(0,dp,g)), we deduce
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3 s L 480 0y 4 1\/—
LA (CP!g) <e—5/2ﬁ" 2Vol(B(0. dp.g))

n dp,
X LE + IJ exp (48x/§n«/ﬁﬁ)

48142 n n dp.g
+e—5/2cP,g”‘/ﬁﬁ" J2Vol(B, dp.g)) b + 1J dp.g exp (48J§nﬁ—))

Cp’g
3 n/2 dp.g " 32dP.g
< (n+ 6)°(48n)""=\/2Vol(B(0, 1)) | —= exp (48\/§n —)
4/ cpg Cpg
d
(4¢3 + V265057 (48n) L2
Cp,g
+6)11/2 dpo\'T d
<20 (n+6) (48n P’g) exp (48x/§n3/2ﬁ).
r(%+1) €P.g CP.g

The estimate for ¢pgi , gn-i-17 follows from the above estimate with R = 485 #, see
4. O ’

Proof of Corollary 0.6. If P is the Laplace—Beltrami operator associated to a metric g on
M, then we choose as the Lebesgue measure |dy| on M the measure |dvolg| associated to
g,sothatg € Met)yy (M) and the principal symbol of P equalsé € T*M > ||& 1% € R.
Theorem 0.4 then applies with m = 2 and cp; = dp ¢ = 1 and we deduce, using
I'(5+1) > 1/2, that

(7n)ll/2
r(5+1)

r <20 48n)"F exp(1081%/2)

n+2

11 13
< exp (In(20v2) + - In7+ In48+ — Inn + glnn +1081°/%)

2
17
< exp (18 + =D+ g(zﬁ — )+ 108n3/2) < exp(127n°/%).

Theorem 0.4 then provides, for every i € {0, ..., n — 1}, that

(Voly(M)) ™ ergigsni-1y(P) = exp (= @t +1)> — (n+ 1) In2 — %lnn
—nIn(48+/5n) — In(x"/?) + In(C'(n/2 + 1))
>exp(—Qr+1)?—3/2—6Inn—nlnn)
> exp ( — exp(256n°/%) — exp (In(17/2) +Inn +In(In n)))
> exp(— exp(257n3/2).
O

Remark 3.5. Under the assumptions of Corollary 0.6, we get likewise for R > 48+/5n,

(péi x §n—i—1 (R)) =

o 7/ NP~ exp(236n°"%)) = exp(— exp(257n°").
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Proof of Corollary 0.7. 1f P denotes the Dirichlet-to-Neumann operator on M, then the
principal symbol of P equals & € T*M > ||&]| € R. Theorem 0.4 then applies with
m = landcp ¢ = dp , = 1. Thus, the proof is the same as the one of Corollary 0.6. O
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