
PERCOLATION OF RANDOM NODAL LINES
by VINCENT BEFFARA and DAMIEN GAYET

ABSTRACT

We prove a Russo-Seymour-Welsh percolation theorem for nodal domains and nodal lines associated to a natural
infinite dimensional space of real analytic functions on the real plane. More precisely, let U be a smooth connected bounded
open set in R2 and γ, γ ′ two disjoint arcs of positive length in the boundary of U. We prove that there exists a positive
constant c, such that for any positive scale s, with probability at least c there exists a connected component of the set
{x ∈ Ū, f (sx) > 0} intersecting both γ and γ ′, where f is a random analytic function in the Wiener space associated
to the real Bargmann-Fock space. For s large enough, the same conclusion holds for the zero set {x ∈ Ū, f (sx) = 0}.
As an important intermediate result, we prove that sign percolation for a general stationary Gaussian field can be made
equivalent to a correlated percolation model on a lattice.
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1. Introduction

In this paper, we prove that for a natural infinite dimensional space of analytic
functions, for any fixed open connected set U in the real plane, with uniformly positive
probability there exist connected components of the zero set of the random function
which cross arbitrary large homothetical copies of U. This result lies at the intersection
of two almost disjoint fields of geometric probability. The first one involves the geometry
of zeros of smooth Gaussian functions on the affine real space or on a compact manifold,
the other concerns percolation, Ising model and Gaussian free field for instance. A main
qualitative difference between the two fields is the presence in the second one of large
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FIG. 1. — Left: critical Bernoulli percolation. In red, a percolating cluster. Right: analytic percolation. In red, a percolating
nodal domain (color figure online)

scale phenomena arising from the microscopic behavior, beginning with Russo-Seymour-
Welsh theory in percolation, see below. Our result establishes large scale phenomena
happening in the first field, using methods coming from both sides.

In this introduction, we first recall some topics and results in these classical do-
mains, then we state our main results, we discuss how the Bargmann-Fock space is related
to random algebraic geometry, we recall the Bogomolny-Schmidt conjecture and lastly
we propose some open questions.

Geometry and topology of random nodal sets. — For a stationary (i.e. invariant in distribution
under translations) Gaussian field f on the affine space Rn, two main subjects have been
studied, namely the statistics of the volume and the Euler characteristic of zero sets of f in
a large ball, see for instance the book [1] and references therein. Since these observables
can be computed locally by integral geometry and the Gaussian field is smooth, the main
tool is the Kac-Rice formula.

On a compact manifold, two very natural types of Gaussian random functions
have been studied. If M is equipped with a Riemannian metric, we can consider Gaus-
sian random independent sums of eigenfunctions of the Laplacian with eigenvalues less
than a parameter L. If M denotes the complex or real projective space, one can study
random homogeneous polynomials of degree d with Gaussian independent coefficients
(more generally holomorphic sections of the d-th power of a holomorphic line bundle
over a Kähler manifold or its real part). For nodal sets of positive dimension, their mean
volume was first studied in [10] (in the Riemannian case). In [41], the authors studied
the integration current over nodal hypersurfaces in a very general complex algebraic set-
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ting. Note that in this case, and contrary to the real algebraic case, the topology of the
random set is deterministic. In [38] the mean Euler characteristic was computed (in the
real algebraic case).

In [34] and [20], observables which cannot be computed locally were estimated,
beginning with the number of components the zero set of the random function. In [23],
higher Betti numbers were studied. The universal presence of given diffeomorphic types
(included arrangements of ovals) in the zero sets was proved in [22]. The survey [4]
provides further references.

In both models, the correlation function of the Gaussian field rescales naturally
under the action of the parameter (the eigenvalue bound L or the degree d ) and con-
verges to a universal kernel on the affine space. Finding the limit of this rescaling is trivial
for standard geometries like the round sphere or the flat torus, and in general can be ex-
tracted from deep results of semi-classical analysis [29] and complex analysis [45, 46]. In
the general algebraic case, this kernel is precisely the kernel we use in this paper, see [11].
Hence, the Bargmann-Fock model is a natural universal algebraic limit model.

Percolation. — The main contribution of this paper is to bring to the topic of random
nodal lines ideas and techniques originated from percolation theory. In its simplest form,
Bernoulli percolation [16] is defined as follows: color each vertex of a periodic lattice
T independently either black or white, with probability p and 1 − p respectively, and
define the random subgraph G of T formed of all the vertices colored black and of the
edges joining them. There exists a critical parameter pc such that G has a.s. no infinite
connected component if p < pc, and a.s. at least one infinite component if p > pc; what
will be relevant to us is the behavior of G at the critical point, in dimension 2. We refer
the reader to [7, 26] for further references on the model.

If T is a periodic triangulation of the plane with enough symmetry (in practice,
one typically works on the triangular lattice or the “Union-Jack lattice”, i.e. the face-
centered square lattice), it is a classical result tracing back to Kesten [30] that pc = 1/2;
the fundamental reason for this being a duality between white and black clusters on T ,
each finite cluster being surrounded by a cluster of the other color. It was proved by
Harris [28] that at the critical point, with probability 1 the random graph G has no
infinite component.

One crucial technique on critical two-dimensional percolation, which we will ex-
tend to the setup of random nodal lines, is known as Russo-Seymour-Welsh theory [39,
40] and leads to the box-crossing property of Bernoulli percolation: namely, for every ρ > 1
there exists a positive bound c(ρ) such that every rectangle of size ρs × s is traversed in its
long dimension by a black cluster with probability at least c(ρ), uniformly in s. This read-
ily extends to the crossing of quads, which are regions of the form sU where U is a simply
connected domain with two disjoint marked boundary intervals γ and γ ′: the probability
that sU contains a black cluster connecting sγ to sγ ′ is bounded below uniformly in s.

The box-crossing property has many consequences. First, it implies that even
though there is no infinite cluster, every box of size n contains a black cluster of diameter
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of order n. It also implies the non-existence of an infinite cluster and moreover quantifies
it: the probability that the origin is in a cluster of diameter L is then bounded above by
L−η for some η > 0. It is the main tool used in the control of the geometry of critical clus-
ters [2], and a fundamental ingredient in the obtention of Schramm-Loewner Evolution
as a scaling limit [17, 43].

Russo-Seymour-Welsh theory has been extended to dependent models [18], as well
as to some random [15, 44] or non-planar [6, 36] lattices. It remains an open problem
to generalize it to triangulations without symmetries. Our main statement in this paper is
that the box-crossing property applies to random nodal lines.

The main result. — Let A be the space of real analytic functions on R2, and 〈, 〉BF the
scalar product defined, when it exists, by

(1.1) ∀f , g ∈A, 〈 f , g〉BF =
∫

C2
F(z)G(z)e−‖z‖2 dx

π 2
,

where F and G are the complex extensions of f and g. The real Bargmann-Fock space
F is the space of functions in A which have finite norm for this product. This Hilbert
space induces a natural abstract Wiener space W(F) of analytic functions, see Ap-
pendix A.1. More concretely, we can choose a Hilbert basis of F , for instance the mono-
mials ( 1√

i!j!x
i
1x

j

2)i,j∈N. Then, a random function of W(F) is of the form

(1.2) ∀x = (x1, x2) ∈ R2, f (x) =
∞∑

i,j=0

aij

1√
i!j!x

i
1x

j

2,

where the coefficients (aij)i,j∈N are independent real normal variables. For almost all real-
izations of the coefficients, this sum does not converge in F , but almost surely it converges
uniformly on every compact of R2, so that it converges as an analytic function. Note that
the correlation function of this Gaussian field equals

∀(x, y) ∈ (
R2

)2
, eW(F)(x, y) = EW(F)

(
f (x)f (y)

) = exp〈x, y〉.
A more convenient way to see this set of random functions is to choose, as our space of
random analytic functions,

(1.3) W =
{

x 
→ f (x) exp
(

−1
2
‖x‖2

)
, f ∈W(F)

}

instead of W(F). Notice that the signs and the zeros of the functions are not changed
when passing from one space to the other. Then, it is immediate to see that the correlation
function associated to W equals

(1.4) ∀(x, y) ∈ (
R2

)2
, eW(x, y) = EW

(
g(x)g(y)

) = exp
(

−1
2
‖x − y‖2

)
.
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In other words, this model is in fact the analytic stationary Gaussian field on R2 with
covariance eW .

Theorem 1.1. — Let � = (U, γ, γ ′) be a quad, that is a triple given by a smooth bounded

open connected set U ⊂ R2, and two disjoint compact smooth arcs γ and γ ′ in ∂U. Then, there exists a

positive constant c such that for any positive s, with probability at least c there exists a connected component

of {x ∈ Ū, f (sx) > 0} intersecting both γ and γ ′, where f is a random element of W(F) or W with

distribution as above. For s large enough, the same conclusion holds for the nodal set {x ∈ Ū, f (sx) = 0}.
Remark 1.2. — In fact, we prove the more general Theorem 4.9 which holds for

f being a C4 random stationary Gaussian field whose correlation function is positive, is
invariant under horizontal symmetry, and decreases polynomially with the distance be-
tween points, for a degree larger than 144 + 128 log4/3(3/2) < 325. This number should
not be taken too seriously, since it can be lowered if the constants in the proofs are more
accurately estimated. After we posted a preliminary version of this paper online, Beliaev
and Muirhead [9] developed a more precise discretization scheme which allowed them
to lower this bound to 16.

Remark 1.3. — Note that the probability that a given ε × ε square intersects a
nodal line at all goes to zero with ε (see Lemma 3.12). In particular, the restriction on s

for nodal crossings in Theorem 1.1 is necessary.

The usual consequences of the box-crossing property for percolation include esti-
mates for the probabilities of various connection events, and they all apply here. We do
not make a full list but just choose to mention one striking corollary:

Theorem 1.4. — Let π(s, t) be the probability that there exists a positive line (resp. a nodal

line) from [−s, s]2 to the boundary of [−t, t]2. There exists η > 0 and C > 0, such that, for every

1 � s < t,

π(s, t) � C
(

s

t

)η

.

The following corollary was already proved by K. S. Alexander, see [3], for the
nodal lines and for general positive kernels.

Corollary 1.5. — With probability 1, none of the sets f −1({0}), f −1(R∗
+) and f −1(R∗

−) has

an unbounded connected component.

Some heuristics. — In Theorem 1.1, the first assertion concerning nodal domains can be
seen as the statement of a box-crossing type property for the random coloring of the plane
given by the sign of the function f . We therefore have to prove that a crossing where f
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is positive exists with uniformly positive probability, which is precisely the kind of results
produced by Russo-Seymour-Welsh theory.

Moreover, the second assertion can be deduced from the first one, if there is enough
independence for the sign of f between two disjoint domains. Indeed, the simultaneous
existence of a path from γ to γ ′ along which f is positive, and a similar path along which
it is negative, implies the existence of a component of the zero set of f in between.

The biggest issue to overcome is the rigidity created by the analyticity of the func-
tion f . We are basing our approach on a RSW result for dependent models by Tas-
sion [44], but even though the correlation kernel of f has fast decay, this does not imply
that the restrictions of f to disjoint open sets are decorrelated—to the contrary, analytic
continuation shows that the restriction of f to any neighborhood specifies f in the whole
plane. Even knowing the sign of f on an open set V can be enough to reconstruct f up to
a multiplicative constant, as soon as V intersects the zero set of f .

To address the issue, we will discretize the model by considering the restriction of f

to the vertices of a lattice of mesh ε lying in our rescaled domain sU. The mesh has to be
chosen with some care: it has to be coarse enough for the restricted model to have small
correlation, and to avoid the effects of the rigidity; but at the same time it should be fine
enough to ensure that the knowledge of the sign of f on the lattice suffices to determine
the topology of its nodal domains.

Note that in [33], the authors also used a discretization procedure to show the
existence of a phase transition for certain continuous fields. However, since they work far
away from criticality, the comparison arguments are technically much simpler.

Discretization. — One of our main tools is Theorem 1.6, which holds for general smooth
enough stationary Gaussian fields, hence has its own interest.

Theorem 1.6. — Let f be a C4 random stationary Gaussian field on R2 satisfying the non-

degeneracy condition (3.5), T be a periodic lattice, and E be its set of edges. Fix η > 0. Then there

exists s(η) > 0, C(η) > 0 and α(η) > 0 such that for every s � s(η), every δ > 0 and every

ε � C(η)δα(η)s−8−η, with probability at least 1 − δ the following event happens:

(1.5) ∀e ∈ εE ∩ Bs, #
(
e ∩ f −1(0)

)
� 1.

This theorem proves that for every scale s large enough, the discretization on a
lattice of mesh small enough (polynomially decreasing with s), provides on the box [−s, s]2

a family of percolation processes which catch the topology of the continuous percolation
process. Indeed, under the event (1.5), two adjacent vertices in εT are of same sign for f

if and only if f is of this constant sign on the edge between them, so that a percolation for
positive signs in εT through the length of any rectangle inside [−s, s]2 means exactly the
existence of an analogous continuous positive percolation for the field.
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Bargmann-Fock and polynomials. — Consider a real random homogeneous polynomial of
degree d ,

(1.6) P(X) =
∑
|I|=d

aI

√
(d + n)!

I! XI,

where X = (X0, . . . ,Xn) ∈ RPn are the projective coordinates, I = (i0, . . . , in) ∈ Nn+1,
|I| = i0 + · · · + in, I! = i0! · · · in!, XI = Xi0

0 · · ·Xin
n and the (aI)I are independent normal

random coefficients. This measure on polynomials is very natural because it has a geo-
metric nature: the monomials form an orthonormal basis for the Fubini-Study L2-norm

‖P‖2 =
∫

CPn

‖P(z)‖2
FSdvol(z),

where the ‖ · ‖FS denotes the Fubini-Study norm on the d-th power O(d) of the hyper-
plane bundle over the complex projective space, and dvol is the uniform volume form on
CPn of total volume equal to 1. Note that we integrate over the complex manifold CPn

and not RPn. Kostlan [31] and independently Shub and Smale [42] proved, for instance,
that with this measure and for n = 1, the average number of real roots of a real polyno-
mial of degree d is precisely

√
d , for every d . This algebraic random model is in fact very

general and holds in the realm of holomorphic sections of the high powers d of an ample
line bundle over any compact complex manifold (see [41]), as well as the real version of
them (see [20]).

On the chart X0 �= 0 of RPn, consider now the affine rescaled coordinates ∀i ∈
{1, . . . , n}, xi =

√
d Xi

X0
. The associated renormalized and rescaled affine random polyno-

mial p defined by

∀x ∈ Rn, p(x) := 1√
d

n P
(

1,
x√
d

)

satisfies

p(x) =
∑
| J|�d

a(d−| J|,J)

√
(d + n)!

(d − | J|)!J!
xJ

√
d

n+| J| →
d→∞

∑
J∈Nn

ãJ
xJ√
J! ,

where the coefficients (ãJ)J∈Nn are independent normal variables. In particular in dimen-
sion n = 2 the limit is precisely the random function f given by (1.2). Moreover, the
Fubini-Study L2-norm of the rescaled polynomials converges the norm (1.1). In fact, the
more general process of random holomorphic sections of large powers of ample holomor-
phic line bundles over projective manifolds (and their real counterpart) rescale asymptot-
ically to this universal process, too. This gives to the Bargmann-Fock space a universal
algebraic origin.
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The Bogomolny-Schmidt conjecture. — In [13] and [14], the authors studied the nodal lines
of random sums of Gaussian waves in the real plane:

(1.7) ∀x ∈ R2, g(x) =
∞∑

m=−∞
amJ|m|(r)eimφ

Here (r, φ) denotes the polar coordinates of x, Jk denotes the k-th Bessel function, and
(am)m∈Z are independent normal coefficients. The correlation function for this model
equals (see [14])

(1.8) e(x, y) = E
(
g(x)g(y)

) = J0(‖x − y‖),
hence is stationary, depends only on the distance between points, and decays polynomi-
ally in this distance, with degree 1/2.

The authors associated to this random analytic model a discrete percolation-like
model, and gave heuristic evidence that both model should be close. In particular, their
work suggests that nodal lines should cross arbitrary large rectangles of fixed shape, with
uniformly bounded probability. Numerical evidence was then obtained by several authors
(see e.g. [12] and [8]).

As we will explain below, see Remark 4.8, our main result does not apply for this
model since the decorrelation decay is too weak. Moreover, one of the main ingredient
of the proof of Theorem 1.1 is the important FKG inequality given by condition 1. of
Definition 2.1 below. Indeed in our case, it is the consequence of the positivity of the
correlation function, but for random waves, the sign of the correlation function is not
constant.

On the other hand, Theorem 1.6 applies to the model of random waves. Since the
association of the model to a discrete percolation in [13] is based on two simplifications,
namely the periodic distribution of the critical points and the independence of the process
in space, Theorem 1.6 could be a more realistic mathematical way to handle the problem.

Questions. — From this present work natural questions arise.

• What is the mean number of finite connected components per
square?
In [34] and [35], the authors proved the existence of a non explicit asymp-
totic equivalence of the number of connected components of the nodal sets. In
[25], [22], [21] and [24], the authors gave explicit lower and upper bounds for
the expected Betti numbers of the nodal sets. However, these bounds are differ-
ent, although the upper ones allow to get an asymptotic equivalent of the Euler
characteristic (see [32]). In [13], the authors gave a heuristic way to compute the
equivalence. Since their bond percolation has no correlation, they can use com-
putations that give asymptotics for connected components of the percolation.
Theorem 1.6 might possibly give new estimates of these constants, if discrete
computations for correlated models can be performed.
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• Do Bargmann-Fock random nodal lines converge to SLE(6)?
In a celebrated paper [43], Smirnov proved that for the triangular lattice, perco-
lation interfaces converge, as the scale of the lattice tends to zero, to SLE(6). Can
we prove a similar result for Bargmann-Fock nodal lines? This is conjectured to
hold, and supported by numerical evidence, in the case of random plane waves.
In the case of percolation, RSW bounds are crucial, as is the obtention of a
conformally invariant observable.

• Do algebraic nodal lines behave like critical percolation?
As explained before, our stationary model is in fact the universal model that
arises in a very general algebraic situation. It is very likely that the following
counterpart of Theorem 1.1 is true: Fix a smooth bounded open set U in R2 and two

arcs γ , γ ′ in its boundary. Then, there exists a positive constant c, such that for any degree d

large enough, for a random polynomial

p(x1, x2) =
∑

i+j�d

aij

xi
1x

j

2√
(d − (i + j))!i!j!

with i.i.d. Gaussian coefficients aij , with probability at least c there is a connected component

in U of the vanishing locus of p touching both γ and γ ′. This model converges to our
analytic model, but unfortunately, it is no longer invariant by translation. This
loss of symmetries, though small and vanishing in the limit, is fatal to some of
the arguments we use.

Structure of the article. — In Sect. 2, we recall the main steps of Tassion’s theorem in order
to keep track of all the constants involved in the proofs. In Sect. 3, we obtain some simple
results for general Gaussian fields and their link with the FKG inequalities. In Sect. 4, we
first state a RSW theorem for the sign over a fixed lattice of a general correlated Gaussian
with sufficiently correlation decay. Then we give the proof of Theorem 1.1, assuming
that Theorem 1.6 is true. In the last Sect. 5, we prove Theorem 1.6, which shows that
on large rectangles, the percolation process given by the sign of the random function is
equivalent to the discrete percolation process given by the sign on the vertices of a lattice
with sufficiently small mesh size, which is quantitatively estimated. In the appendix, we
explain the general construction of the Wiener space associated to a Hilbert space, and we
state a quantitative implicit function theorem that is used for the proof of Theorem 1.6.

2. Tassion’s theorem

2.1. Statement.

Notations, definitions and conditions. — We consider a random process � on the plane R2,
such that any point of R2 has a random color, black or white. In this article, we will con-
sider two main processes. First, for any random Gaussian field f on R2, �( f ) will denote
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the coloring by sign (black if positive, white in the other case). Second, if T is a lattice,
�( f ,T ) will denote the following coloring: a point x in R2 is black if x belongs to an
edge between two vertices at which f is positive, and white otherwise, see Definition 3.1.

• Recall that there exists a natural partial order on the elements of �, choosing
white < black at every point of R2. By definition, a black-increasing event A of the
coloring process � is such that for any φ,ψ ∈ � with φ ∈ A and φ � ψ , then
ψ ∈A.

• For any ρ � 1 and s > 0, denote by fs(�,ρ) be the probability that there exists
a left-right black crossing in the rectangle [0, ρs] × [0, s], that is a continuous
curve of black points contained inside the rectangle and joining {0} × [0, s] to
{ρs} × [0, s].

Definition 2.1. — Fix a coloring process � as defined above, let us set the following conditions:

1. (FKG inequality) If A, B are two black-increasing events, we have

P[A∩B] � P[A]P[B].
2. (Symmetries) The measure is invariant under Z2-translation, π/2-rotation centered at ele-

ments of Z2 and reflection with respect to the horizontal axis (Ox).

3. (Percolation through squares) There exists c0(�) > 0 such that

∀s ∈ N∗, fs(�,1) � c0(�).

When no confusion is possible, we will omit the reference to �.

We will use a recent theorem proved by V. Tassion, which establishes a RSW-type
theorem in a general setting. Unfortunately, the statements in the article [44] cannot be
directly applied here for two reasons.

• The first reason is not very fundamental, and can be omitted in a first reading.
In [44], the two conditions 2. and 3. hold for any real translation and real sizes.
More precisely, the analogous of condition 3. was the stronger condition

(2.1) ∀s � 1, fs(�,1) � c0(�),

see [44, (1)]. Since we apply Tassion’s theorem to the sign of a fixed function
on lattices which are ε-rescaled copies of the Union Jack lattice T , we can only
get uniform percolation, in fact with probability 1/2, on squares which are the
union of fundamental squares of εT . Changing even a bit these squares changes
a priori the probability of percolation, and it is not clear how. This is the reason
why we replace (2.1) by 3.
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• The second reason is crucial for our work. The article [44] is written for a fixed
model, so that the constants arising in its theorems and their proofs are not in
general explicit. However, as explained before, we need to apply these results
for a family of processes �( f , εT ), see Definition 3.1 below, where the mesh
will have a decreasing size ε. For this reason, we have to keep track all of the
involved constants.

Tassion’s quantitative theorem. — Here is a quantitative version of the main Theorem of
[44]. We emphasize that this statement is essentially the one given by Tassion and does
not add any fundamental information.

Theorem 2.2 (see Tassion [44]). — For any ν ∈ ]0,1/2[, there exists a positive continuous

function Pν defined on [1,+∞[ × ]0,1[, such that for any model � satisfying the conditions of

Definition 2.1, we have

∀ρ � 1, ∀s ∈ N∗, s � tν(�) ⇒ fs(�,ρ) � Pν

(
ρ, c0(�)

)
,

where c0(�) is given by condition 3. in Definition 2.1 and tν(�) ∈ [1,+∞] is given by formula (2.9)

below.

Remark 2.3. — In [44], the result is stated without the restriction s � tν(�), since,
on one hand, tν(�) < +∞ is implied by the additional condition (iii) of [44, Remark 2.2].
On the other hand, even if we know that tν(�) is finite, we still need to uniformly esti-
mate the probability of percolating in boxes of sizes smaller than tν(�), which can be
done easily for an individual process. However, these probabilities have no reason to be
uniformly bounded from below over a collection of models.

The continuous model �( f ) associated to the signs of the random analytic field
with correlation eW given by (1.4) satisfies the three conditions of Definition 2.1. How-
ever, there is no direct control of the parameter tν(�), because this parameter is related
to the independence of the field at different points. As explained before, in our case the
analytic continuation principle means that local knowledge on the function is enough
to determine it globally, so that a priori tν(�) is infinite and Theorem 2.2 empty. To
bypass this obstruction, we will discretize our continuous model, in order to extract the
relevant information without discovering too much. In order to satisfy the symmetry as-
sumption 2. in Definition 2.1, we choose a symmetric periodic triangulation invariant by
horizontal reflection and π/2 rotation, for instance the face-centered square lattice, see
Definition 3.3. We will consider a lattice with mesh size ε > 0. We will need to adapt this
size to the size of the rectangles, see Theorem 1.6, which is the reason why we need to
keep track of the constants in Tassion’s theorem.

The rest of this section summarizes the principal lemmas of [44] and is devoted
to the explanation of their quantitative refinements that we need for our own results. We
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do not repeat the whole proofs of the lemmas; instead we only explain in which way our
weaker and quantitative conditions change them. The reader not interested in these tech-
nical refinements is advised to read Tassion’s article [44] and then to go on with Sect. 3,
where Theorem 4.7 gives an explicit bound for tν(�) for the cases we are interested in.
However, even if this bound is proved in Sect. 3, it depends on other parameters which
we introduce in the rest of this present section. In particular, we introduce

• the function φ(�, ·) given by (2.3),
• the function α(�, ·) given by Lemma 2.7,
• the parameter s(�) given by (2.6),
• and the main parameter tν(�) given by (2.9).

2.2. Control of the constants. — We consider in this subsection a random process �

on the plane R2, such that any point of R2 has a random color, black or white, and which
satisfies the three conditions of Definition 2.1. We follow the lemmas of [44], keeping
track of the constants, in order to get the quantitative Theorem 2.2, and in particular an
upper bound for the important parameter tν(�). Moreover, we must take in account the
weaker condition 3. in the proofs.

Notation. — We begin with further notations, which are chosen when possible to be close
to the ones in [44].

• For any n ∈ N∗ and any s � 0, define Bs = [−s, s]n ⊂ Rn.
• For n = 2 and any 0 � s � t < ∞, As,t denotes the annulus Bt \ Bs.
• For any s > 0, define As = {there exists a black circuit in the annulus As,2s}.
• For any S ⊂ R2, σ(S) denotes the sigma-algebra defined by the events measur-

able with respect to the coloring in S.
• For any pair (S,T) of subsets of R2, denote by φ(�,S,T) the number

(2.2) φ(�,S,T) = sup
A∈σ(S),B∈σ(T)

∣∣P[A∩B] − P[A]P[B]∣∣,

and by φ(�, ·) the function

(2.3) s ∈ R∗
+ 
→ φ(�, s) = φ

(
�,A2s,4s,B(s) ∪ A5s,s log s

)
,

see (iii) of [44, Remark 2.2].

Remark 2.4.

• In particular, on an event with probability at least 1−φ(�, s), the signs on A2s,4s

and the signs on B(s) ∪ A5s,s log s can be coupled with the realization of a pair of
independent colorings.
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• The counterpart of the definition of φ(�, s) in item (iii) of [44, Remark 2.2] is
φ(�,A2s,4s,R2 \ As,5s). For our percolation model, we could not obtain inde-
pendence on subset of infinite area like R2 \ As,5s. On the other hand, Tassion’s
theorem needs only asymptotic independence between A2s,4s and B(s) ∪ A5s,C1s

for a certain fixed constant C1 > 0, see Lemma 2.10 below, hence the presence
of the log s term, which is larger than C1 for s large enough.

• Twice in our proofs, we will need φ(�, ·) to have polynomial decay with suffi-
ciently high degree, first in Tassion’s argument in order to get sign percolation
on large rectangles, see Lemma 2.10 below, and second in the topological argu-
ment given above: the existence of a percolating nodal line will be given by the
percolation of a positive line and a parallel negative line. We must then know
that the two latter events are almost independent, see the end of the proof of
Proposition 4.11.

• In our case where the color is given by the sign of a random Gaussian field f ,
the polynomial decay of φ(�, ·) is the consequence of the polynomial decay of
the correlation function of f , see Proposition 4.1.

From now on to the end of this section, we explain how the proofs of [44] can
be amended. We do not repeat the arguments, so that again, the interested reader may
prefer to first read [44].

Amending Tassion’s lemmas. — The following Lemma from [44] will be useful. It compares
the probabilities of crossing a rectangle and the existence of a black circuit. We added the
third assertion for a comparison of these probabilities between two different rectangles.

Lemma 2.5 ([44, Corollary 1.3]). — Let s, s′ ∈ N∗ with s � s′. Then

1. fs(�,4)4 � P[As] � fs(�,2),

2. fs(�,1 + iκ) � fs(�,1 + κ)i fs(�,1)i−1 for any κ > 0 and any i � 1,

3. Let ρ,ρ ′ > 1. Then, fs′(�,ρ ′) � fs(�,ρ)1+2 max(0,
ρ′s′−ρs
�(ρ−1)s� ).

Proof. — The last assertion is trivial if ρ ′s′ � ρs, since then fs′(�,ρ ′) � fs(�,ρ). In
the other case, using the condition 2. of Definition 2.1, it can be proved using a sequence
of rectangles translated and π/2-rotated from [0, ρs]×[0, s], alternatively horizontal and
vertical, in order to cross the larger rectangle [0, ρ ′s′] × [0, s′]. �

Remark 2.6. — If the lower bounds fs(�,ρ) given by Theorem 2.2 for an integer s

hold for rectangles translated by elements of R2, and not only by elements of Z2, then by
similar arguments, we can replace s ∈ N∗ by s � 1 in the statement of Lemma 2.5.

The quantitative parameter tν(�) of Theorem 2.2 is itself related to the important
function s 
→ α(�, s) defined in [44, Lemma 2.1]. We recall its definition. For this, let
s � 1 and −s/2 � α � β � s/2, and let us set (see Fig. 2 for an illustration)
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FIG. 2. — The events Hs(α,β) and Xs(α) (from [44])

• Hs(α,β) to be the event that there exists a black path in the square Bs/2, from
the left side to {s/2} × [α,β];

• Xs(α) to be the event that there exists in Bs/2 a black path γ−1 from {−s/2} ×
[−s/2,−α] to {−s/2} × [α, s/2], a black path γ1 from {s/2} × [−s/2,−α] to
{s/2} × [α, s/2], and a black path from γ−1 to γ1.

Lemma 2.7 ([44, Lemma 2.1]). — There exists a universal polynomial Q1 ∈ R[X], positive

on ]0,1[, such that for every s ∈ 2N∗, there exists α(�, s) ∈ [0, s/4] satisfying the following two

properties:

(P1) P[Xs(α(�, s))] � Q1(c0(�)).

(P2) If α(�, s) < s/4, then P[Hs(0, α(�, s))] � c0(�)/4 + P[Hs(α(�, s), s/2)].
Proof. — In [44], α(�, s) is denoted by αs, and Q1(c0) by c1, which is equal to

c0(c0/8)4. The main difference between our setting and Tassion’s is that our a priori
bounds only hold for squares of integer sizes, which is why we state the lemma only for s

in 2N∗. The argument is otherwise exactly the same. �

The following lemma allows to get a black circuit (and hence a percolation in a
rectangle by Lemma 2.5) at any large scale, if we have a good control of the function
α(�, ·). First, for any s ∈ N∗, define

(2.4) k(s) ∈ {0, . . . ,5}, s + k(s) ≡ 0 mod [6].
Lemma 2.8 ([44, Lemma 2.2]). — There exist two universal polynomial q2, q̃2 ∈ R[X],

positive on ]0,1[, such that if Q2(c0) := min(q2(c0), q̃2(c0)), then

∀s ∈ 3N∗, α
(
�, s + k(s)

)
� 2

⌊
α(�,2s/3)

⌋ ⇒ P[As+k(s)] � Q2(c0),

Proof. — First, we prove the lemma without the floors, the integer condition on s

and with k(s) = 0. In [44], Q2(c0) is denoted by c2. The proof of [44, Lemma 2.2] gives
that either

P[As] �
(
Q1(c0)

15c2
0

)4 := q2(c0),
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or fs(�,4/3) � Q1(c0)(c0/4)2. By Lemma 2.5, in this case

P[As] �
(

fs(�,4/3)9c8
0

)4 �
((

Q1(c0)(c0/4)2
)9

c8
0

)4 := q̃2(c0).

Now, we add the floors, the integer condition and the integer k(s). In the proof of [44,
Lemma 2.2], we change α2s/3 into �α2s/3� any time it appears, and we change a bit the
square R into

R =
(

−1
6

(
s + k(s)

)
,−�α2s/3�

)
+ B(s+k(s))/2,

while R′ = ((s + k(s))/6,−�α2s/3�) + R(s+k(s))/2. Then thanks to these floors and the re-
striction s + k(s) ∈ 6N, R, R′ and Bs/3 have vertices with integral coordinates, so that
condition 3. of Definition 2.1 can be applied. Moreover, since

α
(
�, s + k(s)

)
� 2

⌊
α(�,2s/3)

⌋
� 2α(�,2s/3),

we still get the intersection of the events X (α(�,2s/3)) in Bs/3 and with the event E
and E ′, with the same probabilities without the integer and floor additions. �

Lemma 2.9 ([44, Lemma 3.1]). — There exists a universal continuous positive function Q3

defined on ]0,1[, such that the following holds: for every s � 1 and t ∈ 2N∗, t � 4s, if P[As] �
Q2(c0) and α(�, t) � s, then P[At] � Q3(c0).

Proof. — In [44], Q3(c0) is denoted by c3, and can be chosen to be

Q3(c0) := (
Q2(c0)(c0/4)2

)3
c2
0,

with Q2 given by Lemma 2.8. The integer constraint allows to apply the proof since
the restricted condition 3. then applies for the boxes [−t,0] × [−t/2, t/2] and [0, t] ×
[−t/2, t/2]. �

Now, define

τ1 : ]0,1[ → [4,∞[(2.5)

c0 
→ τ1(c0) = max
{

4, exp
[

log 5 log(c0/8)

log(1 − Q3(c0)/2)
+ log 5

]}
,

where Q3 is defined by Lemma 2.9. In [44, Lemma 3.2], τ1(c0) is denoted by C1, where
C1 is any constant satisfying C1 � 4 and

(1 − c3/2)�log5(C1)� < c0/4,
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with c3 = Q3(c0), see (5) in [44, Lemma 3.2]. Note that we replaced the right-hand side
c0/4 by c0/8 for our definition of τ1. This is due to the proof of our version of Lemma 2.10
of [44, Lemma 3.2], see below. Now, define the integer

(2.6) s(�) = max
{

s ∈ N∗, s � exp
(
τ1(c0)

)
, φ(�, s) � c0

16
Q3(c0)

}
,

where φ(�, ·) is defined by (2.3) and Q3 is given by Lemma 2.9. Note that

(2.7) ∀s � s(�), sup
A∈σ(A2s,4s)

B∈σ(B(s)∪A5s,τ1(c0)s)

|P[A∩B] − P[A]P[B]| � c0

16
Q3(c0).

The parameter s(�) estimates the scale s from which events on rings of size of order s

and separated from each other by s are almost independent, see Remark 2.4. In [44],
s(�) is denoted by s0, without the condition of being an integer and larger than exp(τ1),
and related to the particular event Fs associated to Voronoi percolation, see condition (4)
before [44, Lemma 3.2].

Lemma 2.10 ([44, Lemma 3.2]). — For any s ∈ N∗, s � s(�), if P[As � Q2(c0)], then

there exists s′ ∈ [4s, τ1(c0)s] ∩ N∗ such that α(�, s′) � s.

Proof. — The proof is almost the same, but we replace the inequality (7) in [44] by
P[A5i s] � Q3(c0) and (8) by

P
[
E c

]
� P

[ ⋂
1�i��log5(C1)�

Ac
5i s

]
.

We apply inequality (2.7) in order to get

P
[ ⋂

1�i��log5(τ1)�
Ac

5i s

]

� P
[
Ac

5s

]
P
[ ⋂

2�i��log5(τ1)�
(A5i s)

c

]
+ c0

16
Q3 � · · ·

�
∏

1�i��log5(τ1)�
P
[
Ac

5i s

] + c0

16
Q3

∑
0�i��log5(τ1)�−2

∏
1�j�i

P
[
Ac

5j s

]

� (1 − Q3/2)�log5(τ1)� + c0

16
Q3

∑
0�i��log5(τ1)�−2

(1 − Q3/2)i

< c0/4.

We used (2.5) in the last inequality. The formulation with the integer condition is straight-
forward since in the proof 5is ∈ N∗, and we just choose �C1s� instead of C1s. �
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We can now define the main quantitative parameter tν(�). For any ν ∈ ]0,1/2[,
set

(2.8) γ (ν) = 1 + log4/(3+2ν)(3/2 + ν) > 1

and

(2.9) tν(�) = (3/2 + ν)sν(�)γ (ν)α
(
�, sν(�)

)1−γ (ν)
,

where

(2.10) sν(�) = max
(
s(�), �6/ν� + 1

)
,

see (2.6) for the definition of s(�) and Lemma 2.7 for α(�, ·). In the rest of the article,
we will write α(·) instead of α(�, ·) when the process � is explicit.

Lemma 2.11 ([44, Lemma 3.3]). — For any τ ∈ ]0,1/2[, there exists a continuous universal

function τ3,ν : ]0,1[ → [4,∞[ and an infinite sequence (si)i∈N∗ ∈ (6N∗)N∗
such that

• s1 � tν(�),

• ∀i � 1,4si � si+1 � τ3,ν(c0)si ,

• and P[Asi
] > Q2(c0).

Proof. — In order to obtain the existence and an estimate of s1, let us define the
following sequence (σp)p∈N: σ0 = sν(�) ∈ N∗, see (2.10), and for any p ∈ N∗,

σp+1 = 3
2
σp + k

(
3
2
σp

)
∈ 6N∗

where the function k is defined by (2.4). For any s � 6/ν, k(s) � νs, so that

∀p ∈ N, σp � (3/2 + ν)psν(�).

Denote by N the first p ∈ N∗, such that α(�,σp+1) � 2α(�,σp). Then

(3/2 + ν)Nsν(�) � σN > α(�,σN) > 2Nα
(
sν(�)

)
so that

N � log
(

sν(�)

α(sν(�))

)
log−1

(
4

3 + 2ν

)
.

Choose

s1 := σN+1 � (3/2 + ν)N+1sν(�).

Then s1 � tν(�), by (2.9). Moreover by Lemma 2.8, we have P[As1] � Q2(c0). The exis-
tence of the rest of the sequence (si)i�2 follows the same lines than [44]. If ν = 0, τ3,0(c0)
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is denoted by C3 by Tassion and is defined by C3 = C
1+log4/3(3/2)

1 , where C1 is our τ1(c0)

defined by Lemma 2.10. In the case ν > 0 we just change C3 into

τ3,ν(c0) = C
1+log4/(3+2ν)(3/2+ν)

1 .

This concludes the proof. �

Proof of Theorem 2.2. — If (ρ − 1)s < 1, then fs(�,ρ) = c0 and there is nothing to
prove. From now on, we assume that the converse holds, which implies that �(ρ − 1)s� �
(ρ −1)s/2. For any i � 1, we want to prove uniform percolation for integer sizes between
si and si+1. By assertions 3. and 1. of Lemma 2.5, for all integer i � 1,

fsi
(�,ρ)� fsi

(�,2)1+2max(0,ρ−2) �P[Asi
]1+2max(0,ρ−2) �Q2(c0)

1+2max(0,ρ−2),

so that by the same assertion, for any s ∈ [si, si+1] ∩ N∗,

fs(�,ρ)� fsi
(�,ρ)

1+2 max(0,
ρ(si+1−si )

�(ρ−1)si� ) �Q2(c0)
(1+4 max(0,ρ−2))(1+2(τ3,ν (c0)−1)

ρ
ρ−1 ).

The right-hand side can be chosen to be the universal function Pν(ρ, c0). �

3. Gaussian fields

In this section we introduce some natural conditions for the Gaussian fields we
will work with, and we prove some more or less elementary percolation properties on the
associated processes on lattices or on R2.

3.1. Various conditions. — Let f : R2 → R be a centered Gaussian field, that is for
every x ∈ Rn, f (x) is a random centered Gaussian variable. Let T be a lattice in R2, E its
set of edges and V its set of vertices.

Definition 3.1. — Let us define the two following processes on R2:

• �( f ) denotes the coloring by sign, that is x ∈ R2 is black if f (x) > 0 and white otherwise.

• �( f ,T ) denotes the following coloring on R2: if x ∈ R2 is a vertex where f is positive, or if

it belongs to an edge e ∈ E whose two extremities v1 ∈ V and v2 ∈ V satisfy f (v1) > 0 and

f (v2) > 0, then x is black; otherwise x is white.

Remark 3.2. — Since outside a set of vanishing measure, f does not vanish on V ,
a.s. a vertex v ∈ V is white if and only if f (v) < 0.

In the proof of the main Theorem 1.1 (but not Theorem 1.6), we will need lattices
with the following properties.
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Definition 3.3. — For any lattice T ⊂ R2, define the following conditions:

• (Periodicity) T is periodic,

• (Triangulation) T is a triangulation,

• (Symmetry) T is invariant by the reflection with respect to the horizontal axis, and by π/2-

rotation around one of its vertices.

• (Integrality) There exists N ∈ N∗, such that V ⊂ ( 1
NZ)2.

Remark 3.4.

• As a lattice satisfying the symmetry conditions, one can choose the face-centered
square lattice, though the specific choice will not be relevant in our proofs.

• The triangulation condition is needed for duality reasons, only to ensure condi-
tion 3. of Definition 2.1 for �( f ,T ), see Lemma 4.4.

Recall that the correlation function e of f is defined by e(x, y) = E( f (x)f (y)) for
any (x, y) in (Rn)2. Depending on the nature of the results, we will require the field f to
fulfill part or all of the following conditions.

• (Stationarity) There exists a function K : Rn → R such that

(3.1) ∀x, y ∈ Rn, e(x, y) = K(x − y).

In this case, we normalize f so that ∀x ∈ Rn,K(0) = e(x, x) = 1.
• (Positivity)

(3.2) K � 0.

• (Symmetry when n = 2)

(3.3) ∀(a, b) ∈ R2, K
(
(a,−b)

) = K
(
(a, b)

) = K
(
(b, a)

)
.

• (Polynomial decay)

(3.4) ∃α > 0, ∃β, ∀x ∈ Rn, |K(x)| � β‖x‖−α.

• (Non-degeneracy) The quadratic form

(3.5) v ∈ Rn 
→ d2K(0)(v, v)

is negative definite.

Condition 3.5 is needed for the quantitative transversality of the field, in particular in
Lemma 5.4 and Lemma 5.5.
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Remark 3.5. — For a stationary Gaussian field with a C2 covariance, condition (3.4)
for positive α implies condition (3.5). Indeed, assume that for some v ∈ Rn \ {0} one has
d2K(0)(v, v) = 0. Then, as ε tends to zero,

E
[(

f (εv) − f (0)
)2] = 2

(
1 − K(εv)

) = o
(
ε2

)
.

This implies that E[| f (εv) − f (0)|] = o(ε) and by the triangle inequality,

E
[| f (v) − f (0)|] �

n−1∑
k=0

E
[∣∣∣∣ f

(
(k + 1)v

n

)
− f

(
kv

n

)∣∣∣∣
]

= o(1),

which contradicts condition (3.4) in the direction v, unless f is identically zero.

Lemma 3.6. — For any α > 0 and any m ∈ N, the stationary centered Gaussian field associated

to the real Bargmann-Fock space, with correlation eW(x, y) = exp(− 1
2‖x − y‖2), see (1.4), satisfies

all of these hypotheses.

Proof. — Only the last condition has to be clarified. If Z ∈ Rn is a normal Gaussian
vector, then

∀x ∈ Rn, K(x) = exp
(

−1
2
‖x‖2

)
= E

[
ei〈x,Z〉],

so that for any v ∈ Rn,

d2K(0)(v, v) = −E
[〈v,Z〉2

]
which is negative if v �= 0. Hence, condition (3.5) holds. �

Remark 3.7. — Note that if f is stationary (f satisfies (3.1)), the covariance function e

is symmetric, that is ∀(x, y) ∈ (R2)2, e(x, y) = e(y, x) = K(x−y), so that any odd derivative
of K at 0 vanishes. In particular, two derivatives of different parity of f are independent
random variables.

3.2. The FKG inequality. — One of the crucial ingredients of the proof of Theo-
rem 1.1, is the Fortuin-Kasteleyn-Ginibre (FKG) inequality for our model, see Section 2.1
and condition 1. in Definition 2.1. The following theorem gives a link between positive
correlation and FKG inequality.

Theorem 3.8 (see Pitt [37]). — Let ϕ = (ϕi)1�i�k be a Gaussian vector in Rk with non-

negative covariance function. Then ϕ satisfies the FKG property: for any two bounded, nondecreasing,

measurable functions F,G : Rk → R, one has

(3.6) E
[
F(ϕ)G(ϕ)

]
� E

[
F[ϕ]]E[

G[ϕ]].
In particular, if A and B are increasing events on ϕ, then P[A∩B] � P[A]P[B].
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In our case, φ will denote the sign of f at the vertices of a lattice, and typically A
and B will denote a black crossing of a rectangle, or the existence of a black circuit in a
ring.

Remark 3.9. — This theorem will be enough for our purposes here, because all the
events we will consider will actually depend on the value of the random field f at finitely
many points; but the results readily extend by approximation to continuous increasing
functionals of the whole field.

The following lemma is an immediate corollary of this theorem.

Lemma 3.10. — For any stationary random Gaussian field f satisfying condition (3.2) (pos-

itivity) and any lattice T , the processes �( f ) and �( f ,T ) introduced in Definition 3.1 satisfy

condition 1. (FKG) of Definition 2.1.

Remark 3.11. — In the particular case of the Gaussian field given by the real an-
alytic functions in the Wiener space W , see (1.4) or (1.2), the expansion of the field in
a monomial basis gives a decomposition of the form f = ∑

i∈I aifi where the ai are i.i.d.
Gaussian variables, and where the fi are positive in the first quadrant. A monotone func-
tional of f depending only on the values of f in that quadrant can then be seen as a
monotone functional of the (ai)i∈I, and the inequality (3.6) follows directly from the state-
ment of the Harris-FKG inequality for a product measure. Going from the quadrant to
the whole space then follows from stationarity.

3.3. Elementary percolation. — We will need the following two simple lemmas in
the proof of the main results. The first one is a direct consequence of continuity and
monotone convergence:

Lemma 3.12 (Uniform percolation on a small box). — Let f be a C0 stationary Gaussian field

on Rn. Then if Bλ = [−λ,λ]n,

P[ f|Bλ
> 0] →

λ→0
P
[

f (0) > 0
] = 1/2.

Remark 3.13. — If moreover f is assumed to be C3, one can give a quantitative
estimate of the convergence rate. Fix u > 0, such that f (0) � u with probability at least
1/2 − δ/2. By Markov inequality and Lemma 5.2 below applied to p = 1,

∀s � 2, P
[
‖ f ‖C1(Bλ) � u

2
√

2λ

]
� 1 −

(
2
√

2λ

u

)
(C1

√
log 2).

If λ = ( δ

2)u(2
√

2C1

√
log 2)−1, the two events happen simultaneously with probability

larger than 1/2 − δ, and in this case by Taylor applied between 0 and any point of
Bλ, we obtain f|Bλ

> 0.
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The following Lemma asserts that trivially the percolation process associated to f

has uniform positive probability of happening in rectangles inside a fixed square.

Lemma 3.14 (Uniform percolation on a box). — Let f be a C0 stationary Gaussian field on

R2 satisfying condition (3.2) (positivity). Then

∀s > 0, P[ f|Bs
> 0] > 0.

Proof. — By stationarity and by Lemma 3.12 there exists λ > 0 such that for any
fixed box b which is a translation of Bλ, with probability at least 1/4 we have f|b > 0. Since
being positive on a box is a increasing event, the FKG property given by Theorem 3.8
implies that the wanted probability is larger than 1/4N, where N denotes the number of
cubes like b needed to cover Bs. �

Remark 3.15. — Note that if f satisfies the conditions of Lemma 3.14, then

∀s > 0, ∃a > 0, ∀T , P[ f|V∩Bs
> 0] � a,

where T ⊂ R2 is a lattice and V its set of vertices.

4. Discretized percolation

We begin with a discrete correlated percolation problem on a periodic lattice T .
Then we explain how to transfer our continuous percolation problem to a discrete one.

4.1. A correlated discrete percolation. — Let T be a periodic graph, V be its set of
vertices, E be its set of edges and aT be the asymptotic density of vertices of V , i.e. the
mean number of vertices in a randomly translated unit square.

Quantitative independence. — Let f be a centered Gaussian field on V . We give a quanti-
tative estimate for the function φ(�( f ,T ), ·) defined by (2.3). Recall that this function
estimates the independence of events in two disjoints rings and is obtained by a union
bound. Note that this parameter can be defined without any assumptions on f or T .

Proposition 4.1. — There exists a constant C > 0, such that for any random Gaussian station-

ary field f on any lattice T , for any pair of bounded measurable subsets (S,T) of R2,

(4.1) φ
(
�( f ,T ),S,T

)
� Ca8/5

τ Area(S ∪ T)8/5 sup
(v,w)∈S×T

|K(v − w)|1/5,

where K is defined by (3.1).

The following corollary is a straightforward consequence of Proposition 4.1.
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Corollary 4.2. — If f satisfies in addition the condition (3.4) (polynomial decay with degree

α > 0), then there exists C′ > 0 depending only on C and the constants α,β of condition (3.4) such

that for any lattice T and any pair of bounded measurable subsets (S,T) of R2,

φ
(
�( f ,T ),S,T

)
� C′a8/5

T area8/5(S ∪ T)
(
dist(S,T)

)− α
5 and

∀s � 1, φ
(
�( f ,T ), s

)
� C′a8/5

T s
16−α

5 log16/5 s.

In order to prove Proposition 4.1, we begin with the following Theorem 4.3 below,
which quantifies the dependence between the two components of an orthogonal decom-
position of a Gaussian vector, to be the two vectors made of the values of the Gaussian
field on the vertices of S ∩ T and T ∩ T . This theorem has its own interest.

Theorem 4.3. — There is a universal positive constant C such that the following holds. Let X
and Y be two Gaussian vectors in Rm+n, respectively of covariance

�X =
[

�1 �12

�T
12 �2

]
and �Y =

[
�1 0
0 �2

]
,

where �1 ∈ Mm(R) and �2 ∈ Mn(R) have all diagonal entries equal to 1. Denote by μX (resp. μY)

the law of the signs of the coordinates of X (resp. Y), and by η the largest absolute value of the entries of

�12. Then,

dTV(μX,μY) � C(m + n)8/5η1/5.

In particular, if A (resp. B) is an event depending only on signs of the first m (resp. on the last n)

coordinates of X, then

|P[A ∩ B] − P[A]P[B]| � C(m + n)8/5η1/5.

Proof. — Let λ and ε be positive constants, to be chosen later. Write X = (X1,X2)

where X1 ∈ Rm and X2 ∈ Rn; we focus for the moment on X1. Each of its coordinates is a
normal random variable, and therefore has absolute value larger than ε with probability
at least 1 − ε. Therefore, by a union bound, outside of an event E1 of probability at most
mε, all the entries of X1 have absolute value at least ε.

Let (x1, . . . , xm) be an orthonormal basis of Rm diagonalizing �1, and ordered in
such a way that the eigenvalues λk corresponding to xk for k � m0 (resp. k > m0) are at
least equal to λ (resp. smaller than λ) in absolute value; one can write

X1 =
m∑

k=1

akλ
1/2
k xk

where the ak are independent normal variables. By the Markov inequality, for k > m0:

P
[∥∥akλ

1/2
k xk

∥∥
2
> ε/2m

]
� E[‖akλ

1/2
k xk‖2

2]
(ε/2m)2

� 4λm2

ε2
.
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Therefore, outside an event F1 of probability at most 4λm3/ε2, the bound ‖akλ
1/2
k xk‖2 �

ε/2m holds for all k > m0 and therefore the vector

X̃1 :=
m0∑

k=1

akλ
1/2
k xk

has entries of the same sign as those of X1 on (E1 ∪ F1)
c. Doing the same construction for

X2, we obtain an index n0 and a Gaussian vector

X̃2 =
n0∑

k=1

bk

(
λ′

k

)1/2
yk

with entries of the same sign as those of X2 outside an event E2 ∪ F2.
Last, we estimate the total variation distance between the joint distribution of

(X̃1, X̃2) and that of independent variables with the same marginals (which is what one
would obtain starting from Y rather than X). This is the same as the total variation dis-
tance between the joint law of Z := (a1, . . . , am0, b1, . . . , bn0) and that of independent nor-
mal variables. The covariance matrix �Z of Z is of block form, with two identity diagonal
blocks and two off-diagonal blocks with entries of absolute value at most η

√
mn/λ (this

bound follows by Cauchy-Schwarz). Using the Pinsker inequality and standard bounds
for Gaussian vectors:

dTV

(
N (0,�Z),N (0, Im0+n0)

)
�

√
1
2

DKL

(
N (0,�Z)‖N (0, Im0+n0)

)

= 1
2

√| log det�Z|,
where DKL denotes the Kullback-Leibler divergence. By the Gershgorin circle theorem
the eigenvalues of �Z are within distance (m + n)η

√
mn/λ of 1, so

| log det�Z| � −(m + n) log
(
1 − (m + n)η

√
mn/λ

)
� 2(m + n)3η

λ

for (m + n)2η/λ small enough.
Doing the same construction starting from Y and putting everything together, we

obtain

dTV(μX,μY) � 2P[E1 ∪ E2 ∪ F1 ∪ F2] + dTV

(
N (0,�Z),N (0, Im0+n0)

)

� 2(m + n)ε + 8λ(m + n)3

ε2
+ (m + n)3/2

√
2η

λ
.

Choosing λ = ε3/(4(m + n)2) gives

dTV(μX,μY) � 4(m + n)ε + 2
√

2(m + n)5/2

√
η

ε3
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and finally setting ε = [(m + n)3η/2]1/5 we obtain

dTV(μX,μY) � 214/5(m + n)8/5η1/5

thus proving the announced inequality with C = 214/5. To validate the logarithm estimate
above, notice that

(m + n)2η

λ
=O

(
(m + n)11/5η2/5

) = [
(m + n)8/5η1/5)

]11/8O
(
η5/40

)

so the only case where it is not small is when our bound is at least of order 1, in which
case the statement of the theorem is vacuous (but true). �

Proof of Proposition 4.1. — Define X ∈ RN the following random Gaussian vector.
Denote by {xi}i∈{1,...,m} the elements of S ∩ T , and by {yj}i∈{1,...,n} the elements of T ∩ T .
Define

X = (
f (x1), . . . , f (xm), f (y1), . . . , f (yn)

) ∈ Rm+n.

Using the notations of Theorem 4.3, the coefficients of �12 are the K(xi − yj). Moreover
the diagonal entries of �X are equal to K(0) = 1. Since there exists a universal constant
C such that (m + n) � CaT Area(S ∪ T), the first assertion is a direct consequence of
Theorem 4.3. �

Estimates. — In this paragraph, we obtain some bounds for the parameters c0(�( f ,T ))

of Definition 2.1 and α(�( f ,T ), ·) of Lemma 2.7.

Lemma 4.4. — Let f be a C0 stationary Gaussian field on R2 satisfying the condition (3.3.)

(symmetry), and T be a lattice satisfying the conditions of Definition 3.3. Then �( f ,T ) satisfies

condition 2. (symmetry) and condition 3. (percolation through squares) of Definition 2.1. More precisely,

∀s ∈ N∗, fs
(
�( f ,T ),1

) = c0

(
�( f ,T )

) = 1/2.

Proof. — Since T and the covariance function of f are invariant under the sym-
metries of the axes and π/2-rotation, the process �( f ,T ) satisfies condition 2. of Def-
inition 2.1. Moreover, since T is a triangulation, since the vertices lie on ( 1

NZ)2, on any
square Bs with s ∈ N∗, either there is an horizontal black crossing in V , that is an arc c

in T joining {−s} × [−s, s] to {s} × [−s, s] in Bs such that f|c∩V > 0, or there is a verti-
cal negative arc. Since the coefficients (aij)ij are centered Gaussian, since the square, the
measure and T are invariant under a π/2-rotation, both events happen with the same
probability, so that they both have probability equal to 1/2. By invariance under trans-
lation, the probability of a black crossing in any square is 1/2. In other words, for any
s ∈ N∗, fs(�( f ,T ),1) = 1/2. �



VINCENT BEFFARA, DAMIEN GAYET

Remark 4.5. — Note that Lemma 4.4 does not require the polynomial decay of the
correlation nor its positivity, and holds in particular for the random wave model given
by (1.7).

In the proof of Theorem 1.1 we will need an estimate of the parameters
tν(�( f , εT )) for our discretized processes, which implies in particular an estimate for
α(s(�( f , εT )), where α(�, ·) is defined in Lemma 2.7 and s(�( f , εT ) by (2.6).

Lemma 4.6. — Suppose that f is a C0 stationary Gaussian field defined on R2 and satisfying

conditions (3.2) and (3.3). Then, there exist a, b > 0, such that after changing the universal polynomial

Q1 in Lemma 2.7 into aQ1, the following holds: for any periodic lattice T satisfying all of the conditions

of Definition 3.3,

∀s ∈ N∗, α
(
�( f ,T ), s

)
� b.

Proof. — Recall that α(�, s) is a constant that must satisfy the two conditions (P1)
and (P2) of Lemma 2.7. Denote by b+ and b− the two squares

b± = [±s/2 − λ/2,±s/2 + λ/2] × [−λ/2, λ/2]
and by A± the black-increasing events A± = {f|b±∩V > 0}, where V is the set of vertices
of T . By Lemma 3.12 and the FKG inequality given by Lemma 3.10, there exists τ > 0
depending only on f such that ∀s � 1,P[A+ ∩A−] � τ 2. Assume that α(�( f ,T ), s) <

λ/4. Then we have
{
Xs

(
α
(
�( f ,T ), s

))} ∩A+ ∩A− ⊂ {
Xs(λ/4)

}

so that, again by FKG inequality and (P1), P[Xs(λ/4)] � Q1(c0)τ
2, where Q1 is defined

in Lemma 2.7, so that λ/4 satisfies (P1) after replacing Q1 by τ 2Q1. Moreover,

P
[
Hs(0, λ/4)

] − P
[
Hs(λ/4, s/2)

]
� P

[
Hs

(
0, α

(
�( f ,T ), s

))]
− P

[
Hs

(
α
(
�( f ,T ), s

)
, s/2

)]
� c0/4,

so that λ/4 satisfies condition (P2). In conclusion, we can replace α(�( f ,T ), s) by
λ/4. �

The following Theorem 4.7 provides a large family of correlated percolations on
lattices, and has its own interest. Moreover, it provides a bound for the main parameter
tν(�) which will be used in the proof of the main Theorem 1.1. Recall that γ (ν) =
1 + log4/(3+2ν)(3/2 + ν), see (2.8).
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Theorem 4.7. — Let f be a C0 stationary Gaussian field satisfying the conditions (3.2) (pos-

itivity), (3.3) (symmetry) and (3.4) (polynomial decay) for α > 16. Then, for any ν ∈ ]0,1/2[ and

any θ ∈ ]0, α − 16[, there exists a constant Cθ,ν > 0 depending only on (θ, ν) and the parameters of

condition (3.4), such that for any periodic lattice T satisfying the conditions of Definition 3.3, the process

�( f ,T ) satisfies the conditions of Theorem 2.2, with

tν
(
�( f ,T )

)
� Cθ,νa

8γ (ν)
α−16−θ

T ,(4.2)

where aT denotes the number of vertices of T per unit square. Moreover, for any such lattice T , for any

ρ � 1, there exists c > 0,

∀s ∈ N∗, fs
(
�( f ,T ), ρ

)
� c.

Proof. — For any lattice T satisfying the hypotheses, by Lemma 3.10 and
Lemma 4.4, �( f ,T ) satisfies all of the conditions of Definition 2.1, so that Theorem 2.2
applies. By Lemma 2.9 and the existence of the universal function Q3, by Lemma 4.4
and the existence of the universal parameter c0(�( f ,T )) = 1/2, by the definition of
s(�) given by (2.6) and by Corollary 4.2, for any θ ∈ ]0, α − 16[, there exists a constant
Cθ > 0 depending only on θ and the parameters α,β of the polynomial decay (3.4) such
that for any T ,

(4.3) s
(
�( f ,T )

)
� Cθa

8
α−16−θ

T .

Moreover by Lemma 4.6, there exists a > 0, such that for any lattice T ,

α
(
s
(
�( f ,T )

))
� a,

so that by (2.9), (4.3) and the definition (2.10) of sν(�), the parameter tν(�( f ,T )) satisfies
the upper bound (4.2).

Now by Remark 3.15, there exists a > 0, such that

P( f|Bρtν (�( f ,T ))∩V > 0) � a,

hence the second result. �

Remark 4.8. — For random sums of Gaussian waves, the stationary correlation
function is given by (1.8), so that ∀x ∈ R2, |K(x)| � ‖x‖−1/2. Hence, a priori Theorem 4.7
does not apply in this case. Notice that the FKG inequality also fails to hold in that model,
so it is beyond the techniques that we develop here for several reasons.
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4.2. Proof of Theorem 1.1. — This section is devoted to the proof of the main result
of this paper:

Theorem 4.9. — Let f : R2 → R be a C4 random Gaussian field satisfying conditions (3.1),

(3.2), (3.3), (3.4) for α > 144 + 128 log4/3(3/2) and (3.5). Let � = (U, γ, γ ′) be a quad, that

is a triple given by a smooth bounded open connected set U ⊂ R2, and two disjoint compact smooth arcs

γ and γ ′ in ∂U. Then, there exists a positive constant c such that:

1. for any positive s, with probability at least c there exists a connected component of {x ∈ Ū,

f (sx) > 0} intersecting both γ and γ ′;
2. there exists s0 > 0, such that for any s � s0, with probability at least c there exists a connected

component of {x ∈ Ū, f (sx) = 0} intersecting both γ and γ ′.

Remark 4.10. — The same result holds if we replace the quad (U, γ, γ ′) by any
smooth topological ring A and the existence of a positive or nodal circuit in A generating
π1(A).

Proof of Theorem 1.1. — By Lemma 3.6, the correlation function given by (1.3) for
random elements of W (or the Wiener space W(F) associated to the Bargmann-Fock
space) satisfies the conditions of Theorem 4.9. �

Theorem 4.9 will be an easy consequence of the following main proposition:

Proposition 4.11. — Let f : R2 → R be a random Gaussian field satisfying the hypotheses of

Theorem 4.9. Let (Ri)i∈I and (Sj)j∈J be two finite families of horizontal or vertical rectangles, such that:

∀(i, j) ∈ I × J,Ri ∩ Sj = ∅. Then there exists c > 0 such that

1. for any positive s, the following event �R(s) happen with probability at least c: for every

i ∈ I, there exists a positive path crossing sRi in its length;

2. for any positive s, the following event �S(s) happen with probability at least c: for every j ∈ J,
there exists a negative path crossing sSj in the length;

3. there exists s0 > 0, such that for any s � s0, P[�R(s) ∩ �S(s)] � c.

Proof of Theorem 4.9. — Let U ⊂ R2 be a connected smooth bounded open set and
γ, γ ′ ⊂ ∂U two disjoint connected arcs in the boundary of U. First, it is clear that there
exist a pair of rectangles R+ and R− together with a finite family of horizontal or vertical
rectangles (Ri ⊂ U)i∈I (resp. S+, S− and (Sj ⊂ U)i∈J) such that, writing Ĩ = I ∪ {±} and
J̃ = J ∪ {±},

• ∀(i, j) ∈ (Ĩ × J̃), Ri ∩ Sj = ∅,
• the arc γ traverses R− and S− through their shortest width,
• the arc γ ′ traverses R+ and S+ through their shortest width,
• if for all i ∈ Ĩ, there exists a path γi crossing Ri in its length, then

⋃
i∈Ĩ γi is

connected.
• if for all j ∈ J̃, there exists a path γ ′

j crossing Sj in its length,
⋃

j∈J̃ γ
′
i is connected.
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By Proposition 4.11 for any s > 0, with probability c there exists a positive path, i.e.

a connected component of {x ∈ R2, f (x) > 0}, (resp. a negative path) in s(
⋃

i∈Ĩ Ri) (resp.
s(

⋃
j∈J̃ Sj)), hence the first assertion.

By the second assertion of Proposition 4.11, there exists s0 > 0, such that for s � s0,
both events happen with probability at least c > 0, so that a crossing nodal line appears
between them with at least the same probability. �

4.3. Proof of Proposition 4.11.

Heuristics of the proof. — As explained in the introduction, we need to use a family of
intermediary processes which are percolations on lattices of smaller and smaller mesh as
the rectangles to be crossed become larger. More precisely, fix T a periodic graph and
V its set of vertices. For any ε > 0, we will consider the rescaled lattice εT , so that εV
denotes its associated set of vertices and εE its set of edges. Note that

(4.4) ∀ε > 0, aεT = aT ε−2,

where aT is the mean number of vertices of V per unit square, see Section 4.1. For any
ε > 0 and any random field f on R2, the restriction of f to εV define the random coloring
discrete process

(4.5) �ε = �( f , εT )

given by Definition 3.1. We assume for a moment that Theorem 1.6 is true (its proof is
postponed to the last Sect. 5). Le R > 0 be such that BR contains all of the rectangles
(Ri)i∈I and (Sj)j∈J. For any σ > 0, Theorem 1.6 gives a size ε(σ ) such that with a large
probability percolation for the process �ε(σ) in a rectangle in BRσ is equivalent to contin-
uous percolation for the process �( f ), see Definition 3.1. Then, by Tassion’s Theorem,
if T satisfies the conditions of Definition 3.3, there is a size tν(�ε(σ)), such that with prob-
ability at least c > 0, percolation happens for �ε(σ) in the length of given rectangles of
sizes larger than tν(�ε(σ)). Since the correlation function of f decreases polynomially for
a sufficiently high degree, this size can be chosen to be smaller than σ , so that we get per-
colation for the process �( f ) for the rectangles of size σ . If the two families of rectangles
are far from each other, again by the polynomial decay of the correlation, positive and
negative crossings happen simultaneously.

Proof of Proposition 4.11. — Fix T any lattice satisfying the conditions of Defini-
tion 3.3. We begin to prove uniform percolation on one unique rectangle, but for the
family of discretized percolations defined by �ε, see (4.5), where ε ∈ (N∗)−1 will depend
on the size s of the rectangle. By Lemma 3.10, for any ε > 0 the process �ε satisfies
condition 1. of Definition 2.1, and by Lemma 4.4, for any ε ∈ (N∗)−1 it satisfies the two
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other conditions 2. and 3., with c0(�ε) = 1/2. Hence, the hypotheses of Theorem 2.2 are
fulfilled. This implies, if ρ � 1 and ν ∈ ]0,1/2[ are fixed, that

∀ε ∈ (
N∗)−1

, ∀s ∈ N∗, s � tν(�ε), fs(�ε,ρ) � Pν(ρ,1/2),

where Pν is the universal function defined in Theorem 2.2. By Theorem 4.7 and (4.4), if

γ (ν) = 1 + log4/(3+2ν)(3/2 + ν),

see (2.8), for any θ ∈ ]0, α − 16[, there exists Cθ,ν > 0 such that

(4.6) ∀ε ∈ (
N∗)−1

, tν(�ε) � Cθ,νa
8γ (ν)

α−16−θ

T ε− 16γ (ν)
α−16−θ .

Since α > 16 + 128γ (0), so that α − 144 > 0 since γ (0) > 1, we can choose ν ∈ ]0,1/2[
and θ ∈ ]0, α − 16[ such that

(4.7) η = inf
{

α − 16 − θ

γ (ν)
− 128, α − 144

}
> 0.

Choose R > 0 such that(⋃
i∈I

Ri

⋃
j∈J

Sj

)
⊂ BR

and define for any σ � 2

(4.8) ε(σ ) = (⌊
(Rσ)8+ η

32
⌋ + 1

)−1 ∈ (
N∗)−1

.

This choice is required by Theorem 1.6. By (4.6) and (4.7), there exists a constant C > 0
such that

∀σ � 2, tν(�ε(σ)) � Cσ
128+η/2
α−16−θ

γ (ν) � Cσ
128+η/2
128+η = o(σ ).

Hence, there exists s1 � 2 not depending on ρ � 1 so that by Theorem 2.2,

(4.9) ∀s ∈ N∗, s � s1, fs(�ε(s), ρ) � Pν(ρ,1/2).

Now we turn to the simultaneous discrete percolation through our two sets of rectangles.
For this, for any i ∈ I (resp. j ∈ J), denote by ρi (resp. ρ ′

j ) the quotient of the length and the
width of Ri (resp. Sj ). If

c := min
(i,j)∈I×J

(
Pν(ρi,1/2),Pν(ρj,1/2)

)
> 0,

then by (4.9),

(4.10) ∀s ∈ N∗, s � s1, min
(i,j)∈I×J

(
fs(�ε(s), ρi), fs

(
�ε(s), ρ

′
j

))
� c.
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For s � 1, define �+(s) the event that for every i ∈ I, there exists a positive path
crossing for �ε(s) in the length of sRi . We denote by �−(s) the analogous event, where
we change the sign and the Ri ’s are replaced by the Sj ’s. By the FKG inequalities given
by Lemma 3.10,

(4.11) ∀s ∈ N∗, s � s1, P
[
�+(s)

]
� c|I| and P

[
�−(s)

]
� c| J|.

Now, we want to obtain percolation for the continuous process �( f ). For this, first fix

(4.12) δ = c|I|+| J| � min
(
c|I|, c| J|).

By Theorem 1.6 and (4.8), there is s2 := s2(δ/4, η) such that for s � s2, with probability
at least 1 − δ/4, any positive crossing in the lattice ε(s)T ∩ BRs will produce a continuous
positive crossing for �( f ), as well as for the negative crossings. Hence by (4.11) and (4.12),

∀s ∈ N∗, s � max(s1, s2), min
(
P
[
�R(s)

]
,P

[
�R(s)

])
� 3δ/4,

where �R and �S are defined in Proposition 4.11. Moreover, by Lemma 3.14 applied to
s = R max(s1, s2), there exists a > 0, such that for any rectangle in BR max(s1,s2), with prob-
ability at least a, there exists a (trivial) positive (resp. negative) crossing of this rectangle.
Summarizing, and using again FKG inequality for the latter elementary percolations,

(4.13) ∀s ∈ N∗ ∪ [
0,max(s1, s2)

]
, min

(
P
[
�R(s)

]
,P

[
�S(s)

])
� min

(
3δ/4, a|I|, a| J|).

In order to remove the integer condition, note that we can translate our lattice T by any
vector in a fundamental square of T . Since the Gaussian field is stationary, the prob-
abilities obtained for the translated rectangles (again with integer sizes) the associated
estimates (4.13) are the same. Remark 2.6 concludes.

For the second assertion, we prove that the two events �+(s) and �−(s) defined
below happen simultaneously with uniform positive probability. By (4.11) it is enough to
prove that these two events are almost independent. Let M,μ > 0 be such that

M = max
(

area
(⋃

i

Ri

)
,area

(⋃
j

Sj

))
and μ = dist

(⋃
i

Ri,
⋃

j

Sj

)
.

Corollary 4.2 and (4.7) show that there exist C′,C′′ > 0, such that for any s � 1, with
probability at least

1 − C′(MaT ε(s)−2s2
)8/5

(μs)− α
5 = 1 − C′′s

128+16−α+η/2
5 � 1 − s− η

10 ,

the signs on s(
⋃

i Ri) ∩ ε(s)V and s(
⋃

j Sj) ∩ ε(s)V can be coupled with the realization of
a pair of independent colorings, where ε(s) is defined by (4.8). Hence, there exists s3 � 1
such that this probability is larger than 1 − δ/4 for s � s3, where δ is defined by (4.12).
Consequently, by (4.11),

∀s ∈ N∗, s � max(s1, s3),
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P
[
�+(s) ∩ �−(s)

]
� P

[
�+(s)

]
P
[
�−(s)

] − δ/4 � 3δ/4,

and hence by the definition of s2 above,

∀s ∈ N∗, s � max(s1, s2, s3), P
[
�R(s) ∩ �S(s)

]
� δ/2.

We can remove the integer condition as above, so that the second assertion of Proposi-
tion 4.11 is proved. �

Remark 4.12. — There are at least three sources of lowering the degree 144 +
128 log4/3(3/2), namely in [44, Lemma 2.2], in the proof of Theorem 4.3 and in the size
of the box given by the quantitative implicit theorem given by Corollary A.3.

5. Proof of Theorem 1.6

The goal of this section is to prove the main Theorem 1.6. This theorem states
that for any stationary Gaussian field satisfying condition (3.5), with an arbitrary large
probability, for any s large enough and ε small enough (depending on s), any random
nodal line in Bs will cross the edges of εT at most once. In this case, for any pair of
adjacent vertices with same sign, f does not vanish on the associated edge and has the
sign of the vertices. We recall the result.

Theorem 1.6. — Let f be a C4 random stationary Gaussian field on R2 satisfying the non-

degeneracy condition (3.5), T be a periodic lattice, and E be its set of edges. Fix η > 0. Then there

exists s(η) > 0, C(η) > 0 and α(η) > 0 such that for every s � s(η), every δ > 0 and every

ε � C(η)δα(η)s−8−η, with probability at least 1 − δ the following event happens:

(5.1) ∀e ∈ εE ∩ Bs, #
(
e ∩ f −1(0)

)
� 1.

Remark 5.1. — Under the event 5.1, any black percolation in Bs associated to
�( f , εT ) will provide an associated continuous path over which f is positive, hence
giving a continuous percolation on Bs associated to �( f ). This theorem has its own
interest since it gives a very general link between continuous percolation and discrete
percolation.

5.1. Quantitative bounds. — First, we prove some results on Gaussian fields that will
be useful when in the second part we will add a lattice. Recall that Bs = [−s, s]n.

Lemma 5.2. — Let f : Rn → R be a C4 stationary Gaussian field. Fix p > 0. Then there

exists Cp > 0, such that for every s � 2,

E
(‖ f ‖p

C2(Bs)

)
� Cp(log s)p/2.
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Proof. — We begin with p = 1. We use a classical result by Dudley [1, Theorem
1.3.3]. For this, define the semi-distance on Rn by

∀x, y ∈ Rn, d2(x, y) = E
((

f (x) − f (y)
)2)

.

In our case, d(x, y) = √
2
√

1 − K(x − y). For any η > 0, denote by Ns(ε) the number of
balls for d of size ε needed to cover Bs = [−s, s]n. Then by [1, Theorem 1.3.3] (see also
for instance [19]), there exists a universal constant C > 0 such that

∀s > 0, E(‖ f ‖L∞(Bs)) � C
∫ diam(Bs)/2

0

√
log Ns(ε)dε.

Here, diam(Bs) is the diameter of Bs for the pseudo-metric d . Since d �
√

2, we get
diam(Bs) �

√
2. Moreover, since K is C2 and dK(0) = 0 by Remark 3.7, by Taylor there

exists c > 0 such that

∀(x, y) ∈ (
Rn

)2
, d(x, y) � c‖x − y‖.

Hence,

∃c′ > 0, ∀ε > 0, ∀s � 2, 1 � Ns(ε) � c′
(

s

ε

)n

,

so that there is c0 > 0, for all s � 2,

(5.2) E
(‖ f ‖L∞(Bs)

)
� c0

√
log s.

Now, for any i ∈ {1, . . . , n}, ∂ f

∂xi
is a Gaussian field with covariance function

∀(x, y) ∈ (
Rn

)2
, E

(
∂xi

f (x)∂xi
f (y)

) = ∂2
xi,yi

(
K(x − y)

) = −(
∂2

x2
i

K
)
(x − y).

Consequently, the pseudo-metric di associated to ∂xi
f equals

∀(x, y) ∈ (
Rn

)2
, di(x, y) = √

2
√

−∂2
x2

i

K(0) + (
∂2

x2
i

K
)
(x − y).

Then Rn has finite diameter and using again Taylor we get that di is bounded above by
the flat metric up to a multiplicative constant, so that as before there is a constant c′′ > 0
such that Ns(ε) for this field is bounded by c′′( s

ε
)n. Hence, there exists ci,1 > 0 such that

for every s � 2, E(‖∂xi
f ‖L∞(Bs)) � ci,1

√
log s and summing up for i ∈ {1, . . . , n}, we obtain

the existence of c1 > 0, such that

∀s � 2, E(‖df ‖L∞(Bs)) � c1

√
log s.

Similarly, since K is C4, there exists c2 > 0 such that for every s � 2, E(‖d2f ‖L∞(Bs)) �
c2

√
log s. Adding the three estimates, we have proved the result for p = 1.
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Now, by the Borell-TIS inequality (see Theorem 2.1.1 in [1]),

∀u � 0, P
[‖f ‖L∞(Bs) � E‖f ‖L∞(Bs) + u

]
� exp

(
− u2

2 supx∈Bs
e(x, x)

)
,

where e(x, x) = K(0) = 1, so that by (5.2),

∀u � 0, P[‖f ‖L∞(Bs) � c0

√
log s + u] � exp

(
−1

2
u2

)
.

Hence, if p > 0, there exists c′′′ > 0 such that E(‖f ‖p

L∞(Bs)
) is bounded from above (after

integration by parts) by

p(c0

√
log s)p + p

∫ ∞

0
(u + c0

√
log s)p−1 exp

(
−1

2
u2

)
du � c′′′(log s)p/2.

The same estimate holds for the higher derivatives. �

When we add to the Gaussian field a lattice, we need to understand the scale ε at
which the zero set of f is trivial, that is a local graph, on a large box of a given size, and to
quantify the probability of this event and all of the involved signs. For this, we must show
that f is often quantitatively transverse when it vanishes, that is its derivative is bounded
by a positive controlled uniform constant, and that the nodal line is not too curved. The
last condition is ensured by Lemma 5.2. The following Lemma proves the first condition,
and is a quantitative version of Lemma 7 in [35]. We follow here their proof, but keeping
track of the constants depending on s and therefore using Lemma 5.2.

Lemma 5.3 (see [35]). — Let f be a C4 stationary Gaussian field on Rn satisfying condi-

tion (3.5). Fix η > 0. Then, there exists μ(η) > 0 and κ(η) > 0, such that

∀s � 2, ∀δ > 0, P
[
min
x∈Bs

max
(| f (x)|, |df (x)|) < μ(η)δκ(η)s−n−η

]
� δ.

As in the aforementioned article, the proof of Lemma 5.3 will need the following Lemma.

Lemma 5.4 ([35]). — Let f be a C2 stationary Gaussian field on Rn satisfying condition (3.5).

For any x ∈ Rn, define the random variable

�(x) = 1
| f (x)||df (x)|n ∈ R+ ∪ {+∞}.

Then, for any 0 < α < 1, �(x)α is integrable and there exists Cα > 0, such that for any x ∈ Rn,

E(�(x)α) � Cα .
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Proof. — By invariance under translation, we only need to prove the existence of a
finite Cα for a fixed x. Since f is stationary, E( f (x)df (x)) = d1,0

x e(x, x) = dK(0) vanishes,
see Remark 3.7, so that f (x) and df (x) are independent. For any 0 < α < 1, we then have

E
(
�(x)α

) = E
(| f (x)|−α

)
E

(|df (x)|−nα
)
.

By the coarea formula,

E
(| f (x)|−α

) =
∫

y∈R

1
|y|α

∫
f ,f (x)=y

e(x, x)−1/2dμx( f )dy

which converges since e(x, x) = K(0) = 1 and α < 1. Here, dμx( f ) denotes the Gaussian
measure of the random variable f (x). Likewise,

E
(|df (x)|−nα

) =
∫

Y∈Rn

1
|Y|nα

∫
f ,df (x)=Y

∣∣det d1,1
x,y e(x, x)

∣∣−1/2
dμx( f )dY,

where dY is the Lebesgue measure on Rn. This integral converges since α < 1 and
d1,1

x,y e(x, x) = −d2K(0) which is non-degenerate by condition (3.5). �

Proof of Lemma 5.3 (see Lemma 7 of [35]). — Define

W = 1 + ‖ f ‖C2(Bs),

where Bs = [−s, s]n. For any 0 < τ < 1, define

Dτ (s) = {
x ∈ Bs,max

(| f (x)|, |df (x)|) � τ
}

and �τ the event

�τ = {
Dτ (s) �= ∅}

.

Under �τ , let x ∈ Dτ (s). Then for every y belonging to the round ball B(x, τ ),

| f (y)| � τ + ‖df ‖L∞(Bs)τ � Wτ.

|df (y)| � τ + ‖d2f ‖L∞(Bs)τ � Wτ.

Consequently, there exists C > 0 such that for t > 0,

∀s � 2,

∫
Bs

�t(y)dy �
∫

B(x,τ )

�t(y)dy � Cτ n−t(1+n)W−t(1+n),

where � is given by Lemma 5.4. Therefore,

∀s � 2, E
(

Wt(1+n) 1
Vol(Bs)

∫
Bs

�t(y)dy

)
� P[�τ ]Cτ n−t(1+n) 1

Vol(Bs)
,
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and if 1
p
+ 1

q
= 1, by Hölder inequality applied two times, for the variables f and y ∈ Bs,

we obtain

P[�τ ] � 1
C

Vol(Bs)τ
t(1+n)−n

(
E

(
Wt(1+n)p

))1/p

(
1

Vol(Bs)

∫
Bs

E
(
�tq(y)

)
dy

)1/q

.

By Lemma 5.2, there exists C′ > 0 such that

∀s � 2, E
(
Wt(1+n)p

)
� C′(log s)

p
2 t(1+n).

Moreover, by Lemma 5.4, if qt < 1, then E(�tq(·)) is uniformly bounded, and then there
exists Cq,t > 0 such that

∀τ ∈ ]0,1[, ∀s � 2, P(�τ ) � Cq,t Vol(Bs)τ
t(1+n)−n(log s)

t
2 (1+n).

Hence, choosing τ , for any s � 2, as

τ = δ(t(1+n)−n)−1(
Cq,t Vol(Bs)(log s)

t
2 (1+n)

)−(t(1+n)−n)−1

,

we have P(�τ ) � δ. Now, we can choose t < 1 close enough to 1, and then q such that
1 < q < 1/t, so that

(
t(1 + n) − n

)−1
< 1 + η

n + 1
.

Hence, we get the result since Vol(Bs) = (2s)n. �

5.2. The lattice and the field. — Recall that T denotes a periodic lattice on R2, and E
denotes its set of edges. For any ε > 0, we want to understand the link between the nodal
line of the random f and the signs on the edges of the rescaled lattice εT ; in other words,
between �( f ) and �( f , εT ). So, we want to prove that double intersections with edges
do not happen, with high probability. For this, let v ∈ S1 ⊂ R2 be one of the directions of
the edges, and let

• H(v, ε) be the subset of εE defined by the edges of εE parallel to v.

We want to estimate the mean number of nodal points x which are θ -close to H(v, ε) for
θ > 0 and such that the tangent of f −1(0) at x is parallel to v. Note that if f −1(0) is a
local graph over an edge e ∈ εE , a double intersection of f −1(0) with e gives birth to such
a critical point.

Lemma 5.5. — Let f be a C2 stationary Gaussian field on R2 satisfying condition (3.5). For

every ε, θ, s > 0, every direction v ∈ S1 ⊂ R2, define

(5.3) Cε(θ, s, v, f ) = {
x ∈ Bs, dist

(
x,H(v, ε)

)
� θ, f (x) = 0 and df (x)(v) = 0

}
.
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Then, outside a set of vanishing measure, Cε(θ, s, v, f ) is finite, and there exists β > 0 depending only

on f such that

∀ε, θ, s > 0, ∀v ∈ S1, E
(
#Cε(θ, s, v, f )

)
� β

s2

ε
θ,

so that P[Cε(θ, s, v, f ) = ∅] � 1 − β s2

ε
θ .

Remark 5.6. — In [25] and [21], the authors gave an explicit bound for the number
of critical points of the restriction of a fixed Morse function (here the latter is a coordinate
in the direction given by v) in order to bound the mean Betti numbers of random nodal
hypersurfaces.

Proof. — Denote by F : R2 → R2 the Gaussian field defined by

∀x ∈ R2, F(x) = (
f , df (x)(v)

)
.

This field is C1 and non-degenerate. Indeed, the associated covariance at x is the matrix
(

e dxe(v)

dye(v) dxdye(v, v)

)
|(x,x)

,

where e(x, y) = E( f (x), f (y)) = K(x − y) denotes the covariance of f . This matrix is non-
degenerate since the anti-diagonal terms vanish by Remark 3.7, since e(x, x) = K(0) = 1
and since dxdye(x, x)(v, v) = −d2K(0)(v, v) is not degenerate by condition (3.5). Applying
Theorem 6.2 of [5] where, with the notations of this monograph, u = 0 and

B = {
x ∈ Bs, dist

(
x,H(v, ε)

)
� θ

}
,

we have

E
(
#Cε(θ, s, v, f )

) =
∫

B
E

(|det dZ(x)||Z(x) = 0
)
pZ(x)dx,

where pZ(x) denotes the density of Z.
Since B is compact, this integral is finite and depends continuously on K(0) = 1

and d2K(0)(v, v), as far as the latter is positive. But d2K(0)(v, v) is bounded from above
for any v ∈ S1 and uniformly bounded from below by a positive constant. By invariance
under translations, pZ is independent on x as well as E(|det Z′(x)||Z(x) = 0), so that

∃C > 0, ∀v ∈ S1, E
(
#Cε(θ, s, v, f )

)
� C Vol(B),

hence the result. �

We can now give the prove of Theorem 1.6.
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Proof of Theorem 1.6. — Let N ∈ N∗ be the number of directions of the edges of
the lattice T , and choose v ∈ S1 one of these directions. Fix η > 0 and for any s � 1,
δ ∈ ]0,1[, define the functions

λ(s) = μ

(
η

6

)(
δ

3N

)κ(η/6)

(2s)−2− η
6 and k(s) = C1

( δ

3N)

√
log(2s),

where C1, κ and μ are given by Lemma 5.2 and Lemma 5.3 respectively. Let us consider
the event

(5.4) �δ =
{

min
x∈B2s

max
(| f (x)|, |df (x)|) � λ(s)

}
∩ {‖ f ‖C2(B2s) � k(s)

}
.

By Lemmas 5.2 and 5.3 and Markov inequality, we have

∀s � 1, P[�δ] � 1 − 2δ

3N
.

Let ψ be the function defined by

∀s � 1, ψ(s) = (k/λ)(s) ∈ R∗
+.

Note that there exists c(η) > 0, such that

(5.5) ψ = c(η)δ−1−κ(η/6)s2+η/6
√

log(2s).

Choose s1(η) � 2, such that for any δ ∈ ]0,1[ and any s � s1(η),ψ(s) � 1, and define for
every s � 1,

ε1(s) =
(

1
4
ψ−1(s)

)2

.

Note that if μT > 0 denotes the length of the largest edge in E , then

∀s � s1(δ, η), ∀ε � ε1(s)/μT , ∀e ∈ εE, ∀x ∈ e, e ⊂ b
[
x, ε1(s)

] ⊂ B2s,

where for any (x1, x2) ∈ R2 and any ε > 0,

b
[
(x1, x2), ε

] = {
(y1, y2) ∈ R2,max(|y1 − x1|, |y2 − x2|) � ε

}
,

see (A.2) below. Let us rotate the axes (Ox) and (Oy) such that the direction v is hor-
izontal. Fix s � s1(δ, η), ε � ε1(s)/μT , an horizontal edge e ∈ εE intersecting Bs and
x ∈ e ∩ f −1(0). Since

max
(∣∣∣∣ ∂ f

∂x1
(x)

∣∣∣∣,
∣∣∣∣ ∂ f

∂x2
(x)

∣∣∣∣
)

� |df (x)|√
2

,
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under the event �δ defined by (5.4), we can apply the quantitative version of the im-
plicit function theorem given by Corollary A.3. It states that the nodal subset f −1(0) ∩
b[x, ε1(s)] ⊂ B2s is the restriction of a graph over (Oy) or (Ox). In the first case, f −1(0)∩b

crosses e at most once, that is #( f −1(0) ∩ e) � 1.
Let us now consider the second case. Suppose that f −1(0) crosses at least two times

the horizontal edge e, which we can assume to be part of (Ox), and denote by φ the
implicit function over b[x, ε1(s)] ∩ (Ox) ⊃ e, whose graph equals f −1(0) ∩ b[x, ε1(s)].
Then, by Rolle’s theorem, there exists a critical point y ∈ e of φ|e and by Taylor’s theorem
applied to φ|e between y and x, we obtain

|φ(y)| � μ2
T ε2

2
‖φ′′‖L∞(e) � 50μ2

T ε2ψ3(s),

where we used estimate (A.3) of Corollary A.3. This implies that y ∈ Cε(θ(ε, s),2s, v, f ),
see (5.3) in Lemma 5.5 for the definition of Cε, with θ defined by

(5.6) ∀ε > 0, s � 1, θ(ε, s) = 50μ2
τ ε

2ψ3(s).

Now, denote by �′
δ the event

�′
δ = {

Cε

(
θ(ε, s),2s, v, f

) = ∅}
,

and for every s � 1, let

ε2(s) =
(

δ

3N

)(
50μ2

τβs2ψ3(s)
)−1

,

where β is given by Lemma 5.5. By the latter, for any s � 1,

∀ε � ε2(s), P
[
�′

δ

]
� 1 − δ

3N
.

In conclusion, for any s � s1(η) and any ε � min(ε1(s)/μT , ε2(s)), under the event
�δ ∩�′

δ which has probability greater than 1 − δ/N, the nodal subset f −1(0)∩ Bs crosses
at most once any edge e ∈ εV in the direction v. After consideration of the N directions,
this happens for any edge in εE ∩ Bs with probability at least 1 − δ. Lastly, by (5.5), there
exists C(η) > 0,

∀s � s(η), min
(
ε1(s)/μT , ε2(s)

)
� C(η)δ4+3κ(η/6)s−8−η,

which is the result. �
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5.3. Proof of Theorem 1.4. — We will prove the more general following theorem:

Theorem 5.7. — There exists α0 > 0, such that the following holds. For any random Gaussian

field f : R2 → R satisfying conditions (3.1), (3.2), (3.3), (3.4) for α � α0 and (3.5), there exists

γ > 0 and C > 0 such that for any 1 � s < t,

π(s, t) � C(s/t)γ .

Proof. — Fix 1 � s < t, and let T be a periodic symmetric triangulation. By Theo-
rem 1.6, for any η > 0, there exist α(η), s(η), C(η), such that for any δ > 0, if

(5.7) ε = C(η)δα(η)
(

max
(
t, s(η)

))−8−η

,

we have

(5.8) π(s, t) � πε(s, t) + δ,

where πε(s, t) denotes the probability that there is a one-arm event for the ε-discretized
model. Now we follow the proof of Lemma 2.10. By Proposition 4.1, there exists constants
C,C′ > 0 depending only on the parameters of the correlation function

πε(s, t) � P
[ ⋂

i∈N,s�5i
√

st�t/2

Ac

5i
√

st

]

� P
[
Ac√

st

]
P
[ ⋂

1�i��log5(
1
2

√
t
s
)�
Ac

5i
√

st

]
+ Cε−16/5t16/5(

√
st)−α/5

�
∏

0�i��log5(
1
2

√
t
s )�

P
[
Ac

5i
√

st

] + C′ε−16/5t16/5(
√

st)−α/5 log t.

By Remark 4.10, using the symmetry of the field and again Theorem 1.6, this implies
that there exists c > 0 and C′′ > 0, such that

πε(s, t) � C′′(1 − c + δ)log
√

t/s + C′′ε−16/5t16/5(
√

st)−α/5 log t(5.9)

Fix η = 1 and choose δ = min(c/2, s/t). Combining (5.7), (5.8) and (5.9), we obtain the
result. �
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Appendix A

A.1 Abstract Wiener spaces

Our main field of interest is the stationary Gaussian field with Gaussian covariance func-
tion. While it makes sense in itself, there is a natural way to view it as “the Gaussian
in the Bargmann-Fock space”, even though this is a priori not well-defined in infinite
dimension. This appendix follows [27].

The definition. — Let (H,‖ · ‖) be a Hilbert separable space of infinite dimension. Note
the scalar product induces a natural Gaussian measure μG on any finite dimensional sub-
space G ⊂H. Let N :H → R+ be another norm, which satisfies the following condition:
for any ε > 0, there exists a finite dimension subspace Hε ⊂ H, such that for any finite
dimensional subspace H1 of H⊥

ε ,

(A.1) μH1

({
x ∈ H1,N(x) > ε

})
< ε.

Such a norm is called measurable in the literature. Denote by B the completion of H
for N: then there is a unique measure μ on B than agrees with μG on any cylindrical
event based on G. More precisely: for every finite-dimensional subspace G ⊂ H, and
for every measurable A ⊂ G, letting Ã denote the closure in B of A + G⊥ in B, one has
μ(Ã) = μG(A).

The measured Banach space (B,N,μ) is called the abstract Wiener space associate
to H, relative to the measurable norm N. Of course if H is finite-dimensional, then
B = H, N = ‖ · ‖ and μ = μH is the standard Gaussian measure on H. If on the other
hand H is infinite-dimensional, then it is negligible for the Wiener measure, i.e. μ(H) = 0.

The canonical example. — If (H,‖ · ‖∇) = H1([0,1]) equipped with the Dirichlet inner
product defined by

‖ f ‖2
∇ :=

∫ 1

0
| f ′(x)|2dx

and if the measurable norm is chosen to be the supremum norm, N( f ) = ‖f ‖L∞([0,1])
(which is indeed measurable), then B = C(0,1) and μ is the law of standard Brownian
motion. In other words, the abstract Wiener space in this setup is the usual Wiener space
of stochastic analysis.
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The Bargmann-Fock Wiener space. — For any R > 0, we denote by D(0,R) ⊂ R2 the cen-
tered disc of radius R and NR the semi-norm on the real Bargmann-Fock space F given
by NR = ‖ · ‖L∞(B(0,R)). This in fact defines a norm on F , because by analytic continua-
tion, if NR( f ) = 0, then f is identically 0 in R2.

Lemma A.1. — For any R > 0, the norm NR satisfies condition (A.1), i.e. it is measurable.

Proof. — Fix ε > 0, N ∈ N and define HN = RN[x1, x2] ⊂ F the subspace of real
polynomials of degree less than N in two variables. Let H1 ⊂ H⊥

N be any finite dimen-
sional subspace orthogonal to HN. Any f ∈ H1 can be written as

∀x = (x1, x2) ∈ R2, f (x) =
∑

i+j>N

aij

xi
1x

j

2√
i!j! ,

where
∑

a2
ij < ∞ and the sum is locally uniformly convergent. By the triangle inequality

and the Cauchy-Schwarz inequality applied to each homogeneous component of f :

NR( f ) �
∑
k>N

Rk
∑
i+j=k

|aij|√
i!j!

�
∑
k>N

Rk

(∑
i+j=k

a2
ij

)1/2(∑
i+j=k

1
i!j!

)1/2

=
∑
k>N

2k/2Rk

√
k! ‖fk‖BF

where fk is the component of degree k of f , namely

fk =
∑
i+j=k

aij

xi
1x

j

2√
i!j! .

By a simple union bound, we then get for f ∼ μH1:

P
[
NR( f ) > ε

]
�

∑
k>N

P
[

2k/2Rk

√
k! ‖ fk‖BF > ε2N−k

]

�
∑
k>N

P
[
‖ fk‖2

BF >
ε24N−kk!

2kR2k

]

which leads to the upper bound

P
[
NR( f ) > ε

]
�

∑
k>N

2kR2k

ε24N−kk!E
[‖ fk‖2

BF

]
.
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Since fk is a Gaussian element of a vector space of dimension k + 1 we finally obtain

P
[
NR( f ) > ε

]
�

∑
k>N

(k + 1)2kR2k

ε24N−kk! � 1
ε24N

∑
k>N

16kR2k

k! � e16R2

ε24N
.

Choosing N large enough can make the bound arbitrarily small, which is what we had to
prove. �

We can construct a family of abstract Wiener spaces (BR,NR) associated to these
norms. In fact we get something much better: by regularity of analytic continuation, the
norms NR are pairwise equivalent, and the completion we obtain therefore does not
actually depend on R. The natural extension of the notion of abstract Wiener space
with which we work is therefore the space L∞

loc equipped with the collection of seminorms
(NR) and with the measure μ obtained from Gross’s construction (which does not depend
on R).

A.2 A quantitative implicit function theorem

For each δ > 0 and any x = (x1, x2) ∈ Rp × Rq, define

(A.2) b[x, δ] = {
(y1, y2) ∈ Rp × Rq,‖y1 − x1‖ � δ,‖y2 − y1‖ � δ

}
.

We will use the following quantitative refinement of the usual implicit function theorem,
which follows from a careful bookkeeping of the constants in the standard fixed point
argument.

Theorem A.2. — Let f : Rp+q → Rq be a C2 function and x = (x1, x2) ∈ Rp × Rq such

that f (x) = 0 and the partial derivative dx2 f (x) : Rq → Rq is invertible. Choose δ > 0 such that

sup
y∈b[x,δ]

∥∥IdRq − (
dx2 f (x)

)−1
dx2 f (y)

∥∥ � 1/2.

Let C = supy∈b[x,δ] ‖dx1 f (y)‖, M = ‖dx2 f (x)−1‖,

δ′ = δ(2MC)−1

and Iδ′ := {y1 ∈ Rp : ‖y1 − x1‖ < δ′}. Then there exists φ : Iδ′ → Rq a C2 function such that

∀y = (y1, y2) ∈ Rp × Rq, ‖y1 − x1‖ < δ′, ‖y2 − x2‖ < δ,

f (y) = 0 ⇔ y2 = φ(y1).
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Corollary A.3. — Let k > 0, λ > 0 be such that k/λ � 1, U ⊂ R2 an open set, f be a C2

function f : R2 → R such that ‖df ‖C1(U) � k. Fix x ∈ R2 satisfying f (x) = 0 and |∂x2 f (x)| � λ√
2
.

Then if

ε =
(

λ

4k

)2

,

the nodal set b[x, ε] ∩ f −1(0) is the graph over Iε of a C2 function φ. Moreover,

(A.3) ‖φ′′‖L∞(Iε) � 100
(

k

λ

)3

.

Proof of Corollary A.3. — Fix δ = λ

4
√

2k
. By the mean value theorem,

(A.4) ∀y ∈ b[x, δ], |∂x2 f (y) − ∂x2 f (x)| � √
2δk = λ

4
,

so that

sup
y∈b[x,δ]

∣∣1 − (
∂x2 f (x)

)−1
∂x2 f (y)

∣∣ � 1/(2
√

2) � 1/2.

Using the notations of Theorem A.2, we thus have M �
√

2
λ

, C � k, so that δ′ � ( λ

4k
)2.

Since k � λ, δ � ( λ

4k
)2, which implies the first assertion. Now, since

∀t ∈ Iδ′, f
(
t, φ(t)

) = 0,

then ∀t ∈ Iδ′, ∂x1 f + ∂x2 f φ
′(t) = 0 so that |φ′(t)| � k

λ/
√

2−λ/4
� 4k

λ
by (A.4) and the hypoth-

esis on ∂x2 f (x), and

∀t ∈ Iδ′, ∂2
x2

1
f + 2∂2

x1x2
f φ′(t) + ∂2

x2
2
f φ′(t)2 + ∂x2 f φ′′(t) = 0.

This implies |φ′′(t)| � 4k

λ
(1 + 8k

λ
+ 16k2

λ2 ) � 100(k/λ)3 since k � λ. �
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