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EXPECTED LOCAL TOPOLOGY OF RANDOM COMPLEX
SUBMANIFOLDS

DAMIEN GAYET

Abstract

Let n ě 2 and r P t1, ¨ ¨ ¨ , n ´ 1u be integers, M be a compact smooth Kähler manifold of complex

dimension n, E be a holomorphic vector bundle with complex rank r and equipped with an hermitian
metric hE , and L be an ample holomorphic line bundle over M equipped with a metric h with

positive curvature form. For any d P N large enough, we equip the space of holomorphic sections
H0pM,E b Ldq with the natural Gaussian measure associated to hE , h and its curvature form.

Let U Ă M be an open subset with smooth boundary. We prove that the average of the pn ´ rq-th

Betti number of the vanishing locus in U of a random section s of H0pM,E b Ldq is asymptotic to
`n´1
r´1

˘

dn
ş

U c1pLqn for large d. On the other hand, the average of the other Betti numbers are opdnq.

The first asymptotic recovers the classical deterministic global algebraic computation. Moreover,
such a discrepancy in the order of growth of these averages is new and constrasts with all known

other smooth Gaussian models, in particular the real algebraic one. We prove a similar result for the
affine complex Bargmann-Fock model.
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1. Introduction

The goal of this article is to understand the statistics of the local topology of random complex

submanifolds, for projective manifolds and the affine complex space.

The author thanks Thomas Letendre for his expertise of the book [21], Michele Ancona for discussions about the

subject of the article and his paper [2], and the referee for his excellent and precious work.
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1.0.1. Projective manifolds. Let n be a positive integer, M be a compact smooth complex

manifold of complex dimension n, and L be an ample holomorphic line bundle over M . Let h be a

Hermitian metric on L with positive curvature form c1pLq “ ω, that is locally

(1.1) ω “
1

2iπ
BB̄ log }s}2h,

where s is any local non-vanishing section of L. Then, pM,ωq becomes a Kähler manifold, and by the

Kodaira theorem, it can be embedded in a projective space. For any large enough degree d ě 1, and

any generic holomorphic section s P H0pM,Ldq, denote by Zs Ă M the smooth vanishing locus of s.

The famous hyperplane Lefschetz theorem asserts, in particular, that [15]

(1.2) @0 ď i ď n´ 2, bipZsq “ bipMq.

For instance, if M “ CPn, then for i ď n´ 2, bipZsq “ 0 if i is odd and bipZsq “ 1 if i is even. On the

other hand [11, Lemma 3],

(1.3)
1

dn
bn´1pZsq Ñ

dÑ8

ż

M

ωn.

Of course, there is no local (deterministic) version of the Lefschetz theorem. Indeed, if U is an open

subset of M , the intersection of U with Zs can be empty or can have a topologicial complexity bigger

than the one of Zs. In particular for n ě 2, Zs is connected but its intersection with U can be

disconnected. There is even no bound for the number of components of it, since we can twist U for

that. However, for a fixed U defined by algebraic inequalities, the following bound exists:

Theorem 1.1. ([24, Theorem 3]) Let n ě 1 and 1 ď r ď n be integers, and U Ă CPnztZ0 “ 0u be

an open subset defined by real algebraic inequalities. Then, there exists a constant C depending only

on r and the sum of the degree of the defining polynomials of U , such that for any generic r-uple of

homogeneous complex polynomials s “ ps1, ¨ ¨ ¨ , srq P pChomd qr of degree d,

(1.4)
2n´2r
ÿ

i“0

bipZs X Uq ď Cd2n.

Now, if the section s is taken at random, one could hope that for fixed U , not necessarily defined

by polynomials, the average topology of Zs X U reflects in some way the Lefschetz theorem and with

less hope, the asymptotic (1.3) as well. In this paper, we prove that these two intuitions are true, in

the following more general classical setting. In addition to pL, hq, let pE, hEq be a holomorphic vector

bundle of rank r and equipped with a Hermitian metric hE . Since L is ample, for d large enough, the

space of holomorhic sections H0pM,E b Ldq is non-trivial. Besides, the bundle E b Ld is ample for

d large enough, so that for any generic section s P H0pM,E b Ldq, the relations (1.2) are generalized

into [23, Theorem 1.1]

(1.5) @0 ď i ď n´ r ´ 1, bipZsq “ bipMq.

The latter can be associated to the classical computation of χpZsq based on Chern classes (see for

instance [12, Corollary 3.5.2]) to prove a generalization of (1.3):

(1.6)
1

dn
bn´rpZsq Ñ

dÑ8

ˆ

n´ 1

r ´ 1

˙
ż

M

ωn.

A natural scalar product associated to this setting is the following:

(1.7) @ps, tq P pH0pM,E b Ldqq2, xs, ty “

ż

M

hE b hLdps, tq
ωn

n!
,
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where hLd is the metric over Ld induced by hd. A natural probability measure µd over this space

is the Gaussian one associated to this Hermitian product. In other terms, for any Borelian A Ă

H0pM,E b Ldq,

(1.8) µdpAq “

ż

A

e´
1
2 }s}

2 ds

p2πqNd
,

where } ¨ } denotes the norm associated to the Hermitian product (1.7), Nd the (complex) dimension

of H0pM,E bLdq and ds the Lebesgue measure. Notice that if pSiqiPt1,¨¨¨ ,Ndu is an orthonormal basis

for this scalar product, then s “
řNd
i“1 aiSi is random for µd when the coefficients

?
2ai P C are i.i.d

standard complex Gaussians, that is <ai and =ai are independent standard Gaussians.

Example 1.2. For M “ CPn, E “ Cr equipped with its standard Hermitian metric, L “ Op1q
equipped with the Fubini-Studi metric, then s consists in r independent copies of random polynomials

@1 ď i ď r, siprZsq “
ÿ

i0`¨¨¨`in“d

ai0¨¨¨in

d

pn` dq!

n!i0! ¨ ¨ ¨ in!
Zi00 ¨ ¨ ¨Z

in
n ,

where the p
?

2aIqI are independent standard complex Gaussian variables.

Our main result is the following:

Theorem 1.3. Let n ě 2 and 1 ď r ď n´ 1 be integers, M be a compact smooth Kähler manifold

and pL, hq be an ample complex line bundle over M , with positive curvature form ω, pE, hEq be a

holomorphic rank r vector bundle and let U ĂM be an open subset with smooth boundary, or U “M .

Then

@i P t0, ¨ ¨ ¨ , 2n´ 2ruztn´ ru,
1

dn
EbipZs X Uq Ñ

dÑ8
0

1

dn
Ebn´rpZs X Uq Ñ

dÑ8

ˆ

n´ 1

r ´ 1

˙
ż

U

ωn.

Here the probability measure is the Gaussian one given by (1.8).

Of course, when U “ M , the topological type of Zs does not depend on the random section s.

Markov’s inequality implies the following corollary.

Corollary 1.4. Under the hypotheses of Theorem 1.3, for any ε ą 0,

lim sup
dÑ`8

µd

"

s P H0pM,E b Ldq | bn´rpZs X Uq ě
dn

ε

ˆ

n´ 1

r ´ 1

˙
ż

U

ωn
*

ď ε,

where µd is defined by (1.8).

Note that the Gaussian measure can be replaced by the round metric on the sphere SH0pM,EbLdq,

where the metric is defined by (1.7). Hence, this corollary can be seen as a deterministic result about

the volume of certain subsets of topological interest in this sphere.

Example 1.5. Under the standard setting of Example 1.2,
ş

CPn ω
n
FS “ 1, so that

1

dn
Ebn´rpZs X Uq Ñ

dÑ8

ˆ

n´ 1

r ´ 1

˙

volpUq

volpCPnq
.

Remark 1.6. (1) Remark that Betti numbers are not additive, and moreover the setting has

no symmetry (except in the standard projective case), so that it is striking that the asymptotic

average local behaviour reflects exactly the global asymptotic estimate given by (1.3).

(2) Theorem 1.3 provides the first explicit asymptotic for the average of a the Betti number of

the nodal set of a smooth Gaussian field. Former explicit asymptotics were proven [10] in

a real context for high level random sets (in particular, not the zero one). As a common

feature of these two settings, when the parameter (the degree and the height respectively)

goes to infinity, one Betti number becomes dominant (the middle one and the b0 respectively)

among the others, so that Morse theory allows to compute their asymptotic through critical
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points and a Kac-Rice formula. Non-explicit asymptotics have been proven for the number

of components, see [25] and [26]. Note that the present holomorphic setting does not fit the

general hypotheses of [26]. For random surfaces, the existence of an asymptotic of the mean

Euler characteristic (see for instance [27] or [19]) joint with [26] provides the existence of a

(non-explicit) asymptotic for the average of b1. On the other way, explicit lower and upper

bounds for all Betti numbers have been computed in two natural contexts, see Remark 4.

below.

(3) For U “ M , Theorem 1.3 implies a weak version of the deterministic relation (1.5) but re-

covers the same asymptotic as (1.6). Indeed, any generic zero locus Zs of given degree d is

diffeomorphic to another one of the same degree.

(4) We emphasize that the qualitatively different asymptotics for Betti numbers given by Theo-

rem 1.3 are new. In particular constrasts with the real situation [12, Corollary 1.2.2] and all

known others smooth Gaussian models like [14] (see also [18, Theorem 29] and [31]). In these

latter cases, all Betti numbers grow like Ln, where 1{L is the natural scale of the model, 1{
?
d

in this one. This is especially true for the number of connected components, see [26]. Here,

the scale is d´
1
2 , however only the pn´ rq-th Betti number grows like dn.

(5) In [9], it was proved that for any compact smooth real hypersurface Σ of Rn, for any open

subset U ĂM , with uniform positive probability, a uniform proportion of the pn´1q-homology

in Zs X U can be represented by Lagrangians submanifolds diffeomorphic to Σ.

(6) In [6, Theorem A] (see also [2, Theorem 5 (2)]), it is shown that as far as (local) topology of

ZsXRPn is only concerned, a random real polynomial s of degree d can be replaced, with high

probability, by a polynomial of degree slightly greater than
?
d. In fact, [2] can be adapted

to prove that this statement holds for complex polynomials on a ball in the complementary

of a complex hypersurface as well. Using Milnor’s bound (1.4), this replacement allows to

get a similar estimate as Corollary 1.4 when U is defined algebraically. The decay is almost

exponential in this case.

(7) In [3, Proposition 6], the author proved that (deterministic) Donaldson hypersurfaces, which

are zeros of sections wich vanish transversally with a controlled derivative, satisfy such local

topology estimate for the pn ´ rq-th Betti number as in Theorem 1.3. This shows a further

evidence that Donaldson hypersurfaces have common features with random ones. For instance,

the current of integration over Zs fills out uniformly M for large degrees d in both contexts,

see [7] and [28].

1.0.2. The complex Bargmann-Fock field. Finally, we prove an affine version in the universal

limit for holomorphic sections, namely the complex Bargmann-Fock field. The Bargmann-Fock field

is defined by

(1.9) @z P Cn, fpzq “
ÿ

pi1,¨¨¨ ,inqPNn
ai0,¨¨¨ ,in

d

πi1`¨¨¨`in

i1! ¨ ¨ ¨ in!
zi11 ¨ ¨ ¨ z

in
n e

´ 1
2π}z}

2

,

where the aI ’s are independent normal complex Gaussian random variables. The strange presence of

π will be explained below.

Theorem 1.7. Let n ě 2 and 1 ď r ď n ´ 1 be integers, f : Cn Ñ Cr be r independent copies of

the Bargmann-Fock field, and U Ă Cn be an open subset with compact smooth boundary. Then,

@i P t0, ¨ ¨ ¨ , 2n´ 2ruztn´ ru,
1

R2n
EbipZf XRUq Ñ

RÑ`8
0

1

R2n
Ebn´rpZf XRUq Ñ

RÑ`8
n!

ˆ

n´ 1

r ´ 1

˙

volpUq.

The volume is the standard one.
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Remark 1.8. (1) Again, compared to the other known results, the order of magnitude of the

mean number of connected components is not the natural one, that is R2n, see [26] for instance.

(2) Theorem 1.7 (and Theorem 1.3) was guessed by the author for the following geometric reasons,

which we present for n “ 2 and r “ 1: because of the maximum principle, if a complex curve

C in C2 locally touches a real hyperplane H, being (locally) on one side of H, then C is affine

and C Ă H. Now, if p : U Ă C2 Ñ R is Morse, for any R ą 0, let pR “ pp¨{Rq. Then for

large R ą 0, the level sets of pR are locally closer and closer to be planar, so that there should

be less and less random cuves touching them from the interior, that is there are less and less

critical points of p|Zf of index 0, compared to critical points of index 1. Morse theory should

then imply the result.

1.0.3. Related results. The study of the statistics of the Betti numbers, or even the diffeo-

morphism type, of a random smooth submanifold (of positive dimension) is now a well-developped

subdomain of random geometry, with current links to percolation. We refer to [10] for a historical ac-

count of this topic. The results were proven mainly in the real algebraic and Riemannian semiclassical

settings. Both models share a common feature: the Betti numbers grow (with the parameter, degree

or eigenvalue) like the inverse of the scale to a power equal to the dimension of the ambient manifold.

In both cases, the covariance of the model is the spectral kernel, for which estimates exist.

The local study of the geometry of random complex submanifolds of positive dimension began

with [28], under the hypotheses of Theorem 1.3, with r “ 1. It was proven that the average current of

integration over Zs tends to the curvature form of the line bundle, when d grows to infinity. Since the

topology of the complex hypersurfaces depend only on the degree, a crucial difference with the real

setting, the topology of random complex hypersurfaces seemed less promising. Our paper [9] showed

that local random (symplectic) topology is interesting as well, and even can provide new deterministic

results.

A lot of results about critical points of random sections has been done. In this complex algebraic

context, it seems to begin with [8]. In [11], the restriction of a Lefschetz pencil to the complex random

hypersurface was used in order to get topological estimates through Morse theory, which is the spirit

of the present paper. We refer to [12, §1.3] for further references. The following result is close to the

present work:

Theorem 1.9. ([13, Theorem 1.3] for r “ 1, [12, Theorem 3.5.1]) for any r) Under the hypotheses

of Theorem 1.3, let p : M 99K CP 1 be a Lefschetz pencil. Then,

1

dn
E#

`

U X Critpp|Zsq
˘

Ñ
dÑ8

ˆ

n´ 1

r ´ 1

˙
ż

U

ωn.

This result holds in particular for any local holomorphic map. A similar real version of Theorem 1.9

was proven as well. In the real setting, the authors used the weak Morse inequalities in order to get

an upper bound for the average Betti numbers of Zs. Lower bounds of the same order of magnitude

(in the degree) where estimated by the barrier method.

As in [10], in the present paper we use the strong Morse inequalities, and moreover we use this theory

on manifolds with boundary, which implies to take in account the critical points of the restriction of

the function to the boundary. Joint with the weak ones, strong Morse inequalities allow us to get

the proper estimate of the mean middle Betti number given by Theorem 1.3. On the contrary to

the real setting, in our complex setting strong Morse inequalities help, because the complex Hessian

of a holomorphic function has a symmetric signature, which implies that all mean critical points of

p|Zs have the wrong order of magnitude, except when the index is the middle one, that is n ´ r, see

Theorem 4.4.

The method to prove Theorem 4.4 is different than the one used for Theorem 1.9, but both provide,

on the one hand, a Kac-Rice formula, and on the other hand, an estimate of it when the degree goes
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to infinity. In [13] and [12], the authors used explicit peak sections to compute the average, and the

aforementionned parts were mixed. In this paper we wanted to clearly separate the two parts of the

proof : one part which is based on a general Kac-Rice formula as Corollary 3.5, and one part which

depends on the particular model, real, holomorphic or mixed (on the boundary of the open set U).

This can be done because the second part only needs informations about the covariance function. For

projective manifolds, this is the Bergman kernel, see section 4.2. The method of peak sections allows

to recover the needed informations, see [30]. In [28], the Szegö kernel was used, based on Zelditch’s

semiclassical way [32] of proving Tian’s theorem. For the Riemannian setting like in [14], the covariance

is the spectral kernel and Hörmander estimates can be used.

1.0.4. Holomorphic percolation. Theorem 1.7 raises a natural question related to percolation

theory: is there a Russo-Seymour-Welsh phenomenon for the complex Bargmann-Fock field? In its

simplest non-trivial form, this question is the following:

Let B,B1 Ă S3 Ă C2 two disjoint closed smooth 3´balls lying in the unit sphere, and let f be the

complex Bargmann-Fock field over C2 see (1.9). Is it true that

lim inf
RÑ`8

P
`

D a connected component of tf “ 0u XRB4 joining RB to RB1
˘

ą 0 ?

The analog for the real Bargmann-Fock over R2 is true, see [4]. We emphasize that the holomorphic

situations constrasts in many ways with the real setting. Firstly, there is no bounded component of

tf “ 0u in the complex case and with probability one, there is a unique component of Zf . Secondly,

none of the classical tools in percolation theory does hold in this holomorphic context, in particular

duality and FKG property, see for instance [4] for these concepts. Besides, the isotropy of the field

and the absence of bounded components imply that with uniform positive probability there exists a

component of tf “ 0u X RB from B to RB. In the real setting, this probability tends to 0. Finally,

note that a similar question can be asked for complex algebraic submanifolds:

Let U Ă CP 2 be a smooth ball in the projective plane, B,B1 Ă BU two disjoint closed smooth 3´balls

lying in the boundary of U , and let s P H0pCP 2,Opdqq be a random polynomial of degree d. Is it true

that

lim inf
dÑ`8

P
`

D a connected component of ts “ 0u X U joining B to B1
˘

ą 0 ?

The real analog has been proven in [5].

1.0.5. Ideas of the proof of Theorem 1.3. Let U Ă M be an open set with compact smooth

boundary and p : Ū Ñ R be a smooth Morse function in the sense of Definition 4.9, that is p Morse

on U , its restriction to BU is Morse and p has no critical point on BU . Let Z be a complex smooth

submanifold of U with boundary in BU , such that p|Z is Morse in the latter sense. Then, by Morse

theory for manifolds with boundary, for any 0 ď i ď dimR Z, the i-th Betti number of Z is less or

equal to the number of critical points of p|Z and p|BZ of index i, see Theorem 4.13. Besides, from the

strong Morse inequalities, we can estimate the i´th Betti number of Z if the critical points of index

different than i are far smaller.

We apply this to Zs the zero set of a random holomorphic section s of degree d. Note that the

natural scale for the natural measure is 1{
?
d. Hence, in every ball of this radius, the geometry of Zs

should be independent of d. This implies in particular that on a manifold of real dimension m, the

average of geometric or analytic observables like the number of critical points of p|Zz should grow like

d
m
2 .

We provide a general Kac-Rice formula for the average number of critical points of the restriction

of a Morse function to a random vanishing locus, see Corollary 3.5. This formula is based on a more

general formula established in [29]. We first apply Corollary 3.5 to our projective situation. This

allows us to estimate the number of critical points in the interior of U , see Theorem 4.1, and a factor
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dn emerges, as guessed by the previous heuristic arguments. Here we use the fact that the covariance

function of s is the Bergman kernel and that this kernel has a universal rescaled limit, see Theorem 4.5.

Now, the integral in the Kac-Rice formula involves the determinant of a random matrix provided by

a perturbation of the Hessian of s (restricted to the tangent space of Zs), where the perturbation

decreases with d. At the limit, the matrix is non zero only for middle index, since the Hessian has

complex symmetries. On the contrary, the mean number of critical points of middle index has a precise

non-trivial asymptotic, see Theorem 4.4.

We need also to control the number of critical points of the restriction of p to the boundary of U

and of Zs. We use the Kac-Rice formula in this mixed case as well, see Proposition 4.11. As guessed,

a factor dn´
1
2 emerges. Both estimates and Morse theory finish up the proof of Theorem 1.3.

1.0.6. Structure of the article. In section 2, we prove various deterministic lemmas in order to

prepare the main Kac-Rice formula computing the mean of critical points. This formula is established

in section 3. In section 4, we apply this formula in order to prove Theorem 1.3 and Theorem 1.7.

2. Deterministic geometric preliminaries

The general setting of this section is a real manifold M of dimension n and a real vector bundle E

over M . Let also p : M Ñ R be a Morse function. For any generic smooth section of E, we will look

at the critical points of p|ts“0u, which are the points x P M where the tangent space of the vanishing

locus Zs of s lies in ker dppxq. For this reason, we must understand the geometry of ker∇s as an

element of the Grassmannian bundle Grasspn ´ r, TMq or Grasspn ´ r, ker dpq, where ∇ denotes any

covariant connection on E. In this section, we provide various simple lemmas which will be used in

the main results. To make the computations easier, M and E will be endowed with metrics.

2.1. Kernel and Grassmannians. The following Lemma is classical:

Lemma 2.1. Let n be an integer and pV, gq be a finite dimensional real vector space of dimension

n equipped with a scalar product g. For any integer 0 ď m ď n, the Grassmannian Grasspm,V q of

m´planes of V is a smooth manifold and for any K P Grasspm,V q, TKGrasspm,V q is canonically

(with respect to g and K) identified with LpK,KKq. In particular, TKGrasspm,V q inherits the natural

metric on LpK,KKq induced by g. If V is complex and g is Hermitian, then the same holds, replacing

the real Grassmaniann by the complex Grassmanian GrassC, and LpK,KKq by the complex linear maps

LCpK,KKq.

Remark 2.2. Note that for f P LpK,KKq, if A denotes the matrix of f in any g-orthonormal basis

of K and KK, then the squared norm of f induced by g equals TrpAA˚q.

Lemma 2.3. Let 1 ď r ď n, pV, gq be an Euclidean vector space, and E be a real vector space,

of respective dimensions n and r. Let α0 P LontopV,Eq and K “ kerα0 P Grasspn ´ r, V q. Then,

there exists a neighborhood U Ă LontopV,Eq of α0 and a smooth map : ϕ : U Ñ LpK,KKq such that

ϕpα0q “ 0 and

@α P U, kerα “
`

Id|K ` ϕpαq
˘

pKq.

Moreover, for any β P LpV,Eq, dϕpα0qpβq “ ´pα0|KKq
p´1qβ|K . The same holds in the complex-

Hermitian setting.

Proof. Let

F : LpV,Eq ˆ LpK,KKq Ñ LpK,Eq
pα, fq ÞÑ α ˝ p Id|K ` fq.

Then, F is smooth and F pα0, 0q “ 0. The partial differential in f at pα0, 0q writes

@g P LpK,KKq, dfF pα0, 0qpgq “ α0 ˝ g “ α0|KK ˝ g P LpK,Eq.
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This partial differential is an isomorphism because α0 is onto, so that α0|KK P LpKK, Eq is an isomor-

phism. Note that the partial differential in α satisfies

β P LpV,Eq, dαF pα0, 0qpβq “ β|K .

Hence, by the implicit function theorem, there are two open neighborhoods U Ă LpV,Eq and W Ă

LpK,KKq of α0 and 0 respectively, and a smooth function ϕ : U ÑW such that

@pα, fq P U ˆW, F pα, fq “ 0 ô f “ ϕpαq.

Besides, dϕpα0q “ ´ pdfF pα0, 0qq
p´1q

˝ dαF pα0, 0q, hence the result. �

Let pV, gq and pE, hq as in Lemma 2.3. Define

κ : LontopV,Eq Ñ Grasspn´ r, V q(2.1)

α ÞÑ kerα.

The following lemma computes the derivative of κ.

Lemma 2.4. Let pV, gq and pE, hq be two real vector spaces as in Lemma 2.3. Then, κ defined

by (2.1) is smooth and for any α0 P LontopV,Eq, in the chart given by Lemma 2.1,

dκpα0q : LpV,Eq Ñ Tkerα0
Grasspn´ r, V q » Lpkerα0, kerK α0q

β ÞÑ ´pα0|KKq
´1β|K .

Proof. Let α0 P LontopV,Eq. By Lemma 2.3, Locally, for any α close enough to α0,

κpαq “ pId| kerα0
` ϕpαqqpkerα0q.

The second assertion of Lemma 2.3 concludes. �

2.2. The field and its geometry. Let n ě 2 and 1 ď r ď n´ 1 be integers, pM, gq be a smooth

Riemannian manifold of dimension n ě 1, and E Ñ M be a smooth real vector bundle of rank r.

Define

F “ E ‘ T˚M b E.

Let p : M Ñ R be a Morse function, and W Ă F be the subset of F defined by

W “ tpx, 0, αq P F, dppxq ‰ 0, α is onto and kerα Ă ker dppxqu .

Note that W projects onto MzCritppq. Since p is Morse, Critppq is a discrete set in M without any

accumulation point. If M is compact, Critppq is finite. We will use later that for any C1 section s of

E, then x PM is critical for the restriction of p on ts “ 0u at x is equivalent to px, spxq,∇spxqq PW ,

see (3.1) below. For any x PMzCritppq, let

(2.2) Wx “ tp0, αq P Fx, px, 0, αq PW u .

Lemma 2.5. Let M , E, p, F and W be defined as above. Then,

(1) W is a smooth submanifold of F of codimension n;

(2) W intersects transversally the fibres of F ;

(3) for any x PMzCritppq, Wx is a smooth submanifold of Fx of codimension n, and

(2.3) @p0, αq PWx, Tp0,αqWx “ tp0, βq P Fx, dppxqpα| kerK αq
´1β| kerα “ 0u.

Proof. Let px0, 0, α0q P W and K “ kerα0 Ă Tx0M . Let O be a neighborhood of x0 such that M

can be locally identified with Tx0
M by a chart over O, and E|O can be identified with O ˆ Ex0

via a

trivalization. Then, F|O can be identified with O ˆ pEx0 ‘ T
˚
x0
M b Ex0q. By Lemma 2.3, there exists
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U Ă LpTx0
M,Ex0

q a neighborhood of α0 and a smooth map ϕ : U Ñ LpK,KKq, such that for any

α P U, kerα “ ImpId` ϕpαqq|K . Now, define the smooth map

Φ : F|O Ñ Ex0 ˆK
˚(2.4)

px, s, αq ÞÑ

”

s, dppxq pId` ϕpαqq|K

ı

.

Then, W XO “ Φ´1p0q. Moreover, by Lemma 2.3 again, for all pv, t, βq P Tx0
M ˆEx0

ˆLpTx0
M,Ex0

q,

(2.5) dΦpx0, 0, α0qpv, t, βq “
“

t, d2ppx0qpvq|K ´ dppxqpα|KKq
´1β|K

‰

.

Since dppxq ‰ 0, dΦ is onto, so that W is a smooth submanifold of F of codimension n. The third

assertion of the lemma is an immediate consequence of (2.5). For the second assertion of the lemma, let

px, 0, αq P F XW . Then, by (2.5), pv, t, βq P FxXTpx,0,αqW iff pv, tq “ 0 and dppxqpα| kerK αq
´1β| kerα “

0, that is p0, βq P Tp0,αqWx. Hence, F&W . �
2.3. Two Jacobians. In this paragraph, the setting is the same as in the latter one, with the

novelty that the vector bundle E is endowed with a Euclidean metric hE on its fibres. We compute two

Jacobians which will be needed for the coarea formula used in the main Kac-Rice formula Corollary 3.5.

For any px, αq P TM˚ b E, such that α is onto and dppxqpα| kerK αq
´1 ‰ 0 P E˚x , define

(2.6) µpx, αq “ ker dppxqpα| kerK αq
´1 Ă Ex.

Let εpx, αq be one of the two unit vector in µpx, αqK Ă Ex, and K “ kerα. The following decomposition

will help:

pα|KKq
´1 “

Rε µ
ˆ ˙

pα|KKq
´1
|Rε 0 kerK dppxq

˚ pα|KKq
´1
|µ ker dppxq XKK

.(2.7)

Note that for any x PMzCritppq, by (2.3),

Tp0,αqWx “ Lpkerα, µpx, αqq ‘ LpkerK α,Exq

Definition 2.6. (see [29, C.1]) Let M,N be two Riemannian manifolds and κ : M Ñ N be a C1

map. For any x PM such that dκpxq is onto, Jxκ denotes the normal Jacobian, that is the determinant

in orthonormal basis of dκpxq| kerK dκpxq.

In the following, for any x P M , let κ : LontopTxM,Exq Ñ Grasspn ´ r, TxMq defined by (2.1) for

V “ TxM and E “ Ex. By an abuse of notation, we denote also κ the map Ex ˆ LontopTxM,Exq Q

p0, αq ÞÑ κpαq.

Lemma 2.7. For any x P MzCritppq, let κ|Wx
: Wx Q p0, αq ÞÑ kerα Ă ker dppxq. Then, for all

p0, αq PWx, Jp0,αqpκ|Wx
q “

ˇ

ˇdetα| kerK αXker dppxq

ˇ

ˇ

´pn´rq
.

Proof. Firstly, by Lemma 2.5,

Tp0,αqWx “ kerpβ ÞÑ xεpx, αq, β|Kyq,

where ε has been defined above. Since

dpκ|Wx
qp0, αq “ pdκp0, αqq|Tp0,αqWx

,

from Lemma 2.4 we infer that Jp0,αqpκ|Wx
q “

ˇ

ˇ

ˇ
detpα|KKq

´1
|µpx,αq

ˇ

ˇ

ˇ

n´r

, where µ has been defined by (2.6).

Since α|KK induces an isomorphism between KK X ker dppxq and µpx, αq, we obtain the result. �
Lemma 2.8. Fix x PMzCritppq and K P Grasspn´ r, ker dppxqq. Let

g : κ´1pKq Ñ Grasspr ´ 1, Exq

α ÞÑ µpx, αq “ ker
`

dppxq ˝ pα|KKq
´1

˘

.
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Then, for all α, Jp0,αqg “ |detα| kerK αXker dppxq|
´1.

Proof. Firstly, the map

ν : α P κ´1pKq ÞÑ pα|KKq
´1 P LpEx,KKq

is smooth, and for any α P κ´1pKq,

@β P Tακ
´1pKq, dνpαqpβq “ ´pα|KKq

´1β|KKpα|KKq
´1 P LpEx,KKq.

Moreover, by Lemma 2.1, the differential of

κE : E˚x zt0u Ñ Grasspr ´ 1, Exq

f ÞÑ ker f

satisfies that, for any f P E˚x zt0u and h P E˚x , dκEpfqh “ ´pf| kerK f q
´1h| ker f , so that for any

α P κ´1pKq and any β P Tακ
´1K,

dgpαqβ “
´

dppxqpα|KKq
´1
|Rεpx,αq

¯´1

dppxqpα|KKq
´1β|KKpα|KKq

´1
|µpx,αq P Lpµpx, αq,Rεpx, αqq,

hence Jαg “ | detpα|KKq
´1
|µpx,αq|. Since α|KK induces an isomorphism between KK X ker dppxq and

µpx, αq, we obtain the result. �

3. The mean number of induced critical points

In the first part of this section, we provide two results. The first one, Proposition 3.3, is a Kac-Rice

formula for the mean number of critical points of the restriction of a Morse function to the vanishing

locus of a random section of some vector field. It is an application of the general Kac-Rice formula

given by Theorem 3.2. The second result, Corollary 3.5, is a more explicit and computable Kac-Rice

formula which will be used in the applications of section 4. In the second part of the section, we adapt

the formula in a holomorphic context, see Corollary 3.7.

3.1. The general formula. Let M , E, F and W be as in section 2, and let ∇ be a smooth

connection on E. For any section s P C1pM,Eq, let Zs :“ tx P M, spxq “ 0u and X P C0pM,F q

defined by

X : M Ñ F “ E ‘ T˚M b E

x ÞÑ rx, spxq,∇spxqs .(3.1)

Note that for any x P M , Xpxq P W if and only if x P Zs and x is a critical point of p|Zs . For any

random section s P C2pM,Eq, we are interested in the subset of M :

(3.2) Critpi psq “ tx PM, Xpxq PW and Ind∇2pp|Zsqpxq “ iu,

where ∇ is any connection over Zs. Note that Ind∇2pp|Zpsqqpxq is well defined for any x P X´1pW q

because in this case dpp|Zsqpxq “ 0. Hence, x P X´1pW q if and only if p lies in Zs and the restriction

of f to Zs at p is critical and its index equals i. For any s P C2pM,Eq and x P X´1pW q, define also

(3.3) πpx, αq :“ ∇2ppxq| kerα ´ dppxq
`

α| kerK α

˘´1 ∇2spxq| kerα P Sym2
pker∇spxqq,

where α “ ∇spxq. Here, ∇2p denotes the covariant derivative of dp for the Levi-Civita connexion

associated to g. However, the formulas will not depend on the choice of this particular connexion.

Lemma 3.1. Assume that p : M Ñ R is a Morse function. Let s P C2pM,Eq be a section of E,

x P X´1pW q. Then,

∇2pp|Zsqpxq “ πpx,∇spxqq,
so that Ind p∇2pp|Zsqpxqq “ Ind pπpx,∇spxqqq .
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Proof. Let s P C2pM,Eq, x0 P Zs and K “ ker∇spx0q. Assume that dimK “ n ´ r. We choose

coordinates near x0 so that M is identified with Tx0
M . By the implicit function theorem, locally near

x0 “ p0, 0q P K ‘ KK, and Zs is the graph over K of a C2 map f : K Ñ KK with fp0q “ 0 and

dfp0q “ 0. Since locally @z P K, spz, fpzqq “ 0, we obtain

∇zs`∇ys ˝ df “ 0,

where ∇z and ∇y denote the partial covariant derivatives alongK andKK respectively. so that∇2
z2sp0, 0q`

∇ysp0, 0q ˝ d
2fp0q “ 0, Now let p0 : K Ñ R be defined locally by

@z P K, p0pzq “ ppz, fpzqq.

Note that if K Ă ker dppzq, then Ind d2ppzq “ Ind∇2p|Zs . Now

dp0 “ dzp` dyp ˝ df,

so that d2p0p0q “ d2
zpp0, 0q`dyp˝d

2fp0q. Replacing d2fp0q by its value above, we obtain the result. �
We will use the following general Kac-Rice formula.

Theorem 3.2. ([29, Theorem 3.3]) Let n be a positive integer, M be a smooth manifold of dimension

n, F ÑM be a smooth vector bundle and X P ΓpM,F q be a non-degenerate smooth Gaussian random

section. Let W Ă F be a smooth submanifold of codimension n such that for every x P M , Wx :“

W&Fx. Let the total space of F be endowed with a Riemannian metric that is Euclidean on fibers.

Then for any Borel subset A ĂM

E#tx P AXX´1pW qu “

ż

xPA

ż

qPWx

E
´

JxX
σqpX,W q
σqpFx,W q

|Xpxq “ q
¯

ρXpxqpqqdvolpqqdvolpxq,

where ρXpxqpqq is the density of Xpxq at q and besides, σqpX,W q, σqpFx,W q denote the “angles” made

by TqW with, respectively, dxXpTxMq and TqFx, see [29, Definition B.2].

The random section X P ΓpM,F q is said to be non-degenerate [29, Definition 3.1] if for any x PM ,

supp Xpxq “ Fx. We will not explain here the terms σq, because by the proof of [29, Lemma 7.2],

locally

(3.4) JxX
σqpX,W q

σqpFx,W q
“
JxpΦ ˝Xq

JqpΦ|Fxq
,

where Φ : F Ñ Rn is a local defining function for W , that is W “ Φ´1p0q, where J denotes the normal

Jacobian, see Definition 2.6.

The following Proposition 3.3 is an application of the general Kac-Rice formula above, namely a

Kac-Rice formula for the number of induced critical points of the restriction of a Morse function on

random nodal sets. We need some notations. Let s P C2pM,F q, x P X´1pW q and α “ ∇spxq. Recall

that εpx, αq P Ex denotes a unit vector of kerK dppxqpα|KKq
´1 Ă Ex, that πpx, αq is defined by (3.3)

and Critpi psq by (3.2). In the sequel, ∇p P TM denotes the gradient of p.

Proposition 3.3. Let n ě 2 and 1 ď r ď n ´ 1 be integers, pM, gq be a Riemannian manifold,

pE, hq ÑM be a rank r smooth Euclidean vector bundle and s P ΓpM,Eq be a non-degenerate Gaussian

smooth field. Let p : M Ñ R be a smooth Morse function. Then, for any i P t0, ¨ ¨ ¨ , n ´ ru and any

Borel subset A ĂM ,

E r# pAX Critpi qs “

ż

xPA

ż

αPLontopTxM,Exq
kerαĂker dppxq

ˇ

ˇdetα| kerK α

ˇ

ˇ

E
”

1tInd pπpx,αqq“iu

ˇ

ˇ

ˇ
det

´

x∇2spxq| kerα, εpx, αqy

´xαp∇ppxqq, εpx, αqy
∇2ppxq| kerα

}dppxq}2

¯
ˇ

ˇ

ˇ
| spxq “ 0,∇spxq “ α

ı

ρXpxqp0, αqdvolpαqdvolpxq,
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where ρXpxq is the Gaussian density of Xpxq and the determinants are computed in orthonormal basis.

Moreover, this integral is finite if volpAq is finite.

Remark 3.4. Note that from Lemma 3.1, the integrand can be rewritten as

ˇ

ˇdetα| kerK α

ˇ

ˇ

ˆ

xαp∇ppxqq, εpx, αqy
}dppxq}2

˙n´r

E
”

1tInd pπpx,αqq“iu

ˇ

ˇ

ˇ
det

´

πpx, αq
¯
ˇ

ˇ

ˇ
| spxq “ 0,∇spxq “ α

ı

ρXpxqp0, αq.

Recall that πpx,∇spxqq “ ∇2pp|Zsqpxq.

Proof of Theorem 3.3. We use Theorem 3.2, using locally (3.4). Note that by [29, §4.4], Theorem 3.2

can be refined for critical points of given index i, adding on the r.h.s of the Kac-Rice formula the

indicator function for index i as in the formula above, see also [13]. Let px0, 0, α0q P W . Locally and

in coordinates, using the local defining function Φ for W given by (2.4),

@x P O, ΦpXpxqq “ rspxq, dppxqpId` ϕp∇spxqqs P Ex0
ˆ pkerα0q

˚,

where ∇ still denotes the connection ∇ through the trivialization. Hence,

@v P TxM, dpΦ ˝Xqpxqpvq “

”

dspxqpvq, d2ppxqpvqpId` ϕp∇spxqqq| kerα0

´dppxqp∇spxq| kerK α0
q´1d∇spxqpvq| kerα0

ı

.

In particular, for any x P X´1pW q and any v P TxM , if K “ ker∇spxq,

dpΦ ˝Xqpxqpvq “
”

∇vspxq,∇vdppxq|K ´ dppxqp∇spxq|KKq´1∇v∇spxq|K
ı

.

Now, decomposing TxM as TxM “ KK ‘K, since ∇spxq|K “ 0, computing the determinant of this

differential gives

JxpΦ ˝Xq “
ˇ

ˇdet∇spxq|KK
ˇ

ˇ

ˇ

ˇdet
`

∇dppxq|K ´ dppxqp∇spxq|KKq´1∇2spxq|K
˘
ˇ

ˇ .

Now, let us compute JxΦ|Fx . For this, recall that

@ps, αq P Fx, Φps, αq “ rs, dppxqpId` ϕpαqqs,

so that

@p0, αq PWx, @pt, βq P TpFx, dpΦ|Fxqp0, αqpt, βq “ rt,´dppxqpα|KKq
´1β|Ks.

Since Jp0,αqpβ ÞÑ xβ|K , εpx, αqyq “ 1, we get that

Jp0,αqpΦ|Fxq “ |dppxqpα|KKq
´1εpx, αq|n´r.

Moreover,

dppxqpα|KKq
´1∇2spxq|K “

`

dppxqpα|KKq
´1εpx, αq

˘

x∇2spxq|K , εpx, αqy.

By Lemma 2.5, W intersects the fibres of F transversally, so that Theorem 3.2 applies. Replacing the

integrand in the theorem by (3.4), we obtain the formula. Finally, by the decomposition (2.7),

dppxqpα| kerK αq
´1εpx, αq “ }dppxq}2pxαp∇ppxqq, εpx, αqyq´1.

Since p is Morse, for any critical point x P Critppq, there exists a constant Cx such that }dppyq} ě

Cx}y´ x}. Hence, the pole in the integration over A created by x has order n´ r, which is integrable,

see also [12, Remark 3.3.3]. �
In order to provide an effective formula in concrete settings, we add further parameters. For any

x P M , for any real hyperplane µ Ă Ex, let εpµq be a unit vector in µK. Recall that Critpi is defined

by (3.2). Finally, let

hpxq “
∇ppxq
}∇ppxq}

P TxM.
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Corollary 3.5. Assume the hypotheses of Proposition 3.3 are satisfied. Let A Ă M be a Borel

subset. Then, for any i P t0, ¨ ¨ ¨ , n´ ru,

E r# pAX Critpi qs “

ż

xPA

ż

KPGrasspn´r,ker dppxqq
µPGrasspr´1,Exq

ż

αPTM˚
x bEx

kerα“K
ker dppxqpα

|KK q
´1
“µ

ˇ

ˇdetpα|KKXker dppxqq
ˇ

ˇ

n´r`2
|xαphpxqq, εpµqy|

E
”

1tInd pπpx,αqq“iu

ˇ

ˇ

ˇ
det

´

x∇2spxq|K , εpµqy

´xαphpxqq, εpµqy
∇2ppxq|K

}dppxq}

¯
ˇ

ˇ

ˇ
| spxq “ 0,∇spxq “ α

ı

ρXpxqp0, αqdvolpαqdvolpµqdvolpKqdvolpxq,

where πpx, αq is given by (3.3) and ρX denotes the density of X.

Proof. In the formula given by Proposition 3.3, we handle first the determinant of α|KK . Since

pα|KKq
´1pµq “ ker dppxq XKK, if hpxq is a unit vector in kerK dppxq, then

(3.5) |detα|KK | “ |detα|KKXker dppxq||xαphpxqq, εpµqy|.

We then apply two times the coarea formula (see for instance [29, Theorem C.3] from which we

borrow the notations) for the integral in α. The first formula is applied with the map κ|Wx
: Wx Ñ

Grasspn ´ r, ker dppxqq, where κ is defined by (2.7). By Lemma 2.7, its Jacobian satisfies, for any

p0, αq P Wx, Jp0,αqpκ|Wx
q “

ˇ

ˇdetα| kerK αXker dppxq

ˇ

ˇ

´pn´rq
. The second coarea formula is applied with

K P Grasspn´r, ker dppxqq fixed, with the function g : κ´1pKq Ñ Grasspr´1, Exq defined in Lemma 2.8.

Then, By the latter, for all α, Jp0,αqg “ | detα| kerK αXker dppxq|
´1. We obtain the result. Together

with (3.5), we obtain the desired formula. �
3.2. The holomorphic setting. In this paragraph, let n ě 2 and 1 ď r ď n ´ 1 be integers,

M be a complex smooth manifold of complex dimension n, endowed with a Hermitian metric g. Let

pE, hEq ÑM be a holomorphic Hermitian vector bundle of rank r, and s P ΓpM,Eq be a holomorphic

Gaussian field. In section 4, M will be either a compact projective manifold and E the tensor product

of a fixed vector bundle tensored by the high powers of an ample line bundle, or M will be the affine

complex space and E the trivial complex vector bundle of rank r. Let ∇ be the Chern connection for

E, that is the unique holomorphic and metric connection on E, see [15]. In this complex case, the real

setting of paragraph 3.1 adapts formally, changing the field R into C. In particular, we define

F “ E ‘ LCpTM,Eq,

where for any x P M , LCpTxM,Exq denotes the space of complex linear maps between TxM and Ex.

However, specific changes must be also done. Let p : M Ñ R be a smooth Morse function. Then, for

any holomorphic section s of E and any x P Zs,

ker∇spxq Ă ker dppxq ô ker∇spxq Ă kerπCpxq,

where πCpxq denotes the complexification of dppxq, that is πCpxq P LCpTxM,Cq and dppxq “ <πCpxq.
Then, we use that for any complex subspace K Ă TxM and any α P LCpK,Exq, the real determinant

(computed in orthonormal basis) of the associated real map αR equals

(3.6) |detαR| “ |detα|2.

As in the real case, the Gaussian holomorphic field s is said to be non-degenerate if for any x PM ,

s ÞÑ pspxq,∇spxqq P E ˆ LCpTxM,Exq

is onto. As before, we define

W “ tpx, 0, αq P F, dppxq ‰ 0, α onto and kerα Ă kerπCpxqu,
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and Wx as the fibre of W over x. For any K P GrassCpn´ r, TxMq and µ P GrassCpr ´ 1, Exq, let

W px,K, µq :“ tα P LC
ontopTMx,bExq | kerα “ K, kerπCpxqpα|KKq

´1 “ µu.

Lemma 3.6. Under the hypotheses above, W px,K, µq is a submanifold of Wx of complex dimension

r2 ´ pr ´ 1q.

For any s P H0pM,Eq and x P X´1pW q, define also

(3.7) πpx, αq :“ ∇2πCpxq| kerα ´ πCpxq
`

α| kerK α

˘´1 ∇2spxq| kerα P Sym2
pker∇spxqq,

where α “ ∇spxq. Lastly, for any x PM , denote by hpxq P TxM any unit vector in pkerπCpxqq
K Ă TxM ,

and for any complex hyperplane µ Ă Ex, let εpµq be a unit vector in µK Ă Ex. Recall that Critpi is

defined by (3.2).

Theorem 3.7. Let pM, gq be a complex manifold, pE, hEq ÑM be a holomorphic Hermitian vector

bundle, and s P ΓpM,Eq be a non-degenerate holomorphic Gaussian field. Let A Ă M any Borel

subset. Then,

E r# pAX Critpi qs “

ż

xPA

ż

KPGrassCpn´r,kerπCpxqq
µPGrassCpr´1,Exq

ż

αPLC
pTxM,Exq

kerα“K
kerπCpxqpα|KK q

´1
“µ

ˇ

ˇdetpα|KKXkerπCpxqq
ˇ

ˇ

2pn´r`2q
|xαphq, εpµqy|2

E
”

1tInd pπpx,αqq“iu

ˇ

ˇ

ˇ
det R

´

x∇2spxq|K , εpµqy

´xαphpxqq, εpµqy
∇πCpxq|K
}πCpxq}

¯
ˇ

ˇ

ˇ
| spxq “ 0,∇spxq “ α

ı

ρXpxqp0, αqdvolpαqdvolpµqdvolpKqdvolpxq,

where πpx, αq is given by (3.7) and ρX is the density of X. Moreover, the integral is finite if volpAq is

finite.

Proof. The proof is formally the same as the one of Corollary 3.5, using the rules mentionned above,

so we omit it. �

4. Applications

In this section we apply Theorem 3.7 to the complex Bargmann-Fock field on Cn and then to the

projective setting. Finally, we apply Proposition 3.3 to the boundary case, which is a mixed between

complex and the real setting and is needed for the main Theorems 1.3 and 1.7.

4.1. The Bargmann-Fock field. Recall that the Bargmann-Fock field is defined by

(4.1) @z P Cn, fpzq “
ÿ

pi1,¨¨¨ ,inqPNn
ai0,¨¨¨ ,in

d

πi1`¨¨¨`in

i1! ¨ ¨ ¨ in!
zi11 ¨ ¨ ¨ z

in
n e

´ 1
2π}z}

2

,

where the aI ’s are independent normal complex Gaussian random variables. The associated covariant

function equals

(4.2) @z, w P Cn, Ppz, wq :“ Epfpzqfpwqq “ exp
´

´
π

2
p}z}2 ` }w}2 ´ 2xz, wyCnq

¯

.

Even if the kernel P is not invariant under translation or rotations, the law of Zf is, see [16, Proposition

2.3.4]. The a priori superfluous presence of π is in fact consistent with the projective situation. Indeed,

the affine Bargmann-Fock is the universal local limit of the projective model, see Theorem 4.5. In order
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to unify the setting, we consider here that M “ Cn and L “ Cn ˆ C with its standard Hermitian

metric. Then

Ppz, wq P Lz b L˚w.

In order to unify the affine and projective settings, we need a connection which has a positive curvature,

which is not the case for the standard connection. Hence, let ∇0 be the metric connection defined by

(4.3) ∇01 “
1

2
πpB̄ ´ Bq}z}2,

whereas the dual connection ∇˚0 on L˚ satisfies

(4.4) ∇˚0 1˚ “ ´
1

2
πpB̄ ´ Bq}z}2,

where 1˚ is the dual of 1. Notice that the constant section 1 is no longer a holomorphic section for

this connection, but the (peak) section (see [30], [7])

σ0 :“ expp´
1

2
π}z}2q

is, since

∇p0,1q0 σ0 “ p´
1

2
πB̄}z}2 `

1

2
πB̄}z}2qσ0 “ 0.

The connection ∇0 is then the Chern connection for the trivial metric and this holomorphic structure.

This implies that the section P is holomorphic in z, and antiholomorphic in w. Moreover, the curvature

of ∇0 equals

R0 “ B̄B log }σ0}
2 “ πBB̄}z}2,

and the curvature form equals

i

2π
R0 “

i

2

n
ÿ

i“1

dzi ^ dzi

which is the standard symplectic form ω0 over R2n. Now, almost surely an instance f of the Bargmann

Fock Gaussian field is a holomorphic section for the standard complex structure and the connection

defined by (4.3).

Let E “ Cn ˆ Cr endowed with its trivial metric and let f “ pfiqi“1,¨¨¨ ,r be r independent copies

of the Bargmann-Fock field. Then, f is a random section of E bL, and its covariance function equals

PIdCr . In the following theorem, recall that Critpi is defined by (3.2), where we use the connexion

p∇0q
r (the r-product of ∇0) acting on sections of E bL. By an abuse of notation, we continue to use

∇0 for p∇0q
r.

Theorem 4.1. Let 1 ď r ď n be integers, f : Cn Ñ Cr be r independent copies of the Bargmann-

Fock field (4.1), and U Ă Cn be an open subset of finite volume. Let p : U Ñ R be a smooth Morse

function. Then,

@0 ď i ď 2n´ 2rztn´ ru,
1

R2n
E#pRU X Critpi q Ñ

RÑ`8
0

1

R2n
E#pRU X Critpn´rq Ñ

RÑ`8
n!

ˆ

n´ 1

r ´ 1

˙

volpUq,

where vol denotes the volume for the standard metric on Cn.

We postpone the proof of this theorem after the projective case, since the latter is similar but more

complicated. In both cases, we will need the following lemma:
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Lemma 4.2. Let P the Bargmann-Fock covariance (4.2), and ∇0 the connection defined by (4.3)

and (4.4). Then, for any z P Cn,

∇p1,0q,p0,1q0 z,w̄ Ppz, zq “ π
n
ÿ

i“1

dzi b dwi

and ∇p1,0q
2,p0,1q2

0 z2,w̄2 Ppz, zq “ π2
n
ÿ

i,j,k,`“1

pδikδj`` δi`δjkqdzi b dzj b dwk b dw`.

Proof. This is a straightforward consequence of the definition of ∇0 and P. �
We will need the following covariance matrix for Hessians:

ΣGOE “
`

δpijqpklq ` δpjiqpklq
˘

1ďiďjďn
1ďkďlďn

PMnpn`1q
2
pCq.(4.5)

Corollary 4.3. Let f : Cn Ñ Cr be r independent copies of the Bargmann-Fock field. Then, for

any x P Cn,

Covpfpxq,∇0fpxq,∇2
0fpxqq “

¨

˝

1 0 0

0 π IdCn 0

0 0 π2ΣGOE

˛

‚b IdCr .

Proof. This is an immediate consequence of Lemma 4.2. �
4.2. The complex projective case. Let n ě 2, 1 ď r ď n´1 be integers, M be a compact smooth

complex manifold of dimension n equipped with a holomorphic Hermitian vector bundle pE, hEq of

rank r and an ample holomorphic line bundle pL, hq. Assume that h has a positive curvature form ω,

see (1.1). Let ∇ be the Chern connection of E b Ld. Recall that Critpi is defined by (3.2).

Theorem 4.4. Let M , pE, hEq, pL, hq, ω as above and let U ĂM be a 0-codimension submanifold

with finite volume. Then

@i P t0, ¨ ¨ ¨ , 2n´ 2ruztn´ ru,
1

dn
E#pU X Critpi q Ñ

dÑ8
0

1

dn
E#pU X Critpn´rq Ñ

dÑ8

ˆ

n´ 1

r ´ 1

˙
ż

U

ωn.

The probability measure µd used for the average is defined by (1.8).

Theorem 4.4 will be proven after some preliminaries. Note that Theorem 1.9 ([12, Theorem 3.5.1])

implies this result for the squared modulus of a Lefschetz pencil p : M 99K CP 1. Indeed, since p is

holomorphic (outside its singular locus), p|Zs is critical if and only if |p|2
|Zs

is, and in the latter case

the index equals n´ r.

4.2.1. Bergman and Bargmann-Fock. The covariance function for the Gaussian field generated

by the holomorphic sections s P H0pM,E b Ldq is

@z, w PM, Edpz, wq “ E rspzq b pspwqq˚s P pE b Ldqz b pE b Ldq˚w,

where E˚ is the (complex) dual of E and

@w PM, @s, t P pE b Ldqw, s
˚ptq “ hE b hLdps, tq.

The covariance Ed is the Bergman kernel, that is the kernel of the orthogonal projector from L2pM,Eb

Ldq onto H0pM,E b Ldq. This fact can be seen through the equations

@z, w PM, Edpz, wq “
Nd
ÿ

i“1

Sipzq b S
˚
i pwq,

where pSiqi is an orthonormal basis of H0pM,E b Ldq for the Hermitian product (1.7). Recall that

the metric g is induced by the curvature form ω and the complex structure. It is now classical

that the Bergman kernel has a universal rescaled (at scale 1{
?
d) limit, the Bargmann-Fock kernel P
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defined by (4.2). Theorem 4.5 below quantifies this phenomenon. For this, we need to introduce local

trivializations and charts. Let x P M and R ą 0 such that 2R is less than the radius of injectivity of

M at x. Then the exponential map based at x induces a chart near x with values in BTxM p0, 2Rq.

The parallel transport provides a trivialization

ϕx : BTxM p0, 2Rq ˆ pE b Ldqx Ñ pE b Ldq|BTxM p0,2Rq

which induces a trivialization of pEbLdqbpEbLdq
˚
|BTxM p0,2Rq

2 . Under this trivialization, the Bergman

kernel Ed becomes a map from TxM
2 with values into End

`

pE b Ldqx
˘

.

Theorem 4.5. ([22, Theorem 1]) Under the hypotheses of Theorem 1.3, let m P N. Then, there

exist C ą 0, such that for any k P t0, ¨ ¨ ¨ ,mu, for any x PM , @z, w P BTxM p0,
1?
d
q,

›

›

›

›

Dk
pz,wq

ˆ

1

dn
Edpz, wq ´ Ppz

?
d,w

?
dq IdpEbLdqx

˙
›

›

›

›

ď Cd
k
2´1.

The original reference is a little more intricated, see [20, Proposition 3.4] for the present simplifica-

tion. We will also need the following lemma:

Lemma 4.6. Under the local trivializations given before, at x (the center of the chart) the two

equalities hold:

∇ “ ∇0 `Op
1
?
d
q and ∇2 “ p∇0q

2 `Op
1
?
d
q.

Proof. The conjonction of [21, Lemma 1.6.6] and [21, (4.1.103)] implies that

∇ “ ∇0 `Op
1
?
d
q `Op}z ´ x}3q,

which gives the first estimate. The second one is implied by the first one and by the fact that the

Levi-Civita connection associated to g is trivial at x, because the coordinates on M are normal at

x. �

Corollary 4.7. Under the hypotheses and trivializations above near x P M , in any orthonormal

basis of TxM ,

Cov
`

s,∇s,∇2s
˘

|x
“ dn

¨

˚

˝

p1`Op 1
d qq Op 1?

d
q Op1q

Op 1?
d
q πdInp1`Op

1
d qq Op

?
dq

Op1q Op
?
dq π2d2ΣGOEp1`Op

1
d qq

˛

‹

‚

IdpEbLdqx ,

where In PMnpRq and ΣGOE is defined by (4.5). Moreover, for any α P T˚xM b Ex,

`

x∇2s, εy | s “ 0,∇s “ α
˘

„ N

ˆ

O
`}α}
?
d

˘

,Σ

˙

,

where

Σ :“ π2dn`2ΣGOE IdpEbLdqx
`

1`Op
1

d
q
˘

.

The constants involved in the error terms do not depend on α.

Proof. The first assertion is a direct consequence of Theorem 4.5, Lemma 4.6 and Corollary 4.3.

The second one is deduced from the classical regression formula (see [1, §1.2] for instance) and from

pCovps,∇sqq´1 “
1

dn

˜

p1` 0p 1
d qq Op 1

d
3
2
q

Op 1

d
3
2
q 1

πd p1`Op
1
d qq

¸

IdpEbLdqz .(4.6)

�
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Proof of Theorem 4.4. We want to apply Theorem 3.7. First, from Corollary 4.7 we get that for

any x PM and any α P LCpTxM,Exq,

ρXpxqp0, αq “
p1`Op 1

d qq

p2πqr`nrpdnqrpπdn`1qnr
exp

ˆ

´
1

2

1

πdn`1
p1`Op

1

d
qq}α}2

˙

.

Now, if K “ kerα, µ “ ker dppxqpα|KKq
´1 and εpµq P µK has a norm equal to 1, let

(4.7) pβ, a, bq “
1

?
πdn`1

´

α|KKC XkerπC , xα| kerK πC , εy, π
K
µα| kerK πC

¯

,

where πKµ denotes the orthgonal projection (for hE) onto µ. Using Lemma 3.6 for the transformation

of dvolpαq, the term

ˇ

ˇ

ˇ
detα|KKC XkerπC

ˇ

ˇ

ˇ

2pn´r`2q

|xαphpxqq, εy|2dvolpαq|W px,K,µqρXpxqp0, αq

in the integral of Theorem 3.7 equals

p1`Op
1

d
qq
p2πqr´1pπdn`1qpr´1qpn´r`2q`1`r2´pr´1qp2πqpr´1q2`1

p2πqr`nrdnrpπdn`1qnr

| detβ|2pn´r`2q

p2πqpr´1q2

|a|2

2π

dvolpβ, a, bq

p2πqr´1
exp

ˆ

´
1

2
p1`Op

1

d
qqp}β}2 ` |a|2 ` }b}2q

˙

.

Note that
ż

aPC
|a|2e´

1
2 |a|

2
|da “ 4π.

By Corollary 4.7, the field X defined by (3.1) is non-degenerate for d large enough. Hence, we can apply

Theorem 3.7. Let Y “ 1?
π2dn`2

∇2spxq. Then, the average in the formula provided by Theorem 3.7 is

now equal to pπ2dn`2qn´r times

(4.8) E
”

1tInd pπpx,αqq“iu

ˇ

ˇ

ˇ
det R

´

xY|K , εy ´ a
∇πCpxq|Kp1`Op 1

d qq

}πCpxq}π
3
2 d

2n`3
2

¯
ˇ

ˇ

ˇ
| spxq “ 0,∇spxq “ α

ı

.

Recall that πpx, αq defined by (3.3). Besides, by Corollary 4.7,

`

xY|K , εy | spxq “ 0,∇spxq “ α
˘

„ N

ˆ

O
´

}pβ, a, bq}

d
3
2

¯

,Σn´rGOE

`

1`Op
1

d
q
˘

˙

,

where the constants are independent of α and ε, and where Σn´rGOE denotes the covariance matrix ΣGOE
defined by (4.5) in dimension n´ r. When d grows to infinity, the average (4.8) is uniformly bounded

above by an integrable map, since the pole generated by }πCpxq} is integrable. Consequently, the

dominated convergence theorem implies that

1

dnvolpUq
E#pCritpi X Uq Ñ

dÑ8

2r
2
´nr´2r`2

πpr´1qpn´r`1q
volpGrassCpn´ r, n´ 1q

volpGrassCpr ´ 1, rqq

E
´

|detβ|2pn´r`2q
¯

E
`

1tIndA“iu|detA|2
˘

,

where A P Mn´rpCq has covariance Σn´rGOE and where we used the determinant equality (3.6). Note

that we passed from the real determinant detR to the complex one for the random complex matrix

A. Since its index is always n ´ r, all the averages divided by dn for i ‰ n ´ r converge to 0. The
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computations of the expectations and volume are given in [12, Remark 3.1.1, proof of Theorem 3.5.1]:

volpGrassCpn´ r, n´ 1q “ πpn´rqpr´1q

śr´1
j“1 Γpjq

śn´1
j“n´r`1 Γpjq

volpGrassCpr ´ 1, rqq “ πr´1 1

Γprq

E|detβ|2pn´r`2q “ 2pr´1qpn´r`2q

śn`1
j“n´r`3 Γpjq
śr´1
j“1 Γpjq

E
`

|detY |2
˘

“ 2n´rpn´ r ` 1q!

The powers of 2 in the latter equalities come from different choices of the measures, more precisely our

choice of the half in the exponentials. Hence,

1

dnvolpUq
E#pCritpn´r X Uq Ñ

dÑ8
n!

ˆ

n´ 1

r ´ 1

˙

.

�

We give now a sketch proof of the affine case.

Proof of Theorem 4.1. Let f “ pf1, ¨ ¨ ¨ , frq P Cr be the random Bargmann-Fock field. For any

R ą 0, let pR “ pp ¨R q, so that the associated complexification πR,C of dpRpxq satisfies πR,Cpxq “
1
RπCp

x
R q. Note that pR is a Morse function on RU . By Corollary 4.3, the field X defined by 3.1 is

non-degenerate, so that we can apply Theorem 3.7 on the open set RU . By the independance of the

triplet pf,∇0f,∇2
0fq, the conditional expectation in Theorem 3.7 equals

E
”

1tInd pπpx,αqq“iu

ˇ

ˇ

ˇ
det

´

x∇2
0fpxq|K , εy ´

1

R

dπCp
x
R q|K

}πCp
x
R q}

xαphpxqq, εpµqy
¯
ˇ

ˇ

ˇ

ı

.

Recall that πpx, αq defined by (3.3). We make the change of variables pβ, a, bq “ 1?
π
α|KK (as (4.7))

and Y “ 1
π∇

2
0f|K , and then the change of variables y “ x{R. By Corollary 4.3, we obtain

1

R2nvolpUq
E#pRU X Critpi q Ñ

RÑ`8

2r
2
´nr´2r`2

πpr´1qpn´r`1q
volpGrassCpn´ r, n´ 1qq

volpGrassCpr ´ 1, rqq

E
´

|detβ|2pn´r`2q
¯

E
`

1tIndA“iu|detA|2
˘

.

we conclude as in the projective case. �

Remark 4.8. As the referee noticed, since the Bergmann kernel locally converges, after rescaling,

to the Bargmann-Fock kernel, it is likely that [29, Corollary 3.9] conjugated with arguments of [26,

§1.4] could prove the projective Theorem 4.4 from the affine Theorem 4.1.

4.3. The boundary case. In this paragraph, we apply Proposition 3.3 to estimate the mean

number of critical points of the restriction of p on the boundary of Zs inside BU , where U ĂM is an

open set with smooth boundary and M is complex. We begin by a description of the mixed complex

geometry on the boundary of U .

4.3.1. Complex geometry on the boundary. In the sequel, for any x PM and any real subspace

L Ă TxM , we denote by LC the largest complex subspace in L. Let U ĂM be a codimension 0 open

set with smooth boundary BU .

Definition 4.9. Let Z be a smooth manifold of dimension m, with C2 boundary, and p : Z Ñ R a

smooth function. Then, p is said to be Morse if there is no critical point on BZ, if p is Morse and if

p|BZ is Morse a well.
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Let p : M Ñ R be a Morse function, such that p|U is Morse in the sense of Definition 4.9. Let

H “ ker p|BU Ă TBU. For any x P BU which is not a critical point of pB, dimH “ 2n ´ 2. Moreover,

either H “ HC and in this case dimCH “ n´1, or dimCHC “ n´2. The first situation is non-generic,

but our result holds in this case as well. We define

FB “ E|BU ‘ LCpTM,Eq|T pBUq,

W “ tpx, 0, αq P FB, α onto and kerα Ă ker dpBpxqu,

Wx its fiber over x PM , and

Xpxq “ px, spxq,∇Bspxqq P FB,

where ∇B “ ∇|TBU denotes the restriction of the Chern connection ∇ on E to the tangent space of

the boundary of U . For any x P BU and any α P LC
ontopTxM,Exq, let

K “ Kpx, αq “ kerαX TBU.

If K ‰ kerα, then dimRK “ 2n´ 2r ´ 1 and dimCKC “ n´ r ´ 1. Assume now that K Ă H. Then,

KC Ă HC. Let g P H be a (one of the two) unit vector such that

K “ KC k Rg.

Note that kerα “ K‘RJg, where J denotes the complex structure J : TM Ñ TM . Now, dimRK
K “

2r, where K stands for the metric on TBU . Moreover,

dimRpK
K XHq “ 2r ´ 1

so that dimCpK
K XHqC “ r ´ 1. Let v P H a unit vector such that

KK XH “ pKK XHqC k Rv.

Note that KK “ pKK XHqC ` Rv ` Rh, where h P HKzt0u. Now, let

µ “ ker dpBpxqpα|KKq
´1 “ αpKK XHq Ă Ex.

and µC “ αppKK XHqCq. Finally, let ε be a unit vector in µK Ă Ex.

Lemma 4.10. Under the setting above, for any x P BU , the real dimension of Wx equals 2nr ´

2n` 2r ` 1.

Proof. For any px, 0, αq PW ,

Tp0,αqWx “ tp0, βq P Ex ˆ LCpTxM,Exq, ker dpBpxqpα|KKq
´1β|K “ 0u.

Since β|KC is a complex linear map, its image in Ex is a complex subspace, so that p0, βq P Wx if and

only if

βpKCq Ă µC and xβ|Rg, εy “ 0.

Since dimC αppK
K XHqCq “ r ´ 1, the real dimension of Wx equals

dimRWx “ 2r2 ` 2pn´ r ´ 1qpr ´ 1q ` p2r ´ 1q,

where the first term equals dimR LCpkerK α,Exq (here K stands for TxM), the second equals dimR LCpKC, µCq

and the third equals dimRtβ P LCpgC, Exq, xβ, εy “ 0u, where gC “ Rg`RJg denotes the complex line

generated by g. �
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4.3.2. The projective case. We first specialize this setting to the projective setting of Theo-

rem 1.3. Recall that the natural scale for the random sections of degree d is d´
1
2 . Since the dimension

of BU is 2n´ 1, we can guess that the average number of critical points of p|BUXZs should be bounded

by Opd
2n´1

2 q.

Proposition 4.11. Let n ě 2 and 1 ď r ď n ´ 1 be integers, M be a compact smooth Kähler

manifold and pL, hq be an ample complex line bundle over M , with curvature form ω, pE, hEq be

a holomorphic rank r vector bundle and let U Ă M be a 0-codimension submanifold with smooth

boundary. Let p : M Ñ R be a Morse function. Then, for any Borel subset A Ă BU ,

@0 ď i ď 2n´ 2r ´ 1,
1

dn´
1
2

E#Crit
p|BU
i “ OdÑ8p1q.

Here the probability measure is the Gaussian one given by (1.8).

Proof. Since we only need a bound for the averages and not their exact asymptotics, we apply

Theorem 3.3 which is easier to handle with than Corollary 3.5. By Theorem 3.3, we have that for any

Borel subset A Ă BU ,

E r# pAX CritpBi qs “

ż

xPA

ż

αPLC
ontopTxM,Exq|TxBU
kerαĂker dpBpxq

ˇ

ˇdetα| kerK α

ˇ

ˇ(4.9)

E
”

1tInd pπpx,αqq“iu

ˇ

ˇ

ˇ
det

´

x∇2
Bspxq| kerα, εpx, αqy

´
∇2pBpxq| kerα

}dpBpxq}
xαphpxqq, εpx, αqy

¯
ˇ

ˇ

ˇ
| spxq “ 0,∇Bspxq “ α

ı

ρXpxqp0, αqdvolpαqdvolpxq,

where ρXpxq is the Gaussian density of Xpxq and K refers to the orthogonality in TBU . As in the

proof for projective manifold case, in equation (4.9) we perform the change of variables β “ d
n`1
2 α

and Y “ d
n`2
2 ∇2s. Then, thanks to Lemma 4.10 which provides the power of d which pops up from

volpαq, the average equals dn´
1
2 times a multiple integral which converges to a convergent integral

independent of d. �

4.3.3. The affine setting. For the Bargmann-Fock field, we have the similar proposition:

Proposition 4.12. Let 1 ď r ď n be integers, f : Cn Ñ Cr be r independent copies of the

Bargmann-Fock field (4.1), U Ă Cn be an open subset with smooth boundary, and p : Ū be a smooth

Morse function, in the sense of Definition 4.11. Then,

(4.10) @0 ď i ď 2n´ 2r ´ 1,
1

R2n´1
E#Crit

p|BpRUq
i “ ORÑ`8p1q.

Proof. This is very similar to the projective setting. �

4.4. Proof of the main theorems. Theorem 1.3 is a simple consequence of Theorem 4.4 and

Proposition 4.11. Indeed, Morse inequalities for manifolds with boundary hold:

Theorem 4.13. (see [17, Theorem A]). Under the setting of Definition 4.9, assume hat Z̄ is

compact. For any i P t0, ¨ ¨ ¨ ,m´ 1u, let Ni be the number of boundary critical points of p|BZ of index

i, such that p increases in the direction of Z. Then,

‚ (weak Morse inequalities) @0 ď i ď m, bipZq ď #Critpi `Ni.

‚ (strong Morse inequalities) @0 ď i ď m,

i
ÿ

k“0

p´1qi´kbkpZq ě
i
ÿ

k“0

p´1qi´kp#Critpk `Nkq.

We will apply these Morse inequalities to the random nodal sets Zs X U .
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Proof of Theorem 1.3. By [13, Lemma 2.8], almost surely the restriction p|Zs is Morse in the latter

sense. The proof of this lemma extends to p|ZsXU , so that we can apply Theorem 4.13 to Zs X U , for

almost all s. Hence,

(4.11) @0 ď i ď 2n´ 2r, EbipZs X Uq ď Ep#Critpi q ` Ep#Crit
p|BU
i q.

By (4.11), Theorem 4.4 and Proposition 4.11, we obtain

@0 ď i ď 2n´ 2rztn´ ru, EbipZs X Uq “ opdnq

and Ebn´rpZs X Uq ď Ep#Critpn´rq ` opdnq. On the other hand, the two assertions of Theorem 4.13

and Proposition 4.11 imply that

Ebn´rpZs X Uq ě Ep#Critpn´rq ´ opd
nq,

so that by Theorem 4.4, Ebn´r “ dn
`

n´1
r´1

˘ ş

U
ω ` opdnq, which is the result. �

Lemma 4.14. ([31, Lemma 3.2]) Under the hypotheses of Theorem 1.7, there exists a map p :

Cn Ñ R such that for almost all instance of the Bargmann-Fock field, p|ZsXŪ is Morse as well in the

sense of Definition 4.9.

Proof. This is proven (in a more general setting) in the proof of [31, Lemma 3.2] for a manifold

without boundary. The argument extends immediatly to manifolds with C2 boundary. �
Proof of Theorem 1.7. The proof is similar to the one of Theorem 1.3, using Theorem 4.1 and

Proposition 4.12. �
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