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Let

P= > i, Z0 - Zir

a complex homogeneous polynomial of degree d and
Z(P)={P =0} cC".

Z(P) is invariant under complex homotheties. Better idea :
consider the complex projective space

CP"=C""/(z ~ Az, A € C¥)

and study
Z(P)=A{[Z] e CP",P(Z) = 0}.
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Facts on CP"
> CP" is a compact smooth complex n-manifold.
dimrCP" = 2n.
CP! ~dif f S?
CP" =S /(2 ~ A2/, X € U(1)).
The standard metric over S?*! descents onto CP™ in the
Fubini-Study metric grgs.

>
>
>
>
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Z(P) is a compact complex hypersurface, in particular a
real (2n — 2)-dimensional smooth manifold.

In particular, when n = 2, Z(P) is a real surface in the
4-dimensional CP?.

Vol
For n =1, Z(P) = {d roots}.
For n > 2, Z(P) is connected.
For n > 3 Z(P) is simply connected.

Z(P) = d (however the curvature is not constant).

For n =2 Z(P) is a real surface and has a constant genus

9= d—1)(d~2).
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» d =3 : torus
> d=4:genus g =3
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For fixed d, all Z(P) are diffeomorphic. Very different in
the real setting.

» Lefschetz theorem : Vi € {0,---,2n — 2} \ {n — 1},

H;(Z(P),R) = H;(CP",R).

» Notation : i-th Betti number b;(Z) := dim H;(Z,R))

by = #connected components

vV Vv

b1(genus g surface) = 2g
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» Chern class computation :

dim Hy_1 (Z(P)) ~q d".

» For instance, if n = 2,
by (genus g surface) = 2g ~ d?

by the genus formula.
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Random projective hypersurfaces

If P is taken at random, are there noticeable statistical
geometric behaviours of Z(P)?

Theorem (B. Shiffman-S. Zelditch 1998) Almost surely, a

sequence (Z(Py))qen of increasing degree random complex
curves gets equidistributed in CP".
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» Complex Fubini-Study measure :
ZW .. Zin
0
P = E Wigwviy — =3
10! -+ -13,!
7’0++17de

where Raj,...i,, , Sai,...;, are i.i.d. standard normal variables.
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» Complex Fubini-Study measure :

Zi ... Zin
0
P = E Qig-eviy, — =3
10! - - -lip!
7’0++17de

where Raj,...i,, , Sai,...;, are i.i.d. standard normal variables.

» This is the Gaussian measure associated to the
Fubini-Study L?-scalar product on the space of
polynomials :

P(2)Q(Z)

(P, Q)Fs = WC&)OZFS-

cPn
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What about random complex topology 7

» Globally there is no random topology.

» And locally ? Fix U C CP™ an open subset with smooth
boundary. What can be said about the topology of
Z(P)NnU?

Theorem (Milnor 64) (deterministic) Assume U C CP" is
defined by real algebraic inequalities. Then, there exists a
constant C, such that for any generic P of degree d,

2n—2
> bi(Z2(P)NU) < Cd™.
i=0
For n = 2 : the bound is d*, but the global bound is d2. Can it

be amended for random P ? In this case, can we choose
non-algebraic U’s? Can we distinguish the Betti numbers ?

10/20



Answers : Yes, yes and yes :

11/20



11/20

Answers : Yes, yes and yes :

Theorem (G. 2022) Let U C CP" be an open subset with
smooth boundary. Then,
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Theorem (G. 2022) Let U C CP" be an open subset with
smooth boundary. Then,

Lenzeynry — o

d d—o0

Vie{0,---,2n—2}\ {n—1},
1
dn

vol(U)
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Answers : Yes, yes and yes :

Theorem (G. 2022) Let U C CP" be an open subset with
smooth boundary. Then,

L EhzPynry - 0

Vie{0,---,2n—2}\ {n—1}, o .
— 00

1

—Eb,_1(Z(P)NU) vol(U)

- —.
d—o0 VOI(CP”)
Strong contrast with the real setting :

Theorem (G.-Welschinger 2015) Take P with real

coefficients. Then, there exist positive ¢, C' such that for any
i€{0,---,n—1},

1
Vd> 1, ¢ < —Ebj(Z(P)NRP") < C.
7a (Z(P) )
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For the Fubini-Study measure at degree d :

>

A\

vvYyvy

the natural scale is 1/ V/d because the rescaled covariant
kernel converges to the Bargmann-Fock kernel.

Hence, the geometry of Z(P) in a ball of size 1/v/d should
be bounded,

hence the topology of Z(P) in this ball.

The volume of the ball is ¢~ 2 dime M

There are vol (M)\/adimRM such disjoint balls.
This provides the d” in CP" and the v/d' in RP™.

This heuristic argument fails for the number of connected
compontents in the holomorphic case.
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First ingredient of the proof : Morse theory

Theorem (Morse 1920’s) : Let Z be a compact smooth
n-dimensional manifold and f : Z — R such that at every
critical point € Z of f, d>f(x) is non degenerate. Then

» (Weak Morse inequalities)
Vi e {0, - ,n}, bi(Z) < #Crit,(f),

where ¢ is the number of negative eigenvalues of the
Hessian. For instance,

by < # minima of f.

» (Strong Morse inequalities)
b;i—b;_1+-- ~+(—1)ibo > Criti(f)—criti_l(f)—i-' . '—l—(—l)iCrito(f)

For instance, by > Crit(f) — Crito(f).
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Second ingredient : Kac-Rice formula

Fix p: CP™ — R a Morse function and U C CP" an open
subset. We apply Morse theory to

Pizp)nU - Z(P) NU — R.

There is a Kac-Rice formula for critical points of p|z(p) :

E(#Criti(pz(p)nv))

because

T € Crit(p|Z(p)) < (P(x), dP| kerdp(z)) = (0,0).
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Then, by weak Morse inequalities :
Eb;(Z(P)NU) < E#Crit;(pjz(p)nv)
and by the strong ones

Ebn_l(Z(P)ﬂU) > ECritn_l(pw(p)ﬂU)—Q Z E#Criti(p‘z(p)m(]).

i<n—2

Goal : prove that for 0 <i<n—2,

E(#Crit; (pz(pynv)) = o(d"),

and LU
Vo
E#Crity,— ~i e
#Crity—1(p)z(P)nv) ~d L Cpn
then we are (almost) done. Almost because of the boundary of
U.
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Kac-Rice formula

E# (Criti(pz(pyw))
equals (G.-Welschinger 2015, G. 2022)

et «
/er a€Lonto (TIMaE(E) d | keri @

ker aCker dp(x)
det <<V2P($)| ker oy 6(1’, a))

V2p( )|kera B
(@ (Vp(e), el o)) S5 )| | P) =0, V() =

Px (z)(0, @)dvol(a)dvol(z),

E[l{lnd (V2p|2(p))=1}

Hard to distinguish the different types of critical points!
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Third tool : complex geometry
Let

p:C? = R,
(x 4+ 1y, s+it) — =x.

This is a Morse function (with no critical points)

Facts :

» Let Z C C? a smooth complex curve. Then if p|z has a
local minimum at any x € Z, then Z is locally flat.
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(x 4+ 1y, s+it) — =x.

This is a Morse function (with no critical points)

Facts :

» Let Z C C? a smooth complex curve. Then if p|z has a
local minimum at any x € Z, then Z is locally flat.

Proof : Parametrize locally Z by a holomorphic disc :
F=(fg):D— Z

Then, p|; has a local max iff Rf has a local max. But if
this happens, f it is locally constant and Z is flat. [J
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» If p: C2 — R is a Morse function and = € Z a local
maximum of pz, then Z is nearly flat near z.
» For random P :

> Since the natural scale of the zero set Z(P) of a degree d
polynomial P is 1/+/d,

» the curvature of Z(P) for random homogeneous
polynomials of degree d is of order d,

» hence is less and less likely to be flat.

» Hence, the probability that p;z(p) has a local maximal
decreases with d.

» The same conclusion holds for local minima!
» Hence, index 1 critical points are likely to be dominant.
Conclusion :
> If n =2, the dominant Kac-Rice formula is the one for
i=1.
» The horrible Kac-Rice formula can be computed when
i=n—1and d— oo.
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Related problem : holomorphic percolation

Let P be as before, U € CP? be a small ball, V C OU and
W C 90U two open subsets with disjoint closure. Prove that
there exists ¢ > 0, such that for any large enough d,

P(3 ac. c. of Z(P)NU intersecting V and W) > c.
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Let P be as before, U € CP? be a small ball, V C OU and
W C 90U two open subsets with disjoint closure. Prove that
there exists ¢ > 0, such that for any large enough d,

P(3 a c. c. of Z(P)NU intersecting V and W) > c.

» Proved in the real setting in R? by G.-Beffara
» and in RP? by Belyaev-Muirhead-Wigman.

» None of the tools of classical percolation work in the
complex setting.
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