Local topology of random complex algebraic projective hypersurfaces

Quantum Chaos and nodal random waves

King's College London 25-28 July 2022

Damien Gayet (Institut Fourier, Grenoble, France)

$$P = \sum_{i_0 + \dots + i_n = d} a_{i_0 \dots i_n} Z_0^{i_0} \dots Z_n^{i_n}$$

a complex homogeneous polynomial of degree \boldsymbol{d}

$$P = \sum_{i_0 + \dots + i_n = d} a_{i_0 \dots i_n} Z_0^{i_0} \dots Z_n^{i_n}$$

a complex homogeneous polynomial of degree d and

$$Z(P) = \{P = 0\} \subset \mathbb{C}^{n+1}.$$

$$P = \sum_{i_0 + \dots + i_n = d} a_{i_0 \dots i_n} Z_0^{i_0} \dots Z_n^{i_n}$$

a complex homogeneous polynomial of degree d and

$$Z(P) = \{P = 0\} \subset \mathbb{C}^{n+1}.$$

Z(P) is invariant under complex homotheties.

$$P = \sum_{i_0 + \dots + i_n = d} a_{i_0 \dots i_n} Z_0^{i_0} \dots Z_n^{i_n}$$

a complex homogeneous polynomial of degree d and

$$Z(P) = \{P = 0\} \subset \mathbb{C}^{n+1}.$$

Z(P) is invariant under complex homotheties. Better idea : consider the complex projective space

$$\mathbb{C}P^n = \mathbb{C}^{n+1}/(z \sim \lambda z, \lambda \in \mathbb{C}^*)$$

and study

$$Z(P) = \{ [Z] \in \mathbb{C}P^n, P(Z) = 0 \}.$$

2/2

 $ightharpoonup \mathbb{C}P^n$ is a compact smooth complex n-manifold.

- $ightharpoonup \mathbb{C}P^n$ is a compact smooth complex *n*-manifold.

- $ightharpoonup \mathbb{C}P^n$ is a compact smooth complex *n*-manifold.
- $ightharpoonup \dim_{\mathbb{R}} \mathbb{C}P^n = 2n.$
- $ightharpoonup \mathbb{C}P^1 \sim_{diff} \mathbb{S}^2$

- $ightharpoonup \mathbb{C}P^n$ is a compact smooth complex *n*-manifold.
- $ightharpoonup \dim_{\mathbb{R}} \mathbb{C}P^n = 2n.$
- $ightharpoonup \mathbb{C}P^1 \sim_{diff} \mathbb{S}^2$

- $ightharpoonup \mathbb{C}P^n$ is a compact smooth complex *n*-manifold.
- $ightharpoonup \dim_{\mathbb{R}} \mathbb{C}P^n = 2n.$
- $ightharpoonup \mathbb{C}P^1 \sim_{diff} \mathbb{S}^2$
- $P^n = \mathbb{S}^{2n+1}/(z \sim \lambda z', \lambda \in \mathbb{U}(1)).$
- ▶ The standard metric over \mathbb{S}^{2n+1} descents onto $\mathbb{C}P^n$ in the Fubini-Study metric g_{FS} .

ightharpoonup Z(P) is a compact complex hypersurface, in particular a real (2n-2)-dimensional smooth manifold.

- ▶ Z(P) is a compact complex hypersurface, in particular a real (2n-2)-dimensional smooth manifold.
- ▶ In particular, when n = 2, Z(P) is a real surface in the 4-dimensional $\mathbb{C}P^2$.

- ▶ Z(P) is a compact complex hypersurface, in particular a real (2n-2)-dimensional smooth manifold.
- ▶ In particular, when n = 2, Z(P) is a real surface in the 4-dimensional $\mathbb{C}P^2$.
- $ightharpoonup \operatorname{Vol}_{g_{FS}} Z(P) = d$

- ▶ Z(P) is a compact complex hypersurface, in particular a real (2n-2)-dimensional smooth manifold.
- ▶ In particular, when n = 2, Z(P) is a real surface in the 4-dimensional $\mathbb{C}P^2$.
- ▶ $Vol_{g_{FS}}Z(P) = d$ (however the curvature is not constant).
- ▶ For n = 1, $Z(P) = \{d \text{ roots}\}.$

- ▶ Z(P) is a compact complex hypersurface, in particular a real (2n-2)-dimensional smooth manifold.
- ▶ In particular, when n = 2, Z(P) is a real surface in the 4-dimensional $\mathbb{C}P^2$.
- ▶ $Vol_{g_{FS}}Z(P) = d$ (however the curvature is not constant).
- $\blacktriangleright \text{ For } n = 1, Z(P) = \{d \text{ roots}\}.$
- ▶ For $n \ge 2$, Z(P) is connected.

- ▶ Z(P) is a compact complex hypersurface, in particular a real (2n-2)-dimensional smooth manifold.
- ▶ In particular, when n = 2, Z(P) is a real surface in the 4-dimensional $\mathbb{C}P^2$.
- ▶ $Vol_{g_{FS}}Z(P) = d$ (however the curvature is not constant).
- $\blacktriangleright \text{ For } n = 1, Z(P) = \{d \text{ roots}\}.$
- ▶ For $n \ge 2$, Z(P) is connected.
- ▶ For $n \ge 3$ Z(P) is simply connected.

- ▶ Z(P) is a compact complex hypersurface, in particular a real (2n-2)-dimensional smooth manifold.
- In particular, when n = 2, Z(P) is a real surface in the 4-dimensional $\mathbb{C}P^2$.
- ▶ $Vol_{g_{FS}}Z(P) = d$ (however the curvature is not constant).
- $\blacktriangleright \text{ For } n = 1, Z(P) = \{d \text{ roots}\}.$
- ▶ For $n \ge 2$, Z(P) is connected.
- ▶ For $n \ge 3$ Z(P) is simply connected.
- For n = 2 Z(P) is a real surface and has a constant genus

$$g = \frac{1}{2}(d-1)(d-2).$$

ightharpoonup d=1 or d=2 : sphere

- ightharpoonup d=1 or d=2 : sphere
- ightharpoonup d = 3: torus

- $ightharpoonup d=1 ext{ or } d=2 : ext{sphere}$
- ightharpoonup d = 3 : torus
- ightharpoonup d = 4: genus g = 3

▶ For fixed d, all Z(P) are diffeomorphic. Very different in the real setting.

- ▶ For fixed d, all Z(P) are diffeomorphic. Very different in the real setting.
- ▶ Lefschetz theorem : $\forall i \in \{0, \dots, 2n-2\} \setminus \{n-1\},\$

$$H_i(Z(P), \mathbb{R}) = H_i(\mathbb{C}P^n, \mathbb{R}).$$

- For fixed d, all Z(P) are diffeomorphic. Very different in the real setting.
- ▶ Lefschetz theorem : $\forall i \in \{0, \dots, 2n-2\} \setminus \{n-1\},\$

$$H_i(Z(P), \mathbb{R}) = H_i(\mathbb{C}P^n, \mathbb{R}).$$

- ▶ Notation : *i*-th Betti number $b_i(Z) := \dim H_i(Z, \mathbb{R})$)
- \triangleright $b_0 = \#$ connected components

- For fixed d, all Z(P) are diffeomorphic. Very different in the real setting.
- ▶ Lefschetz theorem : $\forall i \in \{0, \dots, 2n-2\} \setminus \{n-1\},\$

$$H_i(Z(P), \mathbb{R}) = H_i(\mathbb{C}P^n, \mathbb{R}).$$

- ▶ Notation : *i*-th Betti number $b_i(Z) := \dim H_i(Z, \mathbb{R})$)
- $ightharpoonup b_0 = \# connected components$
- $ightharpoonup b_1(\text{genus } g \text{ surface}) = 2g$

► Chern class computation :

 $\dim H_{n-1}(Z(P)) \sim_d d^n.$

► Chern class computation :

$$\dim H_{n-1}(Z(P)) \sim_d d^n.$$

 \blacktriangleright For instance, if n=2,

$$b_1(\text{genus } g \text{ surface}) = 2g$$

► Chern class computation :

$$\dim H_{n-1}(Z(P)) \sim_d d^n.$$

 \blacktriangleright For instance, if n=2,

$$b_1(\text{genus } g \text{ surface}) = 2g \sim d^2$$

by the genus formula.

Random projective hypersurfaces

If P is taken at random, are there noticeable statistical geometric behaviours of Z(P)?

Random projective hypersurfaces

If P is taken at random, are there noticeable statistical geometric behaviours of Z(P)?

Theorem (B. Shiffman-S. Zelditch 1998) Almost surely, a sequence $(Z(P_d))_{d\in\mathbb{N}}$ of increasing degree random complex curves gets equidistributed in $\mathbb{C}P^n$.

► Complex Fubini-Study measure :

► Complex Fubini-Study measure :

$$P = \sum_{i_0 + \dots + i_n = d} a_{i_0 \dots i_n} \frac{Z_0^{i_0} \dots Z_n^{i_n}}{\sqrt{i_0! \dots ! i_n!}},$$

where $\Re a_{i_0\cdots i_n}, \Im a_{i_0\cdots i_n}$ are i.i.d. standard normal variables.

► Complex Fubini-Study measure :

$$P = \sum_{i_0 + \dots + i_n = d} a_{i_0 \dots i_n} \frac{Z_0^{i_0} \dots Z_n^{i_n}}{\sqrt{i_0! \dots ! i_n!}},$$

where $\Re a_{i_0\cdots i_n}$, $\Im a_{i_0\cdots i_n}$ are i.i.d. standard normal variables.

▶ This is the Gaussian measure associated to the Fubini-Study L^2 -scalar product on the space of polynomials :

$$\langle P, Q \rangle_{FS} = \int_{\mathbb{C}P^n} \frac{P(Z)\overline{Q(Z)}}{\|Z\|^{2d}} dvol_{FS}.$$

What about random complex topology?

What about random complex topology?

▶ Globally there is no random topology.

- ▶ Globally there is no random topology.
- ► And locally?

- ▶ Globally there is no random topology.
- ▶ And locally? Fix $U \subset \mathbb{C}P^n$ an open subset with smooth boundary.

- ▶ Globally there is no random topology.
- ▶ And locally? Fix $U \subset \mathbb{C}P^n$ an open subset with smooth boundary. What can be said about the topology of $Z(P) \cap U$?

- ▶ Globally there is no random topology.
- ▶ And locally? Fix $U \subset \mathbb{C}P^n$ an open subset with smooth boundary. What can be said about the topology of $Z(P) \cap U$?

Theorem (Milnor 64) (deterministic) Assume $U \subset \mathbb{C}P^n$ is defined by real algebraic inequalities. Then, there exists a constant C, such that for any generic P of degree d,

$$\sum_{i=0}^{2n-2} b_i(Z(P) \cap U) \le Cd^{2n}.$$

- ▶ Globally there is no random topology.
- ▶ And locally? Fix $U \subset \mathbb{C}P^n$ an open subset with smooth boundary. What can be said about the topology of $Z(P) \cap U$?

Theorem (Milnor 64) (deterministic) Assume $U \subset \mathbb{C}P^n$ is defined by real algebraic inequalities. Then, there exists a constant C, such that for any generic P of degree d,

$$\sum_{i=0}^{2n-2} b_i(Z(P) \cap U) \le Cd^{2n}.$$

For n=2: the bound is d^4 , but the global bound is d^2 .

- Globally there is no random topology.
- ▶ And locally? Fix $U \subset \mathbb{C}P^n$ an open subset with smooth boundary. What can be said about the topology of $Z(P) \cap U$?

Theorem (Milnor 64) (deterministic) Assume $U \subset \mathbb{C}P^n$ is defined by real algebraic inequalities. Then, there exists a constant C, such that for any generic P of degree d,

$$\sum_{i=0}^{2n-2} b_i(Z(P) \cap U) \le Cd^{2n}.$$

For n = 2: the bound is d^4 , but the global bound is d^2 . Can it be amended for random P?

- ► Globally there is no random topology.
- ▶ And locally? Fix $U \subset \mathbb{C}P^n$ an open subset with smooth boundary. What can be said about the topology of $Z(P) \cap U$?

Theorem (Milnor 64) (deterministic) Assume $U \subset \mathbb{C}P^n$ is defined by real algebraic inequalities. Then, there exists a constant C, such that for any generic P of degree d,

$$\sum_{i=0}^{2n-2} b_i(Z(P) \cap U) \le Cd^{2n}.$$

For n=2: the bound is d^4 , but the global bound is d^2 . Can it be amended for random P? In this case, can we choose non-algebraic U's?

- ▶ Globally there is no random topology.
- ▶ And locally? Fix $U \subset \mathbb{C}P^n$ an open subset with smooth boundary. What can be said about the topology of $Z(P) \cap U$?

Theorem (Milnor 64) (deterministic) Assume $U \subset \mathbb{C}P^n$ is defined by real algebraic inequalities. Then, there exists a constant C, such that for any generic P of degree d,

$$\sum_{i=0}^{2n-2} b_i(Z(P) \cap U) \le Cd^{2n}.$$

For n=2: the bound is d^4 , but the global bound is d^2 . Can it be amended for random P? In this case, can we choose non-algebraic U's? Can we distinguish the Betti numbers?

Theorem (G. 2022) Let $U \subset \mathbb{C}P^n$ be an open subset with smooth boundary. Then,

$$\forall i \in \{0, \cdots, 2n-2\} \setminus \{n-1\}, \ \frac{1}{d^n} \mathbb{E}b_i(Z(P) \cap U) \xrightarrow[d \to \infty]{} 0$$

Theorem (G. 2022) Let $U \subset \mathbb{C}P^n$ be an open subset with smooth boundary. Then,

$$\forall i \in \{0, \cdots, 2n-2\} \setminus \{n-1\}, \ \frac{1}{d^n} \mathbb{E}b_i(Z(P) \cap U) \xrightarrow[d \to \infty]{} 0$$
$$\frac{1}{d^n} \mathbb{E}b_{n-1}(Z(P) \cap U) \xrightarrow[d \to \infty]{} \frac{\operatorname{vol}(U)}{\operatorname{vol}(\mathbb{C}P^n)}.$$

Theorem (G. 2022) Let $U \subset \mathbb{C}P^n$ be an open subset with smooth boundary. Then,

$$\forall i \in \{0, \dots, 2n-2\} \setminus \{n-1\}, \ \frac{1}{d^n} \mathbb{E}b_i(Z(P) \cap U) \xrightarrow[d \to \infty]{} 0$$
$$\frac{1}{d^n} \mathbb{E}b_{n-1}(Z(P) \cap U) \xrightarrow[d \to \infty]{} \frac{\operatorname{vol}(U)}{\operatorname{vol}(\mathbb{C}P^n)}.$$

Strong contrast with the real setting:

Theorem (G.-Welschinger 2015) Take P with real coefficients. Then, there exist positive c, C such that for any $i \in \{0, \dots, n-1\}$,

$$\forall d \gg 1, \ c \leq \frac{1}{\sqrt{d^n}} \mathbb{E} b_i(Z(P) \cap \mathbb{R}P^n) \leq C.$$

For the Fubini-Study measure at degree d:

▶ the natural scale is $1/\sqrt{d}$ because the rescaled covariant kernel converges to the Bargmann-Fock kernel.

- ▶ the natural scale is $1/\sqrt{d}$ because the rescaled covariant kernel converges to the Bargmann-Fock kernel.
- ▶ Hence, the geometry of Z(P) in a ball of size $1/\sqrt{d}$ should be bounded,
- \blacktriangleright hence the topology of Z(P) in this ball.

- ▶ the natural scale is $1/\sqrt{d}$ because the rescaled covariant kernel converges to the Bargmann-Fock kernel.
- ▶ Hence, the geometry of Z(P) in a ball of size $1/\sqrt{d}$ should be bounded,
- ▶ hence the topology of Z(P) in this ball.
- ▶ The volume of the ball is $d^{-\frac{1}{2}\dim_{\mathbb{R}} M}$.

- ▶ the natural scale is $1/\sqrt{d}$ because the rescaled covariant kernel converges to the Bargmann-Fock kernel.
- ▶ Hence, the geometry of Z(P) in a ball of size $1/\sqrt{d}$ should be bounded,
- ▶ hence the topology of Z(P) in this ball.
- ▶ The volume of the ball is $d^{-\frac{1}{2}\dim_{\mathbb{R}} M}$.
- ► There are vol $(M)\sqrt{d}^{\dim_{\mathbb{R}} M}$ such disjoint balls.

- ▶ the natural scale is $1/\sqrt{d}$ because the rescaled covariant kernel converges to the Bargmann-Fock kernel.
- ▶ Hence, the geometry of Z(P) in a ball of size $1/\sqrt{d}$ should be bounded,
- ▶ hence the topology of Z(P) in this ball.
- ▶ The volume of the ball is $d^{-\frac{1}{2}\dim_{\mathbb{R}} M}$.
- ► There are vol (M) $\sqrt{d}^{\dim_{\mathbb{R}} M}$ such disjoint balls.
- ▶ This provides the d^n in $\mathbb{C}P^n$ and the \sqrt{d}^n in $\mathbb{R}P^n$.
- ➤ This heuristic argument fails for the number of connected components in the holomorphic case.

Theorem (Morse 1920's): Let Z be a compact smooth n-dimensional manifold and $f: Z \to \mathbb{R}$ such that at every critical point $x \in Z$ of f, $d^2f(x)$ is non degenerate.

Theorem (Morse 1920's): Let Z be a compact smooth n-dimensional manifold and $f: Z \to \mathbb{R}$ such that at every critical point $x \in Z$ of f, $d^2f(x)$ is non degenerate. Then

► (Weak Morse inequalities)

$$\forall i \in \{0, \dots, n\}, \ b_i(Z) \le \# \operatorname{Crit}_i(f),$$

where i is the number of negative eigenvalues of the Hessian.

Theorem (Morse 1920's): Let Z be a compact smooth n-dimensional manifold and $f: Z \to \mathbb{R}$ such that at every critical point $x \in Z$ of f, $d^2f(x)$ is non degenerate. Then

► (Weak Morse inequalities)

$$\forall i \in \{0, \dots, n\}, \ b_i(Z) \le \# \operatorname{Crit}_i(f),$$

where i is the number of negative eigenvalues of the Hessian. For instance,

$$b_0 \le \# \text{ minima of } f$$
.

Theorem (Morse 1920's): Let Z be a compact smooth n-dimensional manifold and $f: Z \to \mathbb{R}$ such that at every critical point $x \in Z$ of f, $d^2f(x)$ is non degenerate. Then

► (Weak Morse inequalities)

$$\forall i \in \{0, \dots, n\}, \ b_i(Z) \le \#\operatorname{Crit}_i(f),$$

where i is the number of negative eigenvalues of the Hessian. For instance,

$$b_0 \le \# \text{ minima of } f$$
.

► (Strong Morse inequalities)

$$b_i - b_{i-1} + \dots + (-1)^i b_0 \ge \operatorname{Crit}_i(f) - \operatorname{Crit}_{i-1}(f) + \dots + (-1)^i \operatorname{Crit}_0(f)$$

Theorem (Morse 1920's): Let Z be a compact smooth n-dimensional manifold and $f: Z \to \mathbb{R}$ such that at every critical point $x \in Z$ of f, $d^2f(x)$ is non degenerate. Then

► (Weak Morse inequalities)

$$\forall i \in \{0, \dots, n\}, \ b_i(Z) \le \# \operatorname{Crit}_i(f),$$

where i is the number of negative eigenvalues of the Hessian. For instance,

$$b_0 \le \#$$
 minima of f .

► (Strong Morse inequalities)

$$b_i - b_{i-1} + \dots + (-1)^i b_0 \ge \operatorname{Crit}_i(f) - \operatorname{Crit}_{i-1}(f) + \dots + (-1)^i \operatorname{Crit}_0(f)$$

For instance, $b_1 \ge \operatorname{Crit}_1(f) - \operatorname{Crit}_0(f)$.

Second ingredient : Kac-Rice formula

Fix $p:\mathbb{C}P^n\to\mathbb{R}$ a Morse function and $U\subset\mathbb{C}P^n$ an open subset. We apply Morse theory to

$$p_{|Z(P)\cap U}:Z(P)\cap U\to \mathbb{R}.$$

Second ingredient: Kac-Rice formula

Fix $p:\mathbb{C}P^n\to\mathbb{R}$ a Morse function and $U\subset\mathbb{C}P^n$ an open subset. We apply Morse theory to

$$p_{|Z(P)\cap U}:Z(P)\cap U\to\mathbb{R}.$$

There is a Kac-Rice formula for critical points of $p_{|Z(P)}$:

$$\mathbb{E}(\#\mathrm{Crit}_i(p_{|Z(P)\cap U}))$$

because

$$x \in \operatorname{Crit}(p_{|Z(P)}) \Leftrightarrow (P(x), dP_{|\ker dp(x)}) = (0, 0).$$

$$\mathbb{E}b_i(Z(P)\cap U) \leq \mathbb{E}\#\mathrm{Crit}_i(p_{|Z(P)\cap U})$$

$$\mathbb{E}b_i(Z(P)\cap U) \leq \mathbb{E}\#\mathrm{Crit}_i(p_{|Z(P)\cap U})$$

and by the strong ones

$$\mathbb{E}b_{n-1}(Z(P)\cap U) \ge \mathbb{E}\mathrm{Crit}_{n-1}(p_{|Z(P)\cap U}) - 2\sum_{i \le n-2} \mathbb{E}\#\mathrm{Crit}_i(p_{|Z(P)\cap U}).$$

$$\mathbb{E}b_i(Z(P)\cap U) \leq \mathbb{E}\#\mathrm{Crit}_i(p_{|Z(P)\cap U})$$

and by the strong ones

$$\mathbb{E}b_{n-1}(Z(P)\cap U) \ge \mathbb{E}\mathrm{Crit}_{n-1}(p_{|Z(P)\cap U}) - 2\sum_{i \le n-2} \mathbb{E}\#\mathrm{Crit}_i(p_{|Z(P)\cap U}).$$

Goal: prove that for $0 \le i \le n-2$,

$$\mathbb{E}(\#\operatorname{Crit}_i(p_{|Z(P)\cap U})) = o(d^n),$$

$$\mathbb{E}b_i(Z(P)\cap U) \leq \mathbb{E}\#\mathrm{Crit}_i(p_{|Z(P)\cap U})$$

and by the strong ones

$$\mathbb{E} b_{n-1}(Z(P) \cap U) \geq \mathbb{E} \operatorname{Crit}_{n-1}(p_{|Z(P) \cap U}) - 2 \sum_{i \leq n-2} \mathbb{E} \# \operatorname{Crit}_i(p_{|Z(P) \cap U}).$$

Goal: prove that for $0 \le i \le n-2$,

$$\mathbb{E}(\#\mathrm{Crit}_i(p_{|Z(P)\cap U})) = o(d^n),$$

and

$$\mathbb{E}\#\mathrm{Crit}_{n-1}(p_{|Z(P)\cap U}) \sim_d \frac{\mathrm{vol}\ U}{\mathrm{vol}\ \mathbb{C}P^n}d^n,$$

then we are (almost) done.

$$\mathbb{E}b_i(Z(P)\cap U) \leq \mathbb{E}\#\mathrm{Crit}_i(p_{|Z(P)\cap U})$$

and by the strong ones

$$\mathbb{E} b_{n-1}(Z(P) \cap U) \geq \mathbb{E} \operatorname{Crit}_{n-1}(p_{|Z(P) \cap U}) - 2 \sum_{i \leq n-2} \mathbb{E} \# \operatorname{Crit}_i(p_{|Z(P) \cap U}).$$

Goal: prove that for $0 \le i \le n-2$,

$$\mathbb{E}(\#\mathrm{Crit}_i(p_{|Z(P)\cap U})) = o(d^n),$$

and

$$\mathbb{E}\#\mathrm{Crit}_{n-1}(p_{|Z(P)\cap U}) \sim_d \frac{\mathrm{vol}\ U}{\mathrm{vol}\ \mathbb{C}P^n}d^n,$$

then we are (almost) done. Almost because of the boundary of U.

$$\mathbb{E}\#\left(\operatorname{Crit}_i(p_{|Z(P)})\cap U\right)$$

equals (G.-Welschinger 2015, G. 2022)

$$\mathbb{E}\#\left(\operatorname{Crit}_{i}(p_{|Z(P)})\cap U\right)$$
equals (G.-Welschinger 2015, G. 2022)
$$=\int_{x\in U}\int_{\substack{\alpha\in\mathcal{L}_{onto}(T_{x}M,E_{x})\\\ker\alpha\subset\ker dp(x)}}\left|\det\alpha_{|\ker^{\perp}\alpha}\right|$$

$$J_{x \in U} J_{\text{ker } \alpha \subset \text{ker } dp(x)}^{\alpha \in \mathcal{L}_{onto}(T_x M, E_x)} | \text{ ker } \alpha |$$

$$\mathbb{E} \left[\mathbf{1}_{\{\text{Ind } (\nabla^2 p_{|Z(P)}) = i\}} \middle| \det \left(\langle \nabla^2 P(x)_{| \text{ker } \alpha}, \epsilon(x, \alpha) \rangle \right. \right.$$

$$\left. - \langle \alpha(\nabla p(x)), \epsilon(x, \alpha) \rangle \frac{\nabla^2 p(x)_{| \text{ker } \alpha}}{\|dp(x)\|^2} \right) \middle| P(x) = 0, \nabla P(x) = \alpha \right]$$

$$\rho_{X(x)}(0, \alpha) d\text{vol}(\alpha) d\text{vol}(x),$$

$$\mathbb{E}\#\left(\operatorname{Crit}_i(p_{|Z(P)})\cap U\right)$$

equals (G.-Welschinger 2015, G. 2022)

$$= \int_{x \in U} \int_{\substack{\alpha \in \mathcal{L}_{onto}(T_xM, E_x) \\ \ker \alpha \subset \ker dp(x)}} \left| \det \alpha_{|\ker^{\perp} \alpha} \right|$$

$$\mathbb{E} \left[\mathbf{1}_{\{ \text{Ind } (\nabla^2 p_{|Z(P)}) = i \}} \right| \det \left(\langle \nabla^2 P(x)_{|\ker \alpha}, \epsilon(x, \alpha) \rangle \right.$$

$$\left. - \langle \alpha(\nabla p(x)), \epsilon(x, \alpha) \rangle \frac{\nabla^2 p(x)_{|\ker \alpha}}{\|dp(x)\|^2} \right) \right| |P(x) = 0, \nabla P(x) = \alpha \left. \right]$$

$$\rho_{X(x)}(0, \alpha) d\text{vol}(\alpha) d\text{vol}(x),$$

Hard to distinguish the different types of critical points!

$$\mathbb{E}\#\left(\operatorname{Crit}_i(p_{|Z(P)\cap U})\right)$$

equals (G.-Welschinger 2015, G. 2022)

$$= \int_{x \in U} \int_{\substack{\alpha \in \mathcal{L}_{onto}(T_xM, E_x) \\ \ker \alpha \subset \ker dp(x)}} \left| \det \alpha_{|\ker^{\perp} \alpha} \right|$$

$$\mathbb{E} \left[\mathbf{1}_{\{ \text{Ind } (\nabla^2 p_{|Z(P)}) = i \}} \right| \det \left(\langle \nabla^2 P(x)_{|\ker \alpha}, \epsilon(x, \alpha) \rangle \right.$$

$$\left. - \langle \alpha(\nabla p(x)), \epsilon(x, \alpha) \rangle \frac{\nabla^2 p(x)_{|\ker \alpha}}{\|dp(x)\|^2} \right) \right| |P(x) = 0, \nabla P(x) = \alpha \left. \right]$$

$$\rho_{X(x)}(0, \alpha) d\text{vol}(\alpha) d\text{vol}(x),$$

Hard to distinguish the different types of critical points!

Third tool: complex geometry

Let

$$p: \mathbb{C}^2 \to \mathbb{R},$$

 $(x+iy, s+it) \mapsto x.$

This is a Morse function (with no critical points)

Facts:

▶ Let $Z \subset \mathbb{C}^2$ a smooth complex curve. Then if $p_{|Z|}$ has a local minimum at any $x \in Z$, then Z is locally flat.

Third tool: complex geometry

Let

$$p: \mathbb{C}^2 \to \mathbb{R},$$

 $(x+iy,s+it) \mapsto x.$

This is a Morse function (with no critical points)

Facts:

▶ Let $Z \subset \mathbb{C}^2$ a smooth complex curve. Then if $p_{|Z|}$ has a local minimum at any $x \in Z$, then Z is locally flat.

Proof: Parametrize locally Z by a holomorphic disc:

$$F = (f, g) : \mathbb{D} \to Z$$
.

Third tool: complex geometry

Let

$$p: \mathbb{C}^2 \to \mathbb{R},$$

 $(x+iy,s+it) \mapsto x.$

This is a Morse function (with no critical points)

Facts:

▶ Let $Z \subset \mathbb{C}^2$ a smooth complex curve. Then if $p_{|Z|}$ has a local minimum at any $x \in Z$, then Z is locally flat.

Proof: Parametrize locally Z by a holomorphic disc:

$$F = (f, g) : \mathbb{D} \to Z$$
.

Then, $p_{|Z}$ has a local max iff $\Re f$ has a local max.

Third tool: complex geometry

Let

$$p: \mathbb{C}^2 \to \mathbb{R},$$

 $(x+iy, s+it) \mapsto x.$

This is a Morse function (with no critical points)

Facts:

▶ Let $Z \subset \mathbb{C}^2$ a smooth complex curve. Then if $p_{|Z|}$ has a local minimum at any $x \in Z$, then Z is locally flat.

Proof: Parametrize locally Z by a holomorphic disc:

$$F = (f, g) : \mathbb{D} \to Z$$
.

Then, $p_{|Z}$ has a local max iff $\Re f$ has a local max. But if this happens, f it is locally constant and Z is flat. \square

▶ If $p: \mathbb{C}^2 \to \mathbb{R}$ is a Morse function and $x \in Z$ a local maximum of $p_{|Z}$, then Z is nearly flat near x.

- ▶ If $p: \mathbb{C}^2 \to \mathbb{R}$ is a Morse function and $x \in Z$ a local maximum of $p_{|Z}$, then Z is nearly flat near x.
- \triangleright For random P:
 - Since the natural scale of the zero set Z(P) of a degree d polynomial P is $1/\sqrt{d}$,

- ▶ If $p: \mathbb{C}^2 \to \mathbb{R}$ is a Morse function and $x \in Z$ a local maximum of $p_{|Z}$, then Z is nearly flat near x.
- \triangleright For random P:
 - Since the natural scale of the zero set Z(P) of a degree d polynomial P is $1/\sqrt{d}$,
 - be the curvature of Z(P) for random homogeneous polynomials of degree d is of order d,

- ▶ If $p: \mathbb{C}^2 \to \mathbb{R}$ is a Morse function and $x \in Z$ a local maximum of $p_{|Z}$, then Z is nearly flat near x.
- \triangleright For random P:
 - Since the natural scale of the zero set Z(P) of a degree d polynomial P is $1/\sqrt{d}$,
 - b the curvature of Z(P) for random homogeneous polynomials of degree d is of order d,
 - ▶ hence is less and less likely to be flat.

- ▶ If $p: \mathbb{C}^2 \to \mathbb{R}$ is a Morse function and $x \in Z$ a local maximum of $p_{|Z}$, then Z is nearly flat near x.
- \triangleright For random P:
 - Since the natural scale of the zero set Z(P) of a degree d polynomial P is $1/\sqrt{d}$,
 - be the curvature of Z(P) for random homogeneous polynomials of degree d is of order d,
 - ▶ hence is less and less likely to be flat.
 - ▶ Hence, the probability that $p_{|Z(P)}$ has a local maximal decreases with d.

- ▶ If $p: \mathbb{C}^2 \to \mathbb{R}$ is a Morse function and $x \in Z$ a local maximum of $p_{|Z}$, then Z is nearly flat near x.
- \triangleright For random P:
 - Since the natural scale of the zero set Z(P) of a degree d polynomial P is $1/\sqrt{d}$,
 - b the curvature of Z(P) for random homogeneous polynomials of degree d is of order d,
 - ▶ hence is less and less likely to be flat.
 - ▶ Hence, the probability that $p_{|Z(P)}$ has a local maximal decreases with d.
- ► The same conclusion holds for local minima!

- ▶ If $p: \mathbb{C}^2 \to \mathbb{R}$ is a Morse function and $x \in Z$ a local maximum of $p_{|Z}$, then Z is nearly flat near x.
- \triangleright For random P:
 - Since the natural scale of the zero set Z(P) of a degree d polynomial P is $1/\sqrt{d}$,
 - be the curvature of Z(P) for random homogeneous polynomials of degree d is of order d,
 - ▶ hence is less and less likely to be flat.
 - ▶ Hence, the probability that $p_{|Z(P)}$ has a local maximal decreases with d.
- ► The same conclusion holds for local minima!
- ▶ Hence, index 1 critical points are likely to be dominant.

- ▶ If $p: \mathbb{C}^2 \to \mathbb{R}$ is a Morse function and $x \in Z$ a local maximum of $p_{|Z}$, then Z is nearly flat near x.
- \triangleright For random P:
 - Since the natural scale of the zero set Z(P) of a degree d polynomial P is $1/\sqrt{d}$,
 - be the curvature of Z(P) for random homogeneous polynomials of degree d is of order d,
 - hence is less and less likely to be flat.
 - ▶ Hence, the probability that $p_{|Z(P)}$ has a local maximal decreases with d.
- ▶ The same conclusion holds for local minima!
- ▶ Hence, index 1 critical points are likely to be dominant.

Conclusion:

▶ If n = 2, the dominant Kac-Rice formula is the one for i = 1.

- ▶ If $p: \mathbb{C}^2 \to \mathbb{R}$ is a Morse function and $x \in Z$ a local maximum of $p_{|Z}$, then Z is nearly flat near x.
- \triangleright For random P:
 - Since the natural scale of the zero set Z(P) of a degree d polynomial P is $1/\sqrt{d}$,
 - be the curvature of Z(P) for random homogeneous polynomials of degree d is of order d,
 - hence is less and less likely to be flat.
 - ▶ Hence, the probability that $p_{|Z(P)}$ has a local maximal decreases with d.
- ▶ The same conclusion holds for local minima!
- ▶ Hence, index 1 critical points are likely to be dominant.

Conclusion:

- ▶ If n = 2, the dominant Kac-Rice formula is the one for i = 1.
- ▶ The horrible Kac-Rice formula can be computed when i = n 1 and $d \to \infty$.

Let P be as before, $U \subset \mathbb{C}P^2$ be a small ball, $V \subset \partial U$ and $W \subset \partial U$ two open subsets with disjoint closure. Prove that there exists c > 0, such that for any large enough d,

 $\mathbb{P}(\exists \text{ a c. c. of } Z(P) \cap U \text{ intersecting } V \text{ and } W) > c.$

Let P be as before, $U \subset \mathbb{C}P^2$ be a small ball, $V \subset \partial U$ and $W \subset \partial U$ two open subsets with disjoint closure. Prove that there exists c > 0, such that for any large enough d,

 $\mathbb{P}(\exists \text{ a c. c. of } Z(P) \cap U \text{ intersecting } V \text{ and } W) > c.$

▶ Proved in the real setting in \mathbb{R}^2 by G.-Beffara

Let P be as before, $U \subset \mathbb{C}P^2$ be a small ball, $V \subset \partial U$ and $W \subset \partial U$ two open subsets with disjoint closure. Prove that there exists c > 0, such that for any large enough d,

 $\mathbb{P}(\exists \text{ a c. c. of } Z(P) \cap U \text{ intersecting } V \text{ and } W) > c.$

- ▶ Proved in the real setting in \mathbb{R}^2 by G.-Beffara
- ▶ and in $\mathbb{R}P^2$ by Belyaev-Muirhead-Wigman.

Let P be as before, $U \subset \mathbb{C}P^2$ be a small ball, $V \subset \partial U$ and $W \subset \partial U$ two open subsets with disjoint closure. Prove that there exists c > 0, such that for any large enough d,

$$\mathbb{P}(\exists \text{ a c. c. of } Z(P) \cap U \text{ intersecting } V \text{ and } W) > c.$$

- ▶ Proved in the real setting in \mathbb{R}^2 by G.-Beffara
- ▶ and in $\mathbb{R}P^2$ by Belyaev-Muirhead-Wigman.
- ▶ None of the tools of classical percolation work in the complex setting.