Examen session 1

16 mai 2017 - 3 heures

Les exercices ainsi que le problème sont indépendants. Vous pouvez les traiter dans l'ordre que vous souhaitez.

Aucun document ni outil éléctronique autorisés.

Problème 1. Soit

$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
 $(u, v) \mapsto (u - \frac{u^3}{3} + uv^2, v - \frac{v^3}{3} + vu^2, u^2 - v^2)$

- 1. Montrer que f n'est pas injective. On a $f(0, \pm \sqrt{3}) = (0, 0, -3)$.
- 2. Montrer qu'il existe U un voisinage de (0,0), telle que (f,U) est une surface paramétrée lisse régulière et telle que $f_{|U}$ est injective. On pose S = f(U). Les coordonnées de f sont des polynômes, donc lisses en (u,v), donc f est lisse. On a

$$f'_u = (1 - u^2 + v^2, 2vu, 2u)$$

$$f'_v = (2uv, 1 - v^2 + u^2, -2v),$$

soit $f'_u(0,0) = (1,0,0)$ et $f'_v(0,0) = (0,1,0)$. Comme f' est C^0 et que $f'_u \land f'_v(0,0) \neq 0_{\mathbb{R}^3}$, par continuité il existe un voisinage U' où ce produit vectoriel est non nul, donc (f,U') est une surface lisse régulière. Par le cours, on sait qu'il existe un voisinage $U \subset U'$ de (0,0), tel que f(U) est un graphe au-dessus du plan (Oxy), ce qui implique que $f_{|U}$ est injective.

3. Montrer que la matrice de la première forme fondamentale de S dans la base (f'_u, f'_v) est une homothétie qu'on déterminera. On obtient

$$\langle f'_u, f'_v \rangle = (2uv - 2u^3v + 2uv^3) + (2uv - 2v^3u + 2vu^3) - 4uv = 0,$$

$$||f'_u||^2 = 1 + u^4 + v^4 - 2u^2 + 2v^2 - 2u^2v^2 + 4u^2v^2 + 4u^2$$

= 1 + u⁴ + v⁴ + 2u²v² + 2u² + 2v² = (1 + u² + v²)².

Enfin

$$||f'_v||^2 = 4u^2v^2 + 1 + u^4 + v^4 + 2u^2 - 2v^2 - 2u^2v^2 + 4v^2$$

= 1 + u⁴ + v⁴ + 2u²v² + 2u² + 2v² = (1 + u² + v²)².

La matrice de la première forme fondamentale dans la base (f'_u, f'_v) est $(1 + u^2 + v^2)I_2$.

4. Soit D un disque fermée centrée en (0,0), de rayon δ , contenu dans U. Calculer l'aire de f(D). En polaire, on a

$$Aire(f(D)) = \int_0^{2\pi} \int_0^{\delta} (1+r^2)^2 r dr d\theta.$$

$$= 2\pi \left[\frac{1}{6}(1+r^2)^3\right]_0^{\delta}$$

$$= \frac{\pi}{3}((1+\delta^2)^3 - 1).$$

5. Montrer que

$$\forall (k,h) \in (\mathbb{R}^2)^2, \langle dN(u,v)(k), df(u,v)(h) \rangle + \langle N(u,v), d^2f(u,v)(h)(k) \rangle = 0$$

où N est le vecteur normal unitaire.

6. Montrer que la matrice de la seconde forme fondamentale de S dans la base (f'_u, f'_v) est une matrice constante qu'on déterminera. Indication : la question précédente permet de simplifier les calculs. On

$$\begin{split} f'_u \wedge f'_v &= (-4v^2u - 2u(1-v^2+u^2), 2v(1-u^2+v^2) + 4u^2v, \\ &\quad (1-u^2+v^2)(1+u^2-v^2) - 4u^2v^2) \\ &= (-2v^2u - 2u(1+u^2), 2v(1+v^2) + 2u^2v, 4uv(-u^2+v^2)) \\ &= (-2u(1+u^2+v^2), 2v(1+u^2+v^2), (1-(u^2+v^2))(1+u^2+v^2)) \end{split}$$

Comme $f'_u \perp f'_v$,

$$||f'_u \wedge f'_v|| = ||f'_u|| ||f'_v|| = (1 + u^2 + v^2)^2.$$

Donc

$$N(u,v) = \frac{1}{(1+u^2+v^2)}(-2u, 2v, 1-u^2-v^2).$$

On a $f''_{u^2} = (-2u, 2v, 2)$, $f''_{uv} = (2v, 2u, 0)$ et $f''_{v^2} = (2u, -2v, -2)$. La matrice de la seconde forme fondamentale dans la base (f'_u, f'_v) est donc (par la question précédente)

$$\begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix}$$
.

7. Calculer les courbures principales k_1 et k_2 , ainsi que la courbure de Gauss K, en fonction des coordonnées (u,v). La base $(f_u/\|f_u\|, f'_v/\|f'_v\|)$ est orthonormée, et dans cette base, la seconde forme fondamentale est

$$\frac{1}{(1+u^2+v^2)^2} \begin{pmatrix} -2 & 0\\ 0 & 2 \end{pmatrix}.$$

Donc les deux courbures sont $\pm \frac{2}{(1+u^2+v^2)^2}$ et la courbure de Gauss est

$$K = \frac{-4}{(1+u^2+v^2)^4}.$$

8. Une ligne de courbure est une courbe C^1 $\gamma:I\subset\mathbb{R}\to S$ telle que pour tout $t\in I, \ \gamma'(t)$ est direction propre de la seconde forme fondamentale. Quelles sont les lignes de courbures? On écrit $\gamma(t)=f(u(t),v(t))$, avec (u,v) des fonctions dérivables sur I. La condition est que $u'f'_u+v'f'_v$ est parallèle à f'_u ou f'_v , soit u'=0 ou v'=0. Ce sont donc les images des droites horizontales ou verticales par f.

Problème 2. Soit S une surface lisse compacte de \mathbb{R}^3 (S est une sous-variété de dimension 2. En particulier, S est localement une surface paramétrée régulière). On veut démontrer qu'il existe au moins un point m de courbure de Gauss strictement positive.

- 1. Soit $0 \in \mathbb{R}^3 \setminus S$. Montrer qu'il existe un point $m \in S$, tel que $\delta : S \to \mathbb{R}$, $\delta(m) = \|\vec{Om}\|^2$ possède un maximum en m. L'application $\tilde{\delta} : m \in \mathbb{R}^3 \mapsto \|\vec{Om}\|^2$ et polynomiale en les coordonnées de m, donc est continue. Sa restriction δ à S compact l'est aussi, donc δ est bornée et atteint son maximum en au moins un point m.
- 2. Montrer que $\overrightarrow{Om}^{\perp} = T_m S$. Comme m est un maximum global, il est un max local de δ . Par le théorème des extrema liés, on a

$$T_m S \subset \ker d\tilde{\delta}(m)$$
.

On a $d\tilde{\delta}(h) = 2\langle \vec{Om}, h \rangle$. Comme $O \notin S$, cette forme linéaire est non nulle, donc son noyau est de dimension 3-1, qui est la dimension de T_mS , donc l'inclusion ci-dessus est une égalité. De plus, $\ker d\tilde{\delta} = (\vec{Om})^{\perp}$, ce qui conclut.

- 3. Soit X un vecteur unitaire de T_mS , et m+P le plan affine orthogonal à $m+T_mS$, passant par m et tel que $X \in P$. Montrer que $O \in m+P$. P est engendré par X un vecteur normal à T_mS , comme \vec{Om} , soit $\vec{Om} \in P$, ce qui signifie $O \in m+P$.
- 4. Montrer qu'il existe un intervalle non vide $I \subset \mathbb{R}$, ainsi qu'une courbe lisse $\gamma: I \to S$, paramétrée par arc, telle que $\gamma(0) = m$ et $\gamma'(0) = X$. On pourra utiliser une paramétrisation locale de S. Soit (f, U) une paramétrisation locale de S au voisinage de m, avec f(0,0) = m. Soit $\bar{\gamma}: \mathbb{R} \to U$, $\bar{\gamma}(t) = tdf(0)^{-1}(X)$. Par continuité de $\bar{\gamma}$ et par le fait que U est un voisinage de (0,0), il existe $\epsilon > 0$, tel que $\bar{\gamma}([-\epsilon,\epsilon]) \subset U$. L'application $\tilde{\gamma} = f \circ \bar{\gamma}: [-\epsilon,\epsilon] \to \mathbb{R}^3$ est à valeurs dans S et vérifie $\tilde{\gamma}'(0) = X$. Maintenant, on peut paramétriser $\tilde{\gamma}([-\epsilon,\epsilon])$ par arc en $\gamma(s)$, sans changer le sens de parcours. Alors $\gamma'(0) = cX$ avec c > 0, donc c = 1 puisque ||X|| = 1 et $||\gamma'(s)|| = 1$.
- 5. Soit (f, U) une paramétrisation locale de S, telle que f(0, 0) = m. En n'utilisant du cours que la définition de la seconde forme fondamentale II_m , montrer que

$$II_m(X,X) = \langle N(0,0), \gamma''(0) \rangle,$$

où N(0,0) le vecteur unitaire normal à S en m associé à (f,U). On a

$$II_m(X,X) = -\langle X, dN(0,0)(df(0)^{-1}(X)\rangle.$$

Or si comme précédemment $\gamma = f \circ \bar{\gamma}$, on a $\langle N(\bar{\gamma}(s)), \gamma'(s) \rangle = 0$, donc par dérivation

$$\langle dN(\bar{\gamma}(s))(\bar{\gamma}'(s), \gamma'(s)\rangle + \langle N(\bar{\gamma}(s)), \gamma''(s)\rangle = 0.$$

En s=0, cela donne

$$\langle dN(0,0)(df(0,0)^{-1}(X),X\rangle + \langle N(0,0),\gamma''(s)\rangle = 0$$

ce qui est le résultat après usage de la définition de II_m ci-dessus.

6. Effectuer le développement de Taylor à l'ordre 2 de γ en 0, et en déduire le développement de Taylor à l'ordre 2 de $\delta(\gamma(s))$ en fonction de ||Om||, $II_m(X,X)$ et s. On a

$$\gamma(s) = m + sX + \frac{s^2}{2}\gamma''(0) + o(s^2),$$

soit

$$||O\gamma(s)||^2 = ||Om||^2 + s^2||X||^2 + 2s\langle Om, X \rangle + s^2\langle \gamma''(0), Om \rangle + o(s^2).$$

Le terme linéaire est nul car $Om \perp T_m S$. De plus $Om = \pm N(0,0) ||Om||$, donc

$$\delta(\gamma(s)) = ||Om||^2 + s^2(1 \pm II_m(X, X)||Om||) + o(s^2).$$

7. En déduire que l'application $X \in T_mS \mapsto II_m(X,X)$ est de signe constant. Conclure. Comme m est un maximum de δ , on doit avoir

$$1 \pm II_m(X, X) ||Om|| \le 0.$$

Si $II_m(X,X)$, qui est continue en $X \in \{X \in T_mS, ||X|| = 1\}$ (car f est C^2), change de signe, elle s'annule en un certain X. Mais alors l'inégalité ci-dessus est contredite. Donc les valeurs propres de II_m sont de mêmes signes, et K(m) > 0.

Problème 3. Dans ce problème, on pourra utiliser le fait suivant admis : il existe une application lisse $\chi: \mathbb{R} \to \mathbb{R}$ telle que $\forall x \in \mathbb{R}, \ 0 \le \chi(x) \le 1, \ \chi(x) = 1$ si $|x| \le 1/4$ et $\chi(x) = 0$ si $|x| \ge 1/2$. On notera parfois $(0,0) = 0 \in \mathbb{R}^2$.

1. Soit $g,h:D((0,0),3/4)\to\mathbb{R}$ deux applications lisses. Montrer qu'il existe $\psi:D(0,3/4)\to\mathbb{R}$, une application lisse telle que

$$\begin{array}{rcl} \psi_{|D(0,1/4)} & = & g_{|D(0,1/4)} \\ \psi_{|D(0,3/4)\backslash D(0,1/2)} & = & h_{|D(0,3/4)\backslash D(0,1/2)} \\ \psi & \geq & \min(0, \min_{D(0,3/4)} h) - \|g\|_{\infty}. \end{array}$$

Définissons

$$\psi(x) = \chi(\|x\|)g(x) + (1 - \chi(\|x\|)h(x).$$

Comme $x \mapsto ||x||$ est lisse en dehors de x = 0, $x \mapsto \chi(||x||)$ est lisse sauf en x = 0 par composition de fonctions lisses, mais au voisinage de 0 cette fonction est constante, donc lisse. Au total, ψ est lisse comme produit de fonction lisses. De plus elle vérifie les deux premières conditions imposées. Pour la troisième, d'abord $\chi g \ge -||g||_{\infty}$ car $|\chi| \le 1$. Ensuite si min $h \le 0$, alors on peut minorer $(1 - \chi)h$ par min h. Si min $h \ge 0$, on peut minorer par 0, d'où le résultat.

2. Montrer (par exemple s'inspirant d'un exemple du cours) qu'il existe une constante C>0 telle que pour tout $\epsilon>0$ il existe $g_{\epsilon}:D(0,3/4)\to\mathbb{R}$, telle que le graphe de g_{ϵ} ait une courbure de Gauss strictement négative en (0,0), et telle que $\|g_{\epsilon}\|_{\infty} \leq C\epsilon$. Soit $g_{\epsilon}(x,y) = \epsilon(x^2/2 - y^2/2)$ et $f(x,y) = (x,y,g_{\epsilon}(x,y))$. On a

$$f'_x = (1, 0, \epsilon x)$$

$$f'_y = (0, 1, -\epsilon y),$$

$$f'_x \wedge f'_y = (-\epsilon x, \epsilon y, 1),$$

donc N(0) = (0,0,1). De plus $f_{x^2}'' = (0,0,\epsilon)$, $f_{y^2}'' = (0,0,-\epsilon)$ et $f_{xy}'' = 0$. Donc la matrice de la seconde forme fondamentale en (0,0,0) est diagonale avec pour valeurs propres $-\epsilon$ et ϵ , donc $K(0) = -\epsilon^2 < 0$. De plus, $||g_{\epsilon}||_{\infty} \le C\epsilon$, avec

$$C = ||x^2 - y_{|D(0,3/4)}^2||_{\infty}.$$

- 3. Montrer que l'intersection de la sphère unité S^2 de \mathbb{R}^3 avec $\{(x,y,z) \in \mathbb{R}^3, (x,y) \in \bar{D}((0,0),3/4), z>0\}$ est un graphe d'une fonction lisse audessus de $\bar{D}((0,0),3/4)$. Sur l'ensemble mentionné la sphère est le graphe de $h(x,y) = \sqrt{1-x^2-y^2}$, qui est lisse par composition sur D((0,0),3/4), car $x^2+y^2<1$ sur cet ensemble, et $r\mapsto \sqrt{r}$ est lisse hors de 0.
- 4. En déduire qu'il existe une surface compacte lisse de \mathbb{R}^3 , formée de la réunion disjointe $S^2 \cap \{(x,y,z), z < \sqrt{7}/4\}$ et d'un graphe au-dessus de D(0,3/4) possédant au moins un point de courbure de Gauss strictement négative. Par la première question, pour tout $\epsilon > 0$ il existe une application ψ_{ϵ} qui interpole entre h sur $D(0,3/4) \setminus D(0,1/2)$ et g_{ϵ} sur D(0,1/4). On a $h \geq \sqrt{1-9/16} \geq 0$ sur D(0,3/4), donc par la troisième condition,

$$\psi > -C\epsilon$$
.

De plus si $(x, y, z) \in S^2 \cap (D(0, 3/4) \times \mathbb{R}^-)$, alors $z < -\sqrt{7}/4$. En prenant $\epsilon = \sqrt{7}/(8C)$, on a que $z > -\sqrt{7}/8$ pour les points du graphe de ψ . En particulier, ce graphe ne touche pas la demi-calotte inférieure.