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Abstract. Using Donaldson’s approximately holomorphic techniques, we construct symplectic
hypersurfaces lying in the complement of any given compact isotropic submanifold of a compact
symplectic manifold. We discuss the connection with rational convexity results inghleKcase

and various applications.

1. Introduction

Itwas first observed by Duval (see e.g. [Du]) that, m#er geometry, the notions
of isotropy and rational convexity are tightly related to each other. Recall that
a compact subsét of C" or more generally of a complex algebraic manifold
is said to beationally convexf there exists a complex algebraic hypersurface
passing through any given point in the complemem¥ @nd avoidingV. Among
the results motivating the interest in this notion, one can mention the classical
theorem of Oka and Weil (further improved by subsequent work) stating that
every holomorphic function over a neighborhood of a rationally convex compact
subsetN ¢ C" can be uniformly approximated ovéfr by rational functions.

It was shown in 1995 by Duval and Sibony that, if a smooth compact sub-
manifold of C" is isotropic with respect to someakler structure o€, then
it is rationally convex [DS]. This result was extended in 1999 by Gued;j to the
context of complex projective manifolds:

Theorem 1 (Guedj[Gu]).Let(X, w, J) be a closed hler manifold, such that
the cohomology clas%[a)] € H?(X,R) is integral. Then any smooth compact
isotropic submanifoldC ¢ X (possibly with boundary) is rationally convex, i.e.
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there exist complex hypersurfacesXnpassing through any given point in the
complement of and avoiding..

Because the concept of isotropic submanifold originates in symplectic ge-
ometry, it is natural to seek an analogue of this result for symplectic manifolds.
Although the lack of an integrable almost-complex structure prevents the exis-
tence of holomorphic hypersurfaces in a general symplectic manifold, a suitable
analogue may be found in Donaldson’s construction of approximately holomor-
phic symplectic hypersurfaces.

Let (X, w) be a closed compact symplectic manifold of real dimension 2
Unless otherwise stated, we will always assume that the cohomology class
%[w] e H?(X,R) is integral; this does not restrict the diffeomorphism type
of X in any way. A compatible almost-complex structuren X and the corre-
sponding Riemannian metricare also fixed.

Let L be a complex line bundle ok with first Chern clasg; (L) = %[a)],
endowed with a Hermitian structure and a Hermitian connedfibmvhose cur-
vature 2-formis-iw. Itwas shown by Donaldson in [D1] that, when the integer
is large enough, the line bundI&&* admit many approximately-holomorphic
sections, some of which possess remarkable transversality properties ensuring
that their zero sets are smooth symplectic submanifolds. iklany interesting
constructions in symplectic topology have recently been obtained by using the
same techniques (see e.g. [A2], [D2] and [S]).

Let us recall the following definitions. The almost-complex structl@nd
the Hermitian connection oh®* induced by that oL yield 8 andd operators
on L®k. Since the connection oh® has curvature-ikw, we introduce the
rescaled metrig, = k g on X, in order to be able to consider uniform bounds
for covariant derivatives of sections bf*. As a consequence of this rescaling,
the diameter oX is multiplied byk*/2, and all derivatives of order are divided
by k?/?.
Definition 1. Let(s;)x0 be a sequence of sectionsigi overX. The sections
s are said to beasymptotically holomorphid there exists a constar@ > 0
such that, for allk and at every point o, |si| + |Vsi| + [VVsy| < C and
|8sk| + |Vasg| < Ck—Y2, where the norms of the derivatives are evaluated with
respect to the metricg, = k g.

The sections; are said to beuniformly transverse to @ there exists a
constantp > 0 (independent ok) such that the sectiong are n-transverse
to O, i.e. such that, for any and at any pointc € X where|s,(x)| < n, the
covariant derivativeVs; (x) : T, X — L®* is surjective and satisfies the bound
IVii(x)]g, > 1.

With these definitions, Donaldson’s construction amounts to showing the
existence of a sequence of sectiopsf L®* which are at the same time asymp-
totically holomorphic and uniformly transverse to O [D1]. It then follows easily
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from these properties that, for large enouglthe zero setd®, of s, are smooth
symplectic hypersurfaces ixi.

Let £ be a compact isotropic submanifold X1 not necessarily connected:
we wish to show that one can get the symplectic hypersurfdgésliein X — L.
The fundamental reason why it is reasonable to expect such a result is that, since
w vanishes overL, the line bundleL,; comes equipped with a flat connection.
However L®* admits non-vanishing sections ov&ronly when its restriction
to L is topologically trivial; if £ is not simply connected, this can restrict the
admissible values of the parameteFor example, it = CP?andf = RP? an
easy calculation in homology with/2 coefficients shows that any symplectic
submanifold of odd degree must inters€ctOur main result is the following:

Theorem 2. Let £ be a compact isotropic submanifold k&, and letN be the
order of the torsion part off, (£, Z). Then, for all large enough values/iafthere
exist asymptotically holomorphic sectiafsof L& over X whose zero set#/;
are smooth symplectic submanifolds, disjoint fi6nmvhenevek is a multiple of
N. Moreover,W, can be assumed to pass through any given pgirdt X — L.

This result is mildly surprising when one considers the results obtained in
[D1] and [Al] indicating that, whelk increases, the submanifold®, tend to
fill all of X. There is no contradiction, though, as the distance by which the

submanifoldsW, given by Theorem 2 stay away frofhactually decreases like
k=12,

Remark 1.(a) Theorem 2 remains valid whefihas non-empty boundary; see
[M] for details.

(b) WhenX is a Kahler manifold, one can perform the construction in such a
way that the sectiong are holomorphic. The submanifol#g are then complex
hypersurfaces; this provides a new proof of Gued;j’s rational convexity result.

(c¢) When the cohomology claszé;[a)] is no longer assumed to be integral,
the line bundléel is no longer defined, but it is still possible to obtain symplectic
hypersurfaces itX which avoid the submanifold and pass through any given
pointinX — L.

Additional motivation for these results can be found in the work of Biran [B],
where the notion oEagrange skeletoof a symplectic manifold of idhler type
with respect to a hypersurface of Donaldson type is defined. As will be explained
in Sect. 3, Theorem 2 can be interpreted in this context as a flexibility result for
Lagrange skeleta in large degrees.

More importantly, it was observed by Seidel and Viterbo that Theorem 2
implies that if£ is Lagrangian then its homology class is a primitive element of
H,(X — W;) (see Sect. 3); this remark might lead to obstructions to the existence
of certain Lagrangian embeddings.
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Note. Different proofs of Theorem 2 were obtained independently by the three
authors; the curious reader is referred to [M] and [Ga] for various alternate
arguments and generalizations.

The authors wish to thank Claude Viterbo, Paul Seidel and Paul Biran for
motivating discussions and for suggesting applications of Theorem 2. The au-
thors are respectively thankful to lvan Smith, Julien Duval, BrueeeBhec and
Emmanuel Giroux for discussions and advice.

2. Proof of Theorem 2

We first define the notion of concentrated sections &f:

Definition 2. Asymptotically holomorphic sectiomsof L®* are said to becon-
centratedover a subsetv C X if there exist positive constanis ¢ and C
(independent ok) such that for ally € N, |si(y)] > ¢, and, forally € X,
Isi(»)| < C exp(—rd(y, N)?), whered(.,.) is the distance induced by.
When the subse¥ consists of a single point € X, we say that the sectiorg
are concentrated at.

With this terminology, recall the following result (Proposition 11 of [D1]):

Lemma 1 (Donaldson).For all large enoughk the line bundlesL® admit
asymptotically holomorphic sectiong, concentrated at any given pointe X.

As the properties of the sectiong, play an important role in the argument, let
us recall briefly their construction.

Remember that, at any pointe X, itis possible to find a local approximately
holomorphic Darboux coordinate chart, i.e. a local symplectomorphism
(X, x, w) — (C", 0, wp) such that, with respect td and the standard complex
structure ofC", 3 (x) = 0 and|Vay|, is bounded uniformly by a constaat
The compactness & implies that the size of the neighborhood over which
is defined and the value of the constahtan be assumed not to depend on the
chosen poink.

In our case, we will moreover require that, whenever the poirlongs to the
given isotropic submanifold, the coordinate mag locally sendsC to a linear
subspace ift” (obviously isotropic). The existence of Darboux coordinate charts
with this property is a very classical result of Weinstein ([W], see also [McS));
it is an immediate observation that the coordinate map can still be chosen to
satisfydy (x) = 0, and the compactness 6fimplies the existence of uniform
estimates ofVay| and on the size of the coordinate chart.

In a Darboux coordinate chart, a suitable unitary gauge transformation leads
to a local trivialization of L®* in which the connection 1-form is given by
ﬁ Y (z;dz; —7;dz;). The local section defined b (z) = exp(—k|z|?/4) is then
holomorphic over a neighborhood of 0@t. Pulling backf; via the coordinate
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charty,, one obtains sectiorfg , of L® over a neighborhood of in X, and it
easily follows from the estimates @n/ that these sections are asymptotically
holomorphic.

Finally, multiplying 6, , by a smooth cut-off function vanishing at distance
k=1/® from x yields the desired asymptotically holomorphic sectiopns, easily
shown to be concentrated at the poir(see [D1]).

Recall from [D1] (see also [Al]) that asymptotically holomorphic sections
with uniform transversality estimates are constructed by an iterative process,
where one starts with any given asymptotically holomorphic sectipng L ®¢
(e.g.sy = 0) and perturbs them over small open subsefs of order to achieve
transversality over those subsets; successive smaller and smaller perturbations
are performed in such a way that the transversality property gained at each step
is preserved by all subsequent perturbations, until transversality holds over all
of X. In particular, given any constanit > 0 it is possible to ensure that the
constructed sectiorg differ from the given sections; by less thanC in C*
norm (i.e., at every point ok we havels; — si| + [V5, — Vil < C) [Al].

Therefore, in order to prove Theorem 2 (without requiring yet the submani-
folds to pass through a given point®f- £), it is sufficient to construct asymptot-
ically holomorphic sections;_ - of L&, concentrated ovet for k ranging over
all large enough multiples a¥ = |Tor H1(L, Z)|. By definition these sections
satisfy a uniform lower bound ovef by some constant > 0, and perturbing
them by less than/2 we get (for large enough) uniformly transverse sections
which do not vanish ovef. Our next ingredient is the following observation:

Lemma 2. Given any compact isotropic submanifold C X, there exists a
constantC, > 0 such that, whenevéris a multiple ofN = |Tor H1(L, Z)|, the
restriction ofL®* to £ admits a sectiom; such thatz; (x)| = 1and|Vz(x)|, <
Cpr,i.e. |Vt (x)l, < Cc kY2, atevery point € L.

Proof. Since. is isotropic, the restriction t6 of the connectioiv* on L is flat;
therefore the first Chern class(L,.), although not necessarily trivial, belongs
to the kernel of the natural map: H?(L,Z) — H?(L,R). By the univer-
sal coefficients theorem (see e.g. [BT], page 194),8e& Tor H*(L,7) ~
Tor Hi(L, Z). 1t follows that the order ot1(Lz) divides N, so that the com-
plex line bundleL ¥ has zero first Chern class and hence is topologically trivial
wheneverk is a multiple of V.

Fix a trivialization of L® over £, and consider the 1-form, € 21(L, iR)
representing the connection &f* induced byv*. We work with the metric on
L induced byg, and observe that a suitable choice of trivializatioh. &f ensures
that the 1-formy, and its derivatives satisfy uniform bounds which depend only
on the geometry of and not ork.

Indeed, it is well-known that the moduli space of flat unitary connections
on the trivial complex line bundle ovet up to U (1) gauge transformations is
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compactand isomorphic (£, R)/H(L, Z). Therefore, awell-chosen gauge
transformation makes it possible to obtain uniform bounds on the 1-dgrnd
its derivatives, independently &f More precisely, a first gauge transformation
in the identity component can be used to make the closed 1-dgrnarmonic,
while the flexibility coming from the connected components of the gauge group
makes it possible to ensure thatlies in a fixed bounded subset B (L, R).

Let 7, be the section ot ® over£ which identifies with the constant function

1 in the chosen trivialization: clearlyz,| = 1 at every point of£ and the
derivatives ofr, are bounded by uniform constants independently efith
respect to the metrig. O

Remark.The bounds satisfied hy, andVt, depend on the minimurg-length
8(L) of a homotopically non-trivial loop itf; in fact C, must be at least of the
order of§(£)~2. This is one of the reasons why the submanif6ldannot be
allowed to vary withk, another one being that we need to control the size of the
balls centered at points @f which can be trivialized by Weinstein’s theorem.

Throughout the remainder of this section we assumeitlima multiple of
N. For each such, let P, be a finite set of points of such that the balls of
gi-radius 1 centered at the points Bf cover£ and any two points oP, are at
gr-distance at Iea@ from each other. Such a set can be constructed by covering
L by finitely many balls ofgk-radius% and iteratedly removing the points that
are too close to each other (see also [D1]).

Define the sections

7%(p)

ser Okp(P)

Ok, L = Ok,p
of L®* over X. The sectionsy; . are linear combinations of the asymptotically
holomorphic sectionsy ,, with coefficients unitary complex numbers (recall
that |7 (p)| = lox,,(p)| = 1). Therefore, because any two points Rf are
mutually g,-distant of at Ieas§ and because the sectians, are concentrated at
points, a standard argument ([D1],[S]) shows that the sectipasire uniformly
bounded and asymptotically holomorphic.

We now show that the sectiong  are concentrated ovet. The decay
properties oby » away fromL follow from the following lemma:

Lemma 3. Let P, C X be a finite set of points whose mutygldistance is
bounded from below by a constant- 0. Let («x, ,),cp, be afamily of complex
numbers such thaty ,| < 1Vp € P, and lets, = Zpepk ok, pOk, p- Then
there exist constant§s and A, independent ot and P;, such that|s;(x)| <
Cs exp(—Arsdg, (x, P)?) at every point ofX.

Proof. Because; , is supported i, (p, 2k=/%), we can restrict ourselves to
only considering points in a fixed ball around the given pairt X; since the
gr-distance between any two points Bf is greater tha@, this implies that the
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number of pointp € P, lying within a given fixedg,-distancep of x is bounded
by Q(p), whereQ is a polynomial depending only ah Therefore, using the
existence of a bounf; ,(x)| < C"exp(—A'd(x, p)?) for o, and ordering the
points of P, according to their distance from, we get the desired bound on
|sx (x)] by summing over concentric slices. O

We immediately conclude thaby o (x)| < Co/z €Xp(—Az/ady, (x, £)3). It
remains to be shown that the normogf. at a point of£ admits a uniform lower
bound. For this, we first prove the following result:

Lemma 4. If k is large enough, and ip and x are two points ofC such that
dg. (p, x) < kY10, thenoy ,(x) # 0 and

‘arg(ak,p(x)) _ arg<ak,p(p))
i () w(p)
Proof. Since theg-distance betweenandp is less thark~%/°, the cut-off func-
tion used to definey , is equal to 1 ak, and thereforey ,(x) # O.

We work in the same local coordinate chérand local trivialization off. ®¢
that were used to defing ,; we write(x) = u, and consider the radial path
y(t) = ¥~1(tu) from p to x. Recall that the connection dif* is expressed as
d+ Ay = d + % 3 (z;dz; — Z;dz;), while oy, is locally given by the function
exp(—%|z|?). Therefore one easily checks that

1 v 1 k k
/ < Uk"’) -y (¢) dt :/ d (——|z|2> cudt = —=ul?eR. (1)
0 Ok,p a0) 0 4 (tu) 4

Recall that by construction we require thatlocally maps.Z to a linear
subspace of”. Therefore the radial patp is contained inC, and we can use
the bound oV t; given by Lemma 2 to obtain that

T
< —.
— 4

AL / ! / —-2/5
\/ (—) -y(z)dt\sf ((Vaywl- Iy 0] dt = 0G™9). (2)
0 0] 0

Tk
Therefore,
, Y \Y
arg<—0k” (x)) - arg(—ak’p(p)> =Im / (—ok”’ - j) Y/ (1) dt
Ti(x) %(p) o \ Okp LR
is bounded by a constant times?/®, which gives the result. |

Lemma 4 implies the existence of a uniform lower boun@pp at any point
of L. Indeed, consider a point € £, and letp be the point ofP, closest to
x. By constructiond,, (x, p) < 1, and therefore there exists a constant 0
(independent of, p andk) such thatoy ,(x)| > c. By Lemma 4 we know that
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the contributions of the various poinjse P, whoseg,-distance tor is less than
k%19 cannot cancel each other, and we have

()
3 #fq)ok,qu) > Jowp(0)] = c.

q< Py
d(x,q)<kt/10

On the other hand, Lemma 3 implies that the contribution of the remaining
points of P, decreases exponentially with Therefore, whet is large enough
we get that|oy £(x)] > ¢/2 at any pointx of £; in fact, we even get that
SUp, .~ | arg(oy. £ (x) /7 (x))| becomes arbitrarily small for large

We conclude that the asymptotically holomorphic sectigns are concen-
trated overC, which ends the argument: perturbisg, by less thare/4 we ob-
tain asymptotically holomorphic sectiofig - satisfying a uniform transversality
property, and by construction their zero sets are (asymptotically holomorphic)
symplectic submanifolds which do not interséct

The final step to complete the proof of Theorem 2 is to show that these
asymptotically holomorphic hypersurfaces can be made to pass through a given
pointxo € X — £. Considering the sectiong. ., = k*/?z1 0y..,, Wherez is a
local approximately holomorphic coordinate functiorkgtthe idea is to work
with oy +uy ., inStead oby. .. Indeed, observing that for largehe support of
U x, 1S disjoint from., a small perturbation afy - +uy ., yields asymptotically
holomorphic hypersurfacés; avoidingL and passing through a pointwvithin
unit g,-distance ofxg. It is then possible to find a Hamiltonian diffeomorphism
¢ preservingl, mappingx to xg, and sufficiently close to the identity in order
to ensure the asymptotic holomorphicitygfw; ). O

RemarkWhen/ is Lagrangian, Theorem 2 can also be proved by arguing along
the following lines. By Weinstein’s Lagrangian neighborhood theorem, a neigh-
borhoodV of £ in X is symplectomorphic to a neighborhood of the zero section

in 7* L with its standard symplectic structufp Adq; the fibersofr : T*L — L

can be chosep-orthogonal tal at every point ofC. Consider the trivialization

of L& over £ given by the sectiom, of Lemma 2, and extend it ovéf in such

a way that the connection 1-form is given By = n*a, — ik p dg, whereg, is

the same 1-form ol as in Lemma 2. It can then be checked that the sections
of L® overV defined bys; = exp(—%k|p|§) (where] - |, is the metric induced

by g,z on the fibers off'*L) are asymptotically holomorphic; multiplying

by a suitable cut-off function we obtain asymptotically holomorphic sections
concentrated ovef, from where Theorem 2 is easily obtained.
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3. Remarks and applications
3.1. The Khler case

We consider the case whefE, w, J) is a Kidhler manifold, and show how the
construction can be performed in the holomorphic category (Rem@ dising
theideas of Donaldson (see pp. 696—700 of [D1]). The first observationis that near
any pointx € X there exists a local holomorphic sectionfofvhich, in the same
local trivialization of L as in the proof of Lemma 1, is given by a functigrsuch
that f (z) = 1— 31z1*+ O (2% anddf (z) = —3 3, (z;dZ; + Z;dz;) + O(|z]);
see the proof of Lemma 36 of [D1].

Multiplying f(z)* by a smooth cut-off function at distande/® from x
yields asymptotically holomorphic sectioag, of L®*, concentrated at as in
Lemma 1; moreover, as observed by Donaldson in [D1], there exist holomorphic
sections5 , of L& such that sups; , — oy .| < C exp(—ak'/?), with @ andC
positive constants (independentkondx).

We now proceed as in Sect. 2.1, using the new sectippsnstead of those
obtained in Lemma 1. The argument remains the same, the only difference being
in the proof of Lemma 4 where the |.h.s. of (1) becomes equal to

L(d 4 A f (@), 1ordf ko .
/0 f(tu)k rudt _/o k <_>(m) rudt = —Z|M| + Ok|ul).

Since|u| is at most of the order df~%/° the imaginary part of this quantity is
bounded byo (k~/%), which is enough to prove Lemma 4 and hence construct
ok.c asin Sect.2.1.

Replacingoy . by 6, in the definition ofo; ., we obtain holomorphic sec-
tionsa;. . which differ fromo, » by at mostC exp(—ak'/3) card P;) and there-
fore also satisfy a uniform lower bound ov£r It is then possible to conclude
as usual, by adding a linear combination of the secti&nsto o, . in order to
achieve uniform transversality.

Alternately, given a poinky € X — £, one can add a multiple @ ,, to
ok in order to obtain holomorphic sectiosg . ., which vanish atcy while
remaining bounded away from zero ov&iin terms of the projective embeddings
i X — PHO(L®)*, these sections correspond to hyperplanes passing through
i (xo) while avoidingi(£). A small generic perturbation yields a hyperplane
passing through(xg) which intersectsg (X) transversely and still avoidg.);
this gives smooth complex hypersurfaces passing thraggind avoidingZ,
giving a new proof of Guedj’s result.

3.2. The non-integral case

In this section we no longer assume that the cohomology gjre[&ﬂ is integral,
asin Remark Ic). Asin [D1] the idea is to perturb the symplectic fotsrinto a
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symplectic formw’ such thatziﬂ [@']is proportional to an integral class, and work
with a multiple ofe’. It is however necessary to ensure tBatmains isotropic.

Becausezin[a)] lies in the kernel of the restriction map frofi?(X, R) to
H?(L,R), itis the image of a class € H?(X, £; R). Moreover,H*(X, L; Q)
contains elements lying arbitrarily close é&oin H?(X, £; R). Therefore, by
adding tow an arbitrarily small closed 2-form vanishing ovér we obtain a
symplectic formw’ such tha%[a)’] is the image of a class iH?(X, £; Q) and
hence belongs t&/?(X, Q). By constructiong’ satisfies up to multiplication by
a constant factor the required integrality condition, #nid «'-isotropic.

The symplectic formw’ admits a compatible almost-complex structure
CO-close toJ; sincew(v, J'v) > 0Vv e TX, any J'-complex subspace is
w-symplectic. So, if a sequence of submanifolds C X is asymptoticallyJ/'-
holomorphic, ther, is a symplectic submanifold afX, ) for large enough
k. One then concludes by applying Theorem 2X0 ', J').

3.3. Uniqueness up to isotopy

It was shown in [Al] that the symplectic submanifolds constructed by Donald-
son in [D1] are, for each large enough valuekgitanonical up to symplectic
isotopy, independently of the almost-complex structur®ne may ask whether

in our case the submanifold®, are canonical up to a symplectic isotopyXof
preservingl; such a uniqueness property does not hold in general, because the
homotopy class of the non-vanishing sectipaf L®* over/ plays a determining

role.

Lety be a non-contractible loop i bounding a dis® in X: the homotopy
class of the non-vanishing section),, overy determines the number of zeroes
of s, over D, i.e. the linking number oW, with y, which can be modified
by choosing different trivializations of®* over £. Still, when £ is simply
connected the homotopy classes of the nowhere vanishing sec¢tjonpsare
uniquely determined.

Even though it seems reasonable to expect that the isotopy class of asymptot-
ically holomorphic hypersurfaces ti— £ should only depend on the homotopy
class of(sx) |z, our techniques do not allow us to prove so strong a statement; we
are only able to prove that the submanifolds constructed in Sect. 2 (using either
the given proof or the alternate argument sketched at the end) are canonical up
to symplectic isotopy inX — L. For this, we use the control on the complex
argument of(sy)z given by the construction: it follows directly from Lemma
4 and the subsequent discussion that for la&r¢gfee argument ofy /7, remains
small at every point of’.

Proposition 1. Letz? and ¢} be sections of.®* over L belonging to the same
homotopy class and such thaf| = 1 and|Vz/|, = O(1). Lets? ands} be
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asymptotically holomorphic sections bf* over X, uniformly transverse t0,
uniformly bounded from below ovér and such that the boundrg(s; /z})| < 131

holds at every point of. Then for large enough their zero setsv? and W,
differ by a symplectic isotopy preservidg

Proof. We use the same one-parameter argument as in [Al] in order to construct
for largek a one-parameter family of asymptotically holomorphic sectigns
bounded from below otf, interpolating betwees? ands;. First, choosing a
trivialization of L® over £ to expresst; in the form expe;) for i € {0, 1},

we define sections; of szk fort € [0,1] by 7/ = exp((1 — )0 + td?).
Observing thair/| = 1 and|Vt/|, = O(1) for all #, we can define sections
Orr = 2 per, (T (P) /0K, p(P)) Ok p OF L®k over X which are asymptotically
holomorphic and concentrated over

Defines; to be equal tol — 3r)s? + 3ta . for ¢ € [0, 2], to O.ktLl for
t €[5, 5]and to3 — 3)a}! , + (3 — 2)s{ for t € [5, 1]. All these sections are
asymptotically holomorphic; observing that fore {0, 1} the arguments aof!
andok ¢ both remain withirg of that ofz/ at every point ofZ, they also satlsfy
a uniform lower bound by some constant O at every point ofC.

Lety > O be the uniform transversality estimate satisfiedtfpri < {0, 1}.
Applying the main theorem of [A1], we obtain, provided tlés large enough,
uniformlytransverse sectiorﬁ,§of L® depending continuously erand differing
from s; by at most1 inf(c, y) in C* norm; slightly modifying thls 1- parameter
family near its extremltles we can safely assume flat= s ands! = st
(see Corollary 2 in [Al]). The zero sets ffare then symplectic hypersurfaces
W! c X — L realizing a smooth isotopy betweéW? and W}. The argument
in Sect.4.2 of [Al] then shows that this smooth isotopy can be turned into a
symplectic isotopy preserving (observe that all the quantities appearing in the
argument can be chosen to vanish over a neighborhoddl. of O

A final remark about the homotopy class of the sections we construct in
the non simply connected case: the homotopy class:0f; as given by our
construction is in fact related to the evaluationwobn elements ofr,(X, £).
More precisely, given a loop C £ bounding a disd in X, the trivialization
of L® overy which minimizes the norm of the connection 1-form differs from
the one which extends ovdy by an amount of twisting approximately equal
to % fD kw; therefore, in the construction ¥, we obtain a linking number
differing from this amount by at most a bounded quantity.

3.4. Behavior of concentrated sections along normal slices

For any pointx € £, let N, be the image by the exponential map of the metric
g of a small disc in the normal space foat x. Let o, » be the asymptotically
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holomorphic sections concentrated oyeconstructed in Sect. 2. The following
Lemma will be useful for applications.

Lemma 5. There exist constants> 0 andy > 0, independent of, such that

the restriction ofo; |2 to the intersection a¥, with By, (x, 8) is strictly concave,
with second derivatives bounded from above-hy w.r.t. g;, and reaches its
maximum at a point withig,-distanceo(1) fromx. The set of all these maxima

is a smooth submanifold,, C°-converging toward« ask increases. Moreover,
whenX is Kahler the same properties remain true for the holomorphic sections
ox.c constructed in Sec3.1.

Proof. Fix a value ofk and a pointp € P, such thatd,, (x, p) < k*1° and
work in the approximately holomorphic Darboux coordinate chart used to define
oy, p recalling thatZ is locally mapped to a linear subspace, Agtbe the affine
subspace through orthogonal to£ in these coordinates. Sincelies at g-
distance less thakT%/° from p where the coordinate map is an isomeivy,and

N! are very close to each other (their angle & at mostO (k~2/°)). Moreover,
the restriction tav;, of the functionf (z) = exp(—%,r |z|?) is strictly concave (with

a uniform upper bound on its second derivatives) and admits a maximum at
therefore,f|y, is also strictly concave and admits a maximum withidistance

O (k=%%) fromx. Sinceoy , coincides withf* nearx, the same property holds for
low »|2, except that the upper bound on second derivatives depentjs(gn x)
and only holds over a ball of fixeg}-radius around:.

Next, recall from the proof of Lemma 4 that the contributionsitg coming
from the various points af; lying within g,-distancet*/1° from x do not cancel
each other ak, and more precisely their complex arguments aliffer from
each other by at mog2 (k~2/°). Of course this no longer remains true as soon as
one moves away frond; still, by a computation similar to the proof of Lemma
4 we can obtain control on the manner in which the complex arguments of the
various contributions tey . differ from each other at a point close.to

More precisely, consider a geodesic ar¢oining x to a nearby poing in
N,, and letp be a point ofP, within g.-distancet*°. Then

1 Vak,p , 1 ik _ _ ,
Im A -yt dt = M Y z;dzj — z;dzj -y (1) dt
140}

Ok,p

is equal to—ga)o(x —p,y—x)+ O(kd,(x, p)zdg(x, v)), wherewy is the stan-
dard symplectic form o and the error term comes from the non-linearity of
N, in the Darboux coordinate chart. In particularpif p" andy are at bounded
gr-distance fromx then the difference of complex arguments between the contri-
butions ofoy. , andoy  to oy £(y) is given byg, , (v) = swo(p — p', y —x) +
O (k=%/°), where the first term is bounded by a fixed constant tithes, x).

Fix a large constanb > 0 (independent of andx), and let us first restrict
ourselves to the su@, . . p of the contributions of the points @t within g-
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distanceD from x. It follows from the above remarks that there exists a constant
8(D) > 0 (ofthe order o>~1) such thatoy . .. p|? is a strictly concave function

at every point ofV, N By, (x, (D)), with a uniform upper bound (independent
of k, D andx) on its second derivatives. Indeed,

l0k.L.x. 02 Zmp(yn + ) 1ok ok (9] €OSBy (1),

P#p’

Whend,, (v, x) is not too large, cog, ,» has second derivatives bounded from
above by (1) (by the above expression@f ,» and the corresponding bounds on
its firstand second derivatives); therefore, using the lower bounids 9 o |
and cosp, ./, the upper bounds on their second derivatives and the estimates on
their first derivatives near, we obtain that all the terms in the sum are strictly
concave functions, thus yielding the desired concavity propertyfor , p|2.

Moreover, since the total contribution of the remaining point®pto the
sectionoy ~ decreases exponentially fast as a functio®oft cannot affect the
concavity property provided thd is chosen large enough.

The contributions of the points within distant€!° from x reach their max-
ima overN, within g-distance0 (k~#/°) fromx and their arguments atdiffer by
O (k=2/%), while the remaining terms decrease exponentially fast iitthere-
fore, the value ofo »(x)|? is sufficiently close to the maximal possible one
in order to guarantee that the maximum|ef ~|> over N, is reached within
gr-distancen(1) from x.

Finally, the smoothness of the séf of all maxima is an immediate conse-
guence of the smoothness®@f, and of the uniform concavity property.

In the Kahler case, recall from Sect. 3.1 that the sectignsare now con-
structed using the local holomorphic sectiftz) = 1 — 3|z|> + O(|z[®), for
which the maximum ovedV, is reached not necessarlly atbut at an arbi-
trary point within g-distanceO (k=) from x; however this does not affect the
properties oﬂok,phzm that we have used. Similarly, the fact thais no longer
real-valued affects the complex arguments of the various contributionsto
both at a pointc € £ (bound byO (k~%/%) instead of0 (k=%/°) in Lemma 4,
see Sect.3.1) and outside(but it turns out that these extra contributions do
not affect the estimates); still, the argument remains valid without modification.
Finally, since the holomorphic sectien ~ differs fromo; » by an amount de-
creasing exponentially fast with it enjoys the same concavity and maximum
properties asy ¢, so that the conclusion remains valid in this case as wetl.

RemarkThe assertions of Lemma 5 are also trivially satisfied by the concentrated
sections obtained in the alternate proof of Theorem 2 outlined atthe end of Sect. 2.
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3.5. Relations with Lagrange skeleta

Let X be a compact Khler manifold, lets be a holomorphic section af®*,
transverse to 0, and consider the smooth hypersuifaees—(0). It is a result

of Biran [B] that the section determines a splittingd = B LU A, whereB is a
“standard” symplectic disc bundle ov@ and A is an isotropic CW-complex
called thd_agrange skeletoof (X, W). The skeletom is obtained as the union of

the ascending varieties of all the critical points of the plurisubharmonic function
log |s|?; it is well-known that these critical points are all of index at least
Combined with standard results in Lagrangian intersection theory, this result
provides powerful restrictions on Lagrangian embeddings. For example, any
simply connected embedded Lagrangian submanifoki must intersect either

W or A (otherwise it could be disjointed from itself by a Hamiltonian flow in

B —W).

Biran’s result is generally expected to remain valid in the more general case
of a symplectic manifold and a symplectic hypersurface “of Donaldson type”.
However, to be on the safe side we will assume throughout this sectiok fkat
Kahler, considering only the construction of Sect. 3.1.

Proposition 2. Let £ be a compact isotropic submanifold &t Then for large

k there exist holomorphic sectiomsof L®¥, transverse t® and non-vanishing
over L, such that is contained in arbitrarily small neighborhoods of the La-
grange skeletai, corresponding to their zero setg,.

Proof. We use the notations of Sect. 3.1, and consider the local behavior near
L of the transverse sectiong constructed as small perturbations of the con-
centrated holomorphic sectioag . By Lemma 5 we know that the restriction
of |6;.¢|? to each normal slic&, is locally concave and reaches its maximum
close toL. Therefore, choosing the transverse sectigndose enough t6;
we conclude that the restriction 8f = log|s;|?> to N, admits a unique local
maximum atg,-distance less thaéks from x; as in Lemma 5, the set of these
local maxima is a smooth submanifald in X, obtained fromC by an arbitrarily
small deformation.

Observe that, by construction, every critical pointigf., is also a critical
point of;, with index increased by codih. Moreover, although the uniomy, of
the ascending varieties of these critical points is not ex@gtlpne expectsitto be
a small deformation of as well. More precisely, observe that the gradierit,of
is directed inwards at every point of the boundary ofdhiabular neighborhood
Ts(L) of £ (w.r.t. gx). This implies, first, that every point of;, lies atg,-distance
less thar$ from L, since all ascending trajectories remairf§iL). Conversely,
consider the dis®, = N, N B, (x, §) and its image by the downward gradient
flow of h;: since no trajectory can re-ent&k(L), the algebraic intersection
number of the disc withC; constantly remains equal to 1, which implies that
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D, N A, is non-empty. In particulaf is contained in thé-neighborhood o#A,,
which is itself contained in the Lagrange skeleton. O

3.6. Obstructions to Lagrangian embeddings

In this section, we no longer assume thiats Kahler, but we assume thAtis
Lagrangian (i.e., dinf = n). It was suggested to us by Seidel, Viterbo and Biran
that Theorem 2 might provide obstructions to the existence of certain Lagrangian
embeddings by arguing along the following lines.

Consider the asymptotically holomorphic sectiopsf L®*, bounded from
below overL and uniformly transverse to 0, given by Theorem 2, and their zero
setsW,. It follows from Lemma 5 that, if the sections constructed in Sect. 2 are
chosen sufficiently close to the concentrated sectippstheir norms reach local
maxima over the transverse slichs along smooth submanifolds; obtained
by slightly deformingC. Moreover, after an arbitrarily small perturbation we can
assume thak, = log|s¢|? is a generic Morse function ovef — W, without
affecting the other properties.

Consider a poink € £; where the restriction ok, to £; reaches a local
minimum: it is a critical point of index: of i;. However the sections, are
asymptotically holomorphic and uniformly transverse to 0, so it follows from a
result of Donaldson [D1] that the critical poinkg are all of index at least.
Therefore, the genericity condition én implies that the stable manifold, is
atopological disc irX — Wy, with boundary mapped t&;, and intersecting’;
transversely at. Observe that\, is the image by the downward gradient flow
of h; of the small discA, N T5(L), whereTs (L) is thes-tubular neighborhood
of L. However, the downward gradient flow is pointing outwards at every point
of the boundary of’s(£), so thatx is the only intersection betweegf andA,,
and the intersection pairing between these two cycles evaluates to 1. This implies
that the homology clad<’/] € H,(X — W,) is a primitive element. Sincg] is
isotopic toL£, we obtain the following

Proposition 3. The elementl] € H,(X — W,) is primitive.

Moreover, when( is not connected we can apply the same argument to the
minima of h;, over each component individually, obtaining that the fundamental
classes of the various component&adre linearly independent primitive classes
in H,(X — W,).

When X is a complex projective manifold, working with the holomorphic
sections of Sect.3.1 and assuming moreover thi simply connected, it is
an interesting question to ask whether the smooth complex hypersuiaces
are always isotopic ik — £ to hypersurfaceg; arbitrarily close to a given
hyperplane sectio® of X avoidingL. A positive answer would imply thai’]
is primitive in H, (X — H) as well, providing a new proof of a theorem of Gromov.
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However, even though no problem with homotopy classes of section€over
is to be feared in the simply connected case, the isotopy result of Sect. 3.3 does
not apply in this context, as we have no control over the complex argument of the
holomorphic section of. ®* defining H,. Whether a refinement of Proposition 1
can handle this case or not remains an open question.
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