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Abstract. Using Donaldson’s approximately holomorphic techniques, we construct symplectic
hypersurfaces lying in the complement of any given compact isotropic submanifold of a compact
symplectic manifold. We discuss the connection with rational convexity results in the K¨ahler case
and various applications.

1. Introduction

It was first observed by Duval (see e.g. [Du]) that, in K¨ahler geometry, the notions
of isotropy and rational convexity are tightly related to each other. Recall that
a compact subsetN of Cn or more generally of a complex algebraic manifold
is said to berationally convexif there exists a complex algebraic hypersurface
passing through any given point in the complement ofN and avoidingN .Among
the results motivating the interest in this notion, one can mention the classical
theorem of Oka and Weil (further improved by subsequent work) stating that
every holomorphic function over a neighborhood of a rationally convex compact
subsetN ⊂ Cn can be uniformly approximated overN by rational functions.

It was shown in 1995 by Duval and Sibony that, if a smooth compact sub-
manifold of Cn is isotropic with respect to some K¨ahler structure onCn, then
it is rationally convex [DS]. This result was extended in 1999 by Guedj to the
context of complex projective manifolds:

Theorem 1 (Guedj [Gu]).Let(X, ω, J ) be a closed K¨ahler manifold, such that
the cohomology class12π

[ω] ∈ H 2(X, R) is integral. Then any smooth compact
isotropic submanifoldL ⊂ X (possibly with boundary) is rationally convex, i.e.
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there exist complex hypersurfaces inX passing through any given point in the
complement ofL and avoidingL.

Because the concept of isotropic submanifold originates in symplectic ge-
ometry, it is natural to seek an analogue of this result for symplectic manifolds.
Although the lack of an integrable almost-complex structure prevents the exis-
tence of holomorphic hypersurfaces in a general symplectic manifold, a suitable
analogue may be found in Donaldson’s construction of approximately holomor-
phic symplectic hypersurfaces.

Let (X, ω) be a closed compact symplectic manifold of real dimension 2n.
Unless otherwise stated, we will always assume that the cohomology class
1

2π
[ω] ∈ H 2(X, R) is integral; this does not restrict the diffeomorphism type

of X in any way. A compatible almost-complex structureJ onX and the corre-
sponding Riemannian metricg are also fixed.

Let L be a complex line bundle onX with first Chern classc1(L) = 1
2π
[ω],

endowed with a Hermitian structure and a Hermitian connection∇L whose cur-
vature 2-form is−iω. It was shown by Donaldson in [D1] that, when the integerk

is large enough, the line bundlesL⊗k admit many approximatelyJ -holomorphic
sections, some of which possess remarkable transversality properties ensuring
that their zero sets are smooth symplectic submanifolds inX. Many interesting
constructions in symplectic topology have recently been obtained by using the
same techniques (see e.g. [A2], [D2] and [S]).

Let us recall the following definitions. The almost-complex structureJ and
the Hermitian connection onL⊗k induced by that onL yield ∂ and∂̄ operators
on L⊗k. Since the connection onL⊗k has curvature−ikω, we introduce the
rescaled metricgk = k g on X, in order to be able to consider uniform bounds
for covariant derivatives of sections ofL⊗k. As a consequence of this rescaling,
the diameter ofX is multiplied byk1/2, and all derivatives of orderp are divided
by kp/2.

Definition 1. Let (sk)k
0 be a sequence of sections ofL⊗k overX. The sections
sk are said to beasymptotically holomorphicif there exists a constantC > 0
such that, for allk and at every point ofX, |sk| + |∇sk| + |∇∇sk| ≤ C and
|∂̄sk| + |∇ ∂̄sk| ≤ Ck−1/2, where the norms of the derivatives are evaluated with
respect to the metricsgk = k g.

The sectionssk are said to beuniformly transverse to 0if there exists a
constantη > 0 (independent ofk) such that the sectionssk are η-transverse
to 0, i.e. such that, for anyk and at any pointx ∈ X where|sk(x)| < η, the
covariant derivative∇sk(x) : TxX → L⊗k

x is surjective and satisfies the bound
|∇sk(x)|gk

> η.

With these definitions, Donaldson’s construction amounts to showing the
existence of a sequence of sectionssk of L⊗k which are at the same time asymp-
totically holomorphic and uniformly transverse to 0 [D1]. It then follows easily
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from these properties that, for large enoughk, the zero setsWk of sk are smooth
symplectic hypersurfaces inX.

Let L be a compact isotropic submanifold inX, not necessarily connected:
we wish to show that one can get the symplectic hypersurfacesWk to lie inX−L.
The fundamental reason why it is reasonable to expect such a result is that, since
ω vanishes overL, the line bundleL|L comes equipped with a flat connection.
HoweverL⊗k admits non-vanishing sections overL only when its restriction
to L is topologically trivial; if L is not simply connected, this can restrict the
admissible values of the parameterk. For example, ifX = CP2 andL = RP2, an
easy calculation in homology withZ/2 coefficients shows that any symplectic
submanifold of odd degree must intersectL. Our main result is the following:

Theorem 2. Let L be a compact isotropic submanifold inX, and letN be the
order of the torsion part ofH1(L, Z). Then, for all large enough values ofk, there
exist asymptotically holomorphic sectionssk of L⊗k overX whose zero setsWk

are smooth symplectic submanifolds, disjoint fromL wheneverk is a multiple of
N . Moreover,Wk can be assumed to pass through any given pointx0 ∈ X − L.

This result is mildly surprising when one considers the results obtained in
[D1] and [A1] indicating that, whenk increases, the submanifoldsWk tend to
fill all of X. There is no contradiction, though, as the distance by which the
submanifoldsWk given by Theorem 2 stay away fromL actually decreases like
k−1/2.

Remark 1.(a) Theorem 2 remains valid whenL has non-empty boundary; see
[M] for details.

(b) WhenX is a Kähler manifold, one can perform the construction in such a
way that the sectionssk are holomorphic. The submanifoldsWk are then complex
hypersurfaces; this provides a new proof of Guedj’s rational convexity result.

(c) When the cohomology class12π
[ω] is no longer assumed to be integral,

the line bundleL is no longer defined, but it is still possible to obtain symplectic
hypersurfaces inX which avoid the submanifoldL and pass through any given
point inX − L.

Additional motivation for these results can be found in the work of Biran [B],
where the notion ofLagrange skeletonof a symplectic manifold of K¨ahler type
with respect to a hypersurface of Donaldson type is defined. As will be explained
in Sect.3, Theorem 2 can be interpreted in this context as a flexibility result for
Lagrange skeleta in large degrees.

More importantly, it was observed by Seidel and Viterbo that Theorem 2
implies that ifL is Lagrangian then its homology class is a primitive element of
Hn(X−Wk) (see Sect.3); this remark might lead to obstructions to the existence
of certain Lagrangian embeddings.
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Note.Different proofs of Theorem 2 were obtained independently by the three
authors; the curious reader is referred to [M] and [Ga] for various alternate
arguments and generalizations.

The authors wish to thank Claude Viterbo, Paul Seidel and Paul Biran for
motivating discussions and for suggesting applications of Theorem 2. The au-
thors are respectively thankful to Ivan Smith, Julien Duval, Bruno S´evennec and
Emmanuel Giroux for discussions and advice.

2. Proof of Theorem 2

We first define the notion of concentrated sections ofL⊗k:

Definition 2. Asymptotically holomorphic sectionssk of L⊗k are said to becon-
centratedover a subsetN ⊂ X if there exist positive constantsλ, c and C

(independent ofk) such that for ally ∈ N , |sk(y)| ≥ c, and, for all y ∈ X,
|sk(y)| ≤ C exp(−λ d(y, N)2), whered(., .) is the distance induced bygk.
When the subsetN consists of a single pointx ∈ X, we say that the sectionssk

are concentrated atx.

With this terminology, recall the following result (Proposition 11 of [D1]):

Lemma 1 (Donaldson).For all large enoughk the line bundlesL⊗k admit
asymptotically holomorphic sectionsσk,x concentrated at any given pointx ∈ X.

As the properties of the sectionsσk,x play an important role in the argument, let
us recall briefly their construction.

Remember that, at any pointx ∈ X, it is possible to find a local approximately
holomorphic Darboux coordinate chart, i.e. a local symplectomorphismψ :
(X, x, ω) → (Cn, 0, ω0) such that, with respect toJ and the standard complex
structure ofCn, ∂̄ψ(x) = 0 and|∇ ∂̄ψ |g is bounded uniformly by a constantC.
The compactness ofX implies that the size of the neighborhood over whichψ

is defined and the value of the constantC can be assumed not to depend on the
chosen pointx.

In our case, we will moreover require that, whenever the pointx belongs to the
given isotropic submanifoldL, the coordinate mapψ locally sendsL to a linear
subspace inCn (obviously isotropic). The existence of Darboux coordinate charts
with this property is a very classical result of Weinstein ([W], see also [McS]);
it is an immediate observation that the coordinate map can still be chosen to
satisfy∂̄ψ(x) = 0, and the compactness ofL implies the existence of uniform
estimates on|∇ ∂̄ψ | and on the size of the coordinate chart.

In a Darboux coordinate chart, a suitable unitary gauge transformation leads
to a local trivialization ofL⊗k in which the connection 1-form is given by
k
4

∑
(zj dz̄j − z̄j dzj ). The local section defined byfk(z) = exp(−k|z|2/4) is then

holomorphic over a neighborhood of 0 inCn. Pulling backfk via the coordinate
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chartψ , one obtains sectionŝσk,x of L⊗k over a neighborhood ofx in X, and it
easily follows from the estimates on̄∂ψ that these sections are asymptotically
holomorphic.

Finally, multiplying σ̂k,x by a smooth cut-off function vanishing at distance
k−1/6 from x yields the desired asymptotically holomorphic sectionsσk,x , easily
shown to be concentrated at the pointx (see [D1]).

Recall from [D1] (see also [A1]) that asymptotically holomorphic sections
with uniform transversality estimates are constructed by an iterative process,
where one starts with any given asymptotically holomorphic sectionssk of L⊗k

(e.g.sk = 0) and perturbs them over small open subsets ofX in order to achieve
transversality over those subsets; successive smaller and smaller perturbations
are performed in such a way that the transversality property gained at each step
is preserved by all subsequent perturbations, until transversality holds over all
of X. In particular, given any constantC > 0 it is possible to ensure that the
constructed sections̃sk differ from the given sectionssk by less thanC in C1

norm (i.e., at every point ofX we have|s̃k − sk| + |∇ s̃k − ∇sk|gk
≤ C) [A1].

Therefore, in order to prove Theorem 2 (without requiring yet the submani-
folds to pass through a given point ofX−L), it is sufficient to construct asymptot-
ically holomorphic sectionsσk,L of L⊗k, concentrated overL for k ranging over
all large enough multiples ofN = |Tor H1(L, Z)|. By definition these sections
satisfy a uniform lower bound overL by some constantc > 0, and perturbing
them by less thanc/2 we get (for large enoughk) uniformly transverse sections
which do not vanish overL. Our next ingredient is the following observation:

Lemma 2. Given any compact isotropic submanifoldL ⊂ X, there exists a
constantCL > 0 such that, wheneverk is a multiple ofN = |Tor H1(L, Z)|, the
restriction ofL⊗k toL admits a sectionτk such that|τk(x)| = 1 and|∇τk(x)|g ≤
CL, i.e. |∇τk(x)|gk

≤ CL k−1/2, at every pointx ∈ L.

Proof. SinceL is isotropic, the restriction toL of the connection∇L onL is flat;
therefore the first Chern classc1(L|L), although not necessarily trivial, belongs
to the kernel of the natural mapι : H 2(L, Z) → H 2(L, R). By the univer-
sal coefficients theorem (see e.g. [BT], page 194), Ker(ι) = Tor H 2(L, Z) �
Tor H1(L, Z). It follows that the order ofc1(L|L) dividesN , so that the com-
plex line bundleL⊗k

|L has zero first Chern class and hence is topologically trivial
wheneverk is a multiple ofN .

Fix a trivialization ofL⊗k overL, and consider the 1-formαk ∈ Ω1(L, iR)

representing the connection onL⊗k induced by∇L. We work with the metric on
L induced byg, and observe that a suitable choice of trivialization ofL⊗k ensures
that the 1-formαk and its derivatives satisfy uniform bounds which depend only
on the geometry ofL and not onk.

Indeed, it is well-known that the moduli space of flat unitary connections
on the trivial complex line bundle overL up toU(1) gauge transformations is
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compact and isomorphic toH 1(L, R)/H 1(L, Z).Therefore, a well-chosen gauge
transformation makes it possible to obtain uniform bounds on the 1-formαk and
its derivatives, independently ofk. More precisely, a first gauge transformation
in the identity component can be used to make the closed 1-formαk harmonic,
while the flexibility coming from the connected components of the gauge group
makes it possible to ensure thatαk lies in a fixed bounded subset ofH 1(L, R).

Letτk be the section ofL⊗k overL which identifies with the constant function
1 in the chosen trivialization: clearly,|τk| = 1 at every point ofL and the
derivatives ofτk are bounded by uniform constants independently ofk with
respect to the metricg. ��
Remark.The bounds satisfied byαk and∇τk depend on the minimumg-length
δ(L) of a homotopically non-trivial loop inL; in factCL must be at least of the
order ofδ(L)−1. This is one of the reasons why the submanifoldL cannot be
allowed to vary withk, another one being that we need to control the size of the
balls centered at points ofL which can be trivialized by Weinstein’s theorem.

Throughout the remainder of this section we assume thatk is a multiple of
N . For each suchk, let Pk be a finite set of points ofL such that the balls of
gk-radius 1 centered at the points ofPk coverL and any two points ofPk are at
gk-distance at least23 from each other. Such a set can be constructed by covering
L by finitely many balls ofgk-radius 1

3 and iteratedly removing the points that
are too close to each other (see also [D1]).

Define the sections

σk,L =
∑
p∈Pk

τk(p)

σk,p(p)
σk,p

of L⊗k overX. The sectionsσk,L are linear combinations of the asymptotically
holomorphic sectionsσk,p, with coefficients unitary complex numbers (recall
that |τk(p)| = |σk,p(p)| = 1). Therefore, because any two points ofPk are
mutuallygk-distant of at least23 and because the sectionsσk,p are concentrated at
points, a standard argument ([D1],[S]) shows that the sectionsσk,L are uniformly
bounded and asymptotically holomorphic.

We now show that the sectionsσk,L are concentrated overL. The decay
properties ofσk,L away fromL follow from the following lemma:

Lemma 3. Let Pk ⊂ X be a finite set of points whose mutualgk-distance is
bounded from below by a constantδ > 0. Let(αk,p)p∈Pk

be a family of complex
numbers such that|αk,p| ≤ 1 ∀p ∈ Pk, and let sk = ∑

p∈Pk
αk,pσk,p. Then

there exist constantsCδ and λδ, independent ofk and Pk, such that|sk(x)| ≤
Cδ exp(−λδdgk

(x, Pk)2) at every point ofX.

Proof. Becauseσk,p is supported inBg(p, 2k−1/6), we can restrict ourselves to
only considering points in a fixed ball around the given pointx ∈ X; since the
gk-distance between any two points ofPk is greater thanδ, this implies that the
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number of pointsp ∈ Pk lying within a given fixedgk-distanceρ of x is bounded
by Q(ρ), whereQ is a polynomial depending only onδ. Therefore, using the
existence of a bound|σk,p(x)| ≤ C ′ exp(−λ′d(x, p)2) for σk,p and ordering the
points ofPk according to their distance fromx, we get the desired bound on
|sk(x)| by summing over concentric slices. ��

We immediately conclude that|σk,L(x)| ≤ C2/3 exp(−λ2/3dgk
(x, L)2). It

remains to be shown that the norm ofσk,L at a point ofL admits a uniform lower
bound. For this, we first prove the following result:

Lemma 4. If k is large enough, and ifp and x are two points ofL such that
dgk

(p, x) ≤ k1/10, thenσk,p(x) �= 0 and∣∣∣∣arg

(
σk,p(x)

τk(x)

)
− arg

(
σk,p(p)

τk(p)

)∣∣∣∣ ≤ π

4
.

Proof. Since theg-distance betweenx andp is less thank−2/5, the cut-off func-
tion used to defineσk,p is equal to 1 atx, and thereforeσk,p(x) �= 0.

We work in the same local coordinate chartψ and local trivialization ofL⊗k

that were used to defineσk,p; we writeψ(x) = u, and consider the radial path
γ (t) = ψ−1(tu) from p to x. Recall that the connection onL⊗k is expressed as
d + Ak = d + k

4

∑
(zj dz̄j − z̄j dzj ), while σk,p is locally given by the function

exp(− k
4|z|2). Therefore one easily checks that∫ 1

0

(∇σk,p

σk,p

)
γ (t)

· γ ′(t) dt =
∫ 1

0
d

(
−k

4
|z|2

)
(tu)

· u dt = −k

4
|u|2 ∈ R. (1)

Recall that by construction we require thatψ locally mapsL to a linear
subspace ofCn. Therefore the radial pathγ is contained inL, and we can use
the bound on∇τk given by Lemma 2 to obtain that

∣∣∣∫ 1

0

(∇τk

τk

)
γ (t)

· γ ′(t) dt

∣∣∣ ≤ ∫ 1

0
|(∇τk)γ (t)| · |γ ′(t)| dt = O(k−2/5). (2)

Therefore,

arg

(
σk,p(x)

τk(x)

)
− arg

(
σk,p(p)

τk(p)

)
= Im

[∫ 1

0

(∇σk,p

σk,p

− ∇τk

τk

)
γ (t)

· γ ′(t) dt

]

is bounded by a constant timesk−2/5, which gives the result. ��
Lemma 4 implies the existence of a uniform lower bound onσk,L at any point

of L. Indeed, consider a pointx ∈ L, and letp be the point ofPk closest to
x. By constructiondgk

(x, p) ≤ 1, and therefore there exists a constantc > 0
(independent ofx, p andk) such that|σk,p(x)| ≥ c. By Lemma 4 we know that
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the contributions of the various pointsq ∈ Pk whosegk-distance tox is less than
k1/10 cannot cancel each other, and we have∣∣∣∣∣∣∣∣

∑
q∈Pk

d(x,q)≤k1/10

τk(q)

σk,q(q)
σk,q(x)

∣∣∣∣∣∣∣∣
≥ |σk,p(x)| ≥ c.

On the other hand, Lemma 3 implies that the contribution of the remaining
points ofPk decreases exponentially withk. Therefore, whenk is large enough
we get that|σk,L(x)| ≥ c/2 at any pointx of L; in fact, we even get that
supx∈L |arg(σk,L(x)/τk(x))| becomes arbitrarily small for largek.

We conclude that the asymptotically holomorphic sectionsσk,L are concen-
trated overL, which ends the argument: perturbingσk,L by less thanc/4 we ob-
tain asymptotically holomorphic sectionsσ̃k,L satisfying a uniform transversality
property, and by construction their zero sets are (asymptotically holomorphic)
symplectic submanifolds which do not intersectL.

The final step to complete the proof of Theorem 2 is to show that these
asymptotically holomorphic hypersurfaces can be made to pass through a given
point x0 ∈ X − L. Considering the sectionsuk,x0 = k1/2z1 σk,x0, wherez1 is a
local approximately holomorphic coordinate function atx0, the idea is to work
with σk,L+uk,x0 instead ofσk,L. Indeed, observing that for largek the support of
uk,x0 is disjoint fromL, a small perturbation ofσk,L+uk,x0 yields asymptotically
holomorphic hypersurfacesWk avoidingL and passing through a pointx within
unit gk-distance ofx0. It is then possible to find a Hamiltonian diffeomorphism
φ preservingL, mappingx to x0, and sufficiently close to the identity in order
to ensure the asymptotic holomorphicity ofφ(Wk). ��
Remark.WhenL is Lagrangian, Theorem 2 can also be proved by arguing along
the following lines. By Weinstein’s Lagrangian neighborhood theorem, a neigh-
borhoodV of L in X is symplectomorphic to a neighborhood of the zero section
in T ∗L with its standard symplectic structuredp∧dq; the fibers ofπ : T ∗L → L
can be choseng-orthogonal toL at every point ofL. Consider the trivialization
of L⊗k overL given by the sectionτk of Lemma 2, and extend it overV in such
a way that the connection 1-form is given byβk = π∗αk − ik p dq, whereαk is
the same 1-form onL as in Lemma 2. It can then be checked that the sections
of L⊗k overV defined bysk = exp(−1

2k|p|2g) (where| · |g is the metric induced
by g|L on the fibers ofT ∗L) are asymptotically holomorphic; multiplyingsk

by a suitable cut-off function we obtain asymptotically holomorphic sections
concentrated overL, from where Theorem 2 is easily obtained.
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3. Remarks and applications

3.1. The K¨ahler case

We consider the case where(X, ω, J ) is a Kähler manifold, and show how the
construction can be performed in the holomorphic category (Remark 1(b)) using
the ideas of Donaldson (see pp. 696–700 of [D1]).The first observation is that near
any pointx ∈ X there exists a local holomorphic section ofL which, in the same
local trivialization ofL as in the proof of Lemma 1, is given by a functionf such
thatf (z) = 1− 1

4|z|2+O(|z|3) anddf (z) = −1
4

∑
j (zj dz̄j + z̄j dzj )+O(|z|2);

see the proof of Lemma 36 of [D1].
Multiplying f (z)k by a smooth cut-off function at distancek−1/6 from x

yields asymptotically holomorphic sectionsσk,x of L⊗k, concentrated atx as in
Lemma 1; moreover, as observed by Donaldson in [D1], there exist holomorphic
sectionsσ̃k,x of L⊗k such that sup|σ̃k,x − σk,x | ≤ C exp(−ak1/3), with a andC

positive constants (independent ofk andx).
We now proceed as in Sect.2.1, using the new sectionsσk,x instead of those

obtained in Lemma 1. The argument remains the same, the only difference being
in the proof of Lemma 4 where the l.h.s. of (1) becomes equal to∫ 1

0

(d + Ak)f (z)k
(tu)

f (tu)k
· u dt =

∫ 1

0
k

(
df

f

)
(tu)

· u dt = −k

4
|u|2 +O(k|u|3).

Since|u| is at most of the order ofk−2/5 the imaginary part of this quantity is
bounded byO(k−1/5), which is enough to prove Lemma 4 and hence construct
σk,L as in Sect.2.1.

Replacingσk,x by σ̃k,x in the definition ofσk,L, we obtain holomorphic sec-
tionsσ̃k,L which differ fromσk,L by at mostC exp(−ak1/3) card(Pk) and there-
fore also satisfy a uniform lower bound overL. It is then possible to conclude
as usual, by adding a linear combination of the sectionsσ̃k,x to σ̃k,L in order to
achieve uniform transversality.

Alternately, given a pointx0 ∈ X − L, one can add a multiple of̃σk,x0 to
σ̃k,L in order to obtain holomorphic sectionsσ̃k,L,x0 which vanish atx0 while
remaining bounded away from zero overL. In terms of the projective embeddings
i : X → PH 0(L⊗k)∗, these sections correspond to hyperplanes passing through
i(x0) while avoiding i(L). A small generic perturbation yields a hyperplane
passing throughi(x0) which intersectsi(X) transversely and still avoidsi(L);
this gives smooth complex hypersurfaces passing throughx0 and avoidingL,
giving a new proof of Guedj’s result.

3.2. The non-integral case

In this section we no longer assume that the cohomology class1
2π
[ω] is integral,

as in Remark 1(c). As in [D1] the idea is to perturb the symplectic formω into a
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symplectic formω′ such that1
2π
[ω′] is proportional to an integral class, and work

with a multiple ofω′. It is however necessary to ensure thatL remains isotropic.
Because 1

2π
[ω] lies in the kernel of the restriction map fromH 2(X, R) to

H 2(L, R), it is the image of a classα ∈ H 2(X, L;R). Moreover,H 2(X, L;Q)

contains elements lying arbitrarily close toα in H 2(X, L;R). Therefore, by
adding toω an arbitrarily small closed 2-form vanishing overL, we obtain a
symplectic formω′ such that 1

2π
[ω′] is the image of a class inH 2(X, L;Q) and

hence belongs toH 2(X, Q). By construction,ω′ satisfies up to multiplication by
a constant factor the required integrality condition, andL is ω′-isotropic.

The symplectic formω′ admits a compatible almost-complex structureJ ′,
C0-close toJ ; sinceω(v, J ′v) > 0 ∀v ∈ T X, any J ′-complex subspace is
ω-symplectic. So, if a sequence of submanifoldsWk ⊂ X is asymptoticallyJ ′-
holomorphic, thenWk is a symplectic submanifold of(X, ω) for large enough
k. One then concludes by applying Theorem 2 to(X, ω′, J ′).

3.3. Uniqueness up to isotopy

It was shown in [A1] that the symplectic submanifolds constructed by Donald-
son in [D1] are, for each large enough value ofk, canonical up to symplectic
isotopy, independently of the almost-complex structureJ . One may ask whether
in our case the submanifoldsWk are canonical up to a symplectic isotopy ofX

preservingL; such a uniqueness property does not hold in general, because the
homotopy class of the non-vanishing sectionsk of L⊗k overL plays a determining
role.

Let γ be a non-contractible loop inL bounding a discD in X: the homotopy
class of the non-vanishing section(sk)|γ overγ determines the number of zeroes
of sk over D, i.e. the linking number ofWk with γ , which can be modified
by choosing different trivializations ofL⊗k over L. Still, when L is simply
connected the homotopy classes of the nowhere vanishing sections(sk)|L are
uniquely determined.

Even though it seems reasonable to expect that the isotopy class of asymptot-
ically holomorphic hypersurfaces inX−L should only depend on the homotopy
class of(sk)|L, our techniques do not allow us to prove so strong a statement; we
are only able to prove that the submanifolds constructed in Sect.2 (using either
the given proof or the alternate argument sketched at the end) are canonical up
to symplectic isotopy inX − L. For this, we use the control on the complex
argument of(sk)|L given by the construction: it follows directly from Lemma
4 and the subsequent discussion that for largek the argument ofsk/τk remains
small at every point ofL.

Proposition 1. Let τ 0
k andτ 1

k be sections ofL⊗k overL belonging to the same
homotopy class and such that|τ i

k | ≡ 1 and |∇τ i
k |g = O(1). Let s0

k and s1
k be
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asymptotically holomorphic sections ofL⊗k overX, uniformly transverse to0,
uniformly bounded from below overL, and such that the bound|arg(si

k/τ i
k)| ≤ π

3
holds at every point ofL. Then for large enoughk their zero setsW 0

k and W 1
k

differ by a symplectic isotopy preservingL.

Proof. We use the same one-parameter argument as in [A1] in order to construct
for largek a one-parameter family of asymptotically holomorphic sectionsst

k,
bounded from below onL, interpolating betweens0

k ands1
k . First, choosing a

trivialization of L⊗k over L to expressτ i
k in the form exp(φi

k) for i ∈ {0, 1},
we define sectionsτ t

k of L⊗k
|L for t ∈ [0, 1] by τ t

k = exp((1 − t)φ0
k + tφ1

k ).
Observing that|τ t

k | ≡ 1 and|∇τ t
k |g = O(1) for all t , we can define sections

σ t
k,L = ∑

p∈Pk
(τ t

k(p)/σk,p(p)) σk,p of L⊗k over X which are asymptotically
holomorphic and concentrated overL.

Define st
k to be equal to(1 − 3t)s0

k + 3tσ 0
k,L for t ∈ [0, 1

3], to σ 3t−1
k,L for

t ∈ [1
3, 2

3] and to(3− 3t)σ 1
k,L + (3t − 2)s1

k for t ∈ [2
3, 1]. All these sections are

asymptotically holomorphic; observing that fori ∈ {0, 1} the arguments ofsi
k

andσ i
k,L both remain withinπ

3 of that ofτ i
k at every point ofL, they also satisfy

a uniform lower bound by some constantc > 0 at every point ofL.
Letγ > 0 be the uniform transversality estimate satisfied bysi

k for i ∈ {0, 1}.
Applying the main theorem of [A1], we obtain, provided thatk is large enough,
uniformly transverse sectionss̃ t

k of L⊗k depending continuously ont and differing
from st

k by at most12 inf (c, γ ) in C1 norm; slightly modifying this 1-parameter
family near its extremities we can safely assume thats̃0

k = s0
k and s̃1

k = s1
k

(see Corollary 2 in [A1]). The zero sets ofs̃ t
k are then symplectic hypersurfaces

W t
k ⊂ X − L realizing a smooth isotopy betweenW 0

k andW 1
k . The argument

in Sect.4.2 of [A1] then shows that this smooth isotopy can be turned into a
symplectic isotopy preservingL (observe that all the quantities appearing in the
argument can be chosen to vanish over a neighborhood ofL). ��

A final remark about the homotopy class of the sections we construct in
the non simply connected case: the homotopy class of(sk)|L as given by our
construction is in fact related to the evaluation ofω on elements ofπ2(X, L).
More precisely, given a loopγ ⊂ L bounding a discD in X, the trivialization
of L⊗k overγ which minimizes the norm of the connection 1-form differs from
the one which extends overD by an amount of twisting approximately equal
to 1

2π

∫
D

kω; therefore, in the construction ofWk we obtain a linking number
differing from this amount by at most a bounded quantity.

3.4. Behavior of concentrated sections along normal slices

For any pointx ∈ L, let Nx be the image by the exponential map of the metric
g of a small disc in the normal space toL at x. Let σk,L be the asymptotically
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holomorphic sections concentrated overL constructed in Sect.2. The following
Lemma will be useful for applications.

Lemma 5. There exist constantsδ > 0 andγ > 0, independent ofk, such that
the restriction of|σk,L|2 to the intersection ofNx withBgk

(x, δ) is strictly concave,
with second derivatives bounded from above by−γ w.r.t. gk, and reaches its
maximum at a point withingk-distanceo(1) from x. The set of all these maxima
is a smooth submanifoldL′

k, C0-converging towardsL ask increases. Moreover,
whenX is Kähler the same properties remain true for the holomorphic sections
σ̃k,L constructed in Sect.3.1.

Proof. Fix a value ofk and a pointp ∈ Pk such thatdgk
(x, p) ≤ k1/10, and

work in the approximately holomorphic Darboux coordinate chart used to define
σk,p; recalling thatL is locally mapped to a linear subspace, letN ′

x be the affine
subspace throughx orthogonal toL in these coordinates. Sincex lies at g-
distance less thank−2/5 from p where the coordinate map is an isometry,Nx and
N ′

x are very close to each other (their angle atx is at mostO(k−2/5)). Moreover,
the restriction toN ′

x of the functionf (z) = exp(−1
4|z|2) is strictly concave (with

a uniform upper bound on its second derivatives) and admits a maximum atx;
therefore,f|Nx

is also strictly concave and admits a maximum withing-distance
O(k−4/5) fromx. Sinceσk,p coincides withf k nearx, the same property holds for
|σk,p|2, except that the upper bound on second derivatives depends ondgk

(p, x)

and only holds over a ball of fixedgk-radius aroundx.
Next, recall from the proof of Lemma 4 that the contributions toσk,L coming

from the various points ofPk lying within gk-distancek1/10 from x do not cancel
each other atx, and more precisely their complex arguments atx differ from
each other by at mostO(k−2/5). Of course this no longer remains true as soon as
one moves away fromL; still, by a computation similar to the proof of Lemma
4 we can obtain control on the manner in which the complex arguments of the
various contributions toσk,L differ from each other at a point close tox.

More precisely, consider a geodesic arcγ joining x to a nearby pointy in
Nx , and letp be a point ofPk within gk-distancek1/10. Then

Im
∫ 1

0

(∇σk,p

σk,p

)
γ (t)

· γ ′(t) dt =
∫ 1

0
− ik

4

∑
zj dz̄j − z̄j dzj · γ ′(t) dt

is equal to− k
2ω0(x−p, y− x)+O(k dg(x, p)2dg(x, y)), whereω0 is the stan-

dard symplectic form onCn and the error term comes from the non-linearity of
Nx in the Darboux coordinate chart. In particular, ifp, p′ andy are at bounded
gk-distance fromx then the difference of complex arguments between the contri-
butions ofσk,p andσk,p′ to σk,L(y) is given byφp,p′(y) = k

2ω0(p−p′, y− x)+
O(k−2/5), where the first term is bounded by a fixed constant timesdgk

(y, x).
Fix a large constantD > 0 (independent ofk andx), and let us first restrict

ourselves to the sumσk,L,x,D of the contributions of the points ofPk within gk-
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distanceD from x. It follows from the above remarks that there exists a constant
δ(D) > 0 (of the order ofD−1) such that|σk,L,x,D|2 is a strictly concave function
at every point ofNx ∩ Bgk

(x, δ(D)), with a uniform upper bound (independent
of k, D andx) on its second derivatives. Indeed,

|σk,L,x,D(y)|2 =
∑

p

|σk,p(y)|2 +
∑
p �=p′

|σk,p(y)| |σk,p′(y)| cosφp,p′(y).

Whendgk
(y, x) is not too large, cosφp,p′ has second derivatives bounded from

above byo(1) (by the above expression ofφp,p′ and the corresponding bounds on
its first and second derivatives); therefore, using the lower bounds on|σk,p|, |σk,p′ |
and cosφp,p′ , the upper bounds on their second derivatives and the estimates on
their first derivatives nearx, we obtain that all the terms in the sum are strictly
concave functions, thus yielding the desired concavity property for|σk,L,x,D|2.

Moreover, since the total contribution of the remaining points ofPk to the
sectionσk,L decreases exponentially fast as a function ofD, it cannot affect the
concavity property provided thatD is chosen large enough.

The contributions of the points within distancek1/10 from x reach their max-
ima overNx within g-distanceO(k−4/5) fromx and their arguments atx differ by
O(k−2/5), while the remaining terms decrease exponentially fast withk. There-
fore, the value of|σk,L(x)|2 is sufficiently close to the maximal possible one
in order to guarantee that the maximum of|σk,L|2 over Nx is reached within
gk-distanceo(1) from x.

Finally, the smoothness of the setL′
k of all maxima is an immediate conse-

quence of the smoothness ofσk,L and of the uniform concavity property.
In the Kähler case, recall from Sect.3.1 that the sectionsσk,p are now con-

structed using the local holomorphic sectionf (z) = 1− 1
4|z|2 + O(|z|3), for

which the maximum overN ′
x is reached not necessarily atx but at an arbi-

trary point withing-distanceO(k−4/5) from x; however this does not affect the
properties of|σk,p|2|Nx

that we have used. Similarly, the fact thatf is no longer
real-valued affects the complex arguments of the various contributions toσk,L,
both at a pointx ∈ L (bound byO(k−1/5) instead ofO(k−2/5) in Lemma 4,
see Sect.3.1) and outsideL (but it turns out that these extra contributions do
not affect the estimates); still, the argument remains valid without modification.
Finally, since the holomorphic sectioñσk,L differs fromσk,L by an amount de-
creasing exponentially fast withk, it enjoys the same concavity and maximum
properties asσk,L, so that the conclusion remains valid in this case as well.��
Remark.The assertions of Lemma 5 are also trivially satisfied by the concentrated
sections obtained in the alternate proof ofTheorem 2 outlined at the end of Sect.2.
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3.5. Relations with Lagrange skeleta

Let X be a compact K¨ahler manifold, lets be a holomorphic section ofL⊗k,
transverse to 0, and consider the smooth hypersurfaceW = s−1(0). It is a result
of Biran [B] that the sections determines a splittingX = B � ∆, whereB is a
“standard” symplectic disc bundle overW and∆ is an isotropic CW-complex
called theLagrange skeletonof (X, W).The skeleton∆ is obtained as the union of
the ascending varieties of all the critical points of the plurisubharmonic function
log |s|2; it is well-known that these critical points are all of index at leastn.
Combined with standard results in Lagrangian intersection theory, this result
provides powerful restrictions on Lagrangian embeddings. For example, any
simply connected embedded Lagrangian submanifold inX must intersect either
W or ∆ (otherwise it could be disjointed from itself by a Hamiltonian flow in
B −W ).

Biran’s result is generally expected to remain valid in the more general case
of a symplectic manifold and a symplectic hypersurface “of Donaldson type”.
However, to be on the safe side we will assume throughout this section thatX is
Kähler, considering only the construction of Sect.3.1.

Proposition 2. Let L be a compact isotropic submanifold ofX. Then for large
k there exist holomorphic sectionssk of L⊗k, transverse to0 and non-vanishing
overL, such thatL is contained in arbitrarily small neighborhoods of the La-
grange skeleta∆k corresponding to their zero setsWk.

Proof. We use the notations of Sect.3.1, and consider the local behavior near
L of the transverse sectionssk constructed as small perturbations of the con-
centrated holomorphic sectionsσ̃k,L. By Lemma 5 we know that the restriction
of |σ̃k,L|2 to each normal sliceNx is locally concave and reaches its maximum
close toL. Therefore, choosing the transverse sectionssk close enough tõσk,L
we conclude that the restriction ofhk = log |sk|2 to Nx admits a unique local
maximum atgk-distance less than12δ from x; as in Lemma 5, the set of these
local maxima is a smooth submanifoldL′′

k in X, obtained fromL by an arbitrarily
small deformation.

Observe that, by construction, every critical point ofhk|L′′
k

is also a critical
point ofhk, with index increased by codimL. Moreover, although the unionΛk of
the ascending varieties of these critical points is not exactlyL′′

k , one expects it to be
a small deformation ofL as well. More precisely, observe that the gradient ofhk

is directed inwards at every point of the boundary of theδ-tubular neighborhood
Tδ(L) of L (w.r.t.gk). This implies, first, that every point ofΛk lies atgk-distance
less thanδ from L, since all ascending trajectories remain inTδ(L). Conversely,
consider the discDx = Nx ∩ Bgk

(x, δ) and its image by the downward gradient
flow of hk: since no trajectory can re-enterTδ(L), the algebraic intersection
number of the disc withL′′

k constantly remains equal to 1, which implies that
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Dx ∩Λk is non-empty. In particularL is contained in theδ-neighborhood ofΛk,
which is itself contained in the Lagrange skeleton. ��

3.6. Obstructions to Lagrangian embeddings

In this section, we no longer assume thatX is Kähler, but we assume thatL is
Lagrangian (i.e., dimL = n). It was suggested to us by Seidel, Viterbo and Biran
that Theorem 2 might provide obstructions to the existence of certain Lagrangian
embeddings by arguing along the following lines.

Consider the asymptotically holomorphic sectionssk of L⊗k, bounded from
below overL and uniformly transverse to 0, given by Theorem 2, and their zero
setsWk. It follows from Lemma 5 that, if the sections constructed in Sect.2 are
chosen sufficiently close to the concentrated sectionsσk,L, their norms reach local
maxima over the transverse slicesNx along smooth submanifoldsL′′

k obtained
by slightly deformingL. Moreover, after an arbitrarily small perturbation we can
assume thathk = log |sk|2 is a generic Morse function overX − Wk, without
affecting the other properties.

Consider a pointx ∈ L′′
k where the restriction ofhk to L′′

k reaches a local
minimum: it is a critical point of indexn of hk. However the sectionssk are
asymptotically holomorphic and uniformly transverse to 0, so it follows from a
result of Donaldson [D1] that the critical pointshk are all of index at leastn.
Therefore, the genericity condition onhk implies that the stable manifold∆x is
a topological disc inX−Wk, with boundary mapped toWk, and intersectingL′′

k

transversely atx. Observe that∆x is the image by the downward gradient flow
of hk of the small disc∆x ∩ Tδ(L), whereTδ(L) is theδ-tubular neighborhood
of L. However, the downward gradient flow is pointing outwards at every point
of the boundary ofTδ(L), so thatx is the only intersection betweenL′′

k and∆x ,
and the intersection pairing between these two cycles evaluates to 1. This implies
that the homology class[L′′

k] ∈ Hn(X −Wk) is a primitive element. SinceL′′
k is

isotopic toL, we obtain the following

Proposition 3. The element[L] ∈ Hn(X −Wk) is primitive.

Moreover, whenL is not connected we can apply the same argument to the
minima ofhk over each component individually, obtaining that the fundamental
classes of the various components ofL are linearly independent primitive classes
in Hn(X −Wk).

WhenX is a complex projective manifold, working with the holomorphic
sections of Sect.3.1 and assuming moreover thatL is simply connected, it is
an interesting question to ask whether the smooth complex hypersurfacesWk

are always isotopic inX − L to hypersurfacesHk arbitrarily close to a given
hyperplane sectionH of X avoidingL. A positive answer would imply that[L]
is primitive inHn(X−H) as well, providing a new proof of a theorem of Gromov.
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However, even though no problem with homotopy classes of sections overL
is to be feared in the simply connected case, the isotopy result of Sect.3.3 does
not apply in this context, as we have no control over the complex argument of the
holomorphic section ofL⊗k definingHk. Whether a refinement of Proposition 1
can handle this case or not remains an open question.
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