What does a random complex hypersurface look like?

Algebraic Geometry and Complex Geometry CIRM 28 november- 2 december 2022

Damien Gayet (Institut Fourier, Grenoble, France)

Image: M. Hajij T.K. Dey et X. Li

Introduction

Szolnay ceramic

Let $P \in \mathbb{C}_d^{hom}[Z_0, Z_1, \cdots, Z_n]$. Then

$$Z(P) = \{P = 0\} \subset \mathbb{C}P^n$$

- ▶ is generically a smooth complex hypersurface,
- ▶ with a constant diffeomorphism type :
 - 1. n = 1 Z(P) is the union of d points.
 - 2. n = 2 Z(P) is connected compact smooth Riemann surface of genus $\frac{1}{2}(d-1)(d-2)$.

Lefschetz theorem (1929)

$$\forall k \in \{0 \cdots, n-2\}, \ H_k(Z(P), \mathbb{R}) = H_k(\mathbb{C}P^n, \mathbb{R}).$$

By Poincaré duality,

$$\forall k \in \{n, \cdots, 2n-2\}, \ H_k(Z(P), \mathbb{R}) = H_{2n-2-k}(\mathbb{C}P^n, \mathbb{R}).$$

Chern computation

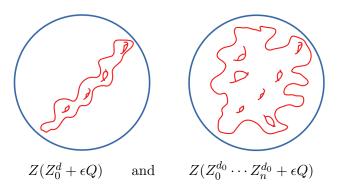
$$b_{n-1}(Z(P)) \sim d^n$$
.

Conclusion : the only proper homology of Z(P) is $H_{n-1}(Z(P))$.

Wirtinger theorem

$$\forall P \in \mathbb{C}_d^{hom}[Z], \ \operatorname{Vol}(Z(P)) = d \frac{1}{(n-1)!}.$$

Same topology and volumes but different shapes



Local volume

Let $U \subset \mathbb{C}P^n$ be an open subset with smooth boundary.

Vol $(Z(P) \cup U) \in [0, d]$.

Local topology

$$b_0(Z(P)\cap U)\in [0,+\infty[.$$

For a fixed U and large d, are they bounds for the local Betti numbers?

Theorem (Milnor 1963). Let $U \subset \mathbb{C}P^n$ be an open set defined by real polynomials. Then, there exists C_U such that

$$\sum_{i=0}^{2n-2} b_i(Z(P) \cap U) \le C_U d^{2n}.$$

Recall: $\sum_{i=0}^{2n-2} b_i(Z(P)) \sim d^n$.

Random hypersurfaces

If P is taken at random in $\mathbb{C}_d^{hom}[Z_0, \cdots, Z_n]$ and $U \subset \mathbb{C}P^n$,

- 1. What is the statistic of Vol $(Z(P) \cap U)$?
- 2. What are the statistics of $b_i(Z(P) \cap U)$?
- 3. Can we describe generators of $H_{n-1}(Z(P) \cap U)$?
- 4. Is there a local echo of the global rigid constraints? In particular, could be the Milnor bound d^{2n} be amended?

Random local volume

Recall that for any complex hypersurface $Z \subset \mathbb{C}P^n$, [Z] denotes its *current of integration*, that is for any smooth (2n-2)-form φ ;

$$\langle [Z], \varphi \rangle = \int_Z \varphi.$$

▶ If n = 1, then

$$[Z(P)] = \sum_{x \in \mathbb{C}P^1, \ P(x)=0} \delta_x.$$

▶ If φ is closed and $P \in \mathbb{C}_d^{hom}[Z]$, then

$$\langle [Z(P)], \varphi \rangle = d \int_{\mathbb{C}P^n} \omega_{FS} \wedge \varphi.$$

► Moreover,

"vol
$$(Z(P) \cup U) = \langle [Z(P)], \frac{\mathbf{1}_U \omega_{FS}^{n-1}}{(n-1)!} \rangle$$
"

Theorem (Shiffman-Zelditch 1998)

$$\frac{1}{d}\mathbb{E}[Z(P)] \underset{d \to \infty}{\to} \omega_{FS}.$$

In particular, for $U \subset \mathbb{C}P^n$,

$$\mathbb{E}\left[\operatorname{vol}\left(Z(P)\cap U\right)\right] \underset{d\to\infty}{\simeq} \frac{d}{(n-1)!} \frac{\operatorname{vol} U}{\operatorname{vol} \mathbb{C}P^n}.$$

Random local topology

Theorem (G. 2022) Let $U \subset \mathbb{C}P^n$ be an open set with smooth boundary. Then,

$$\forall i \in \{0, 2n - 2\} \setminus \{n - 1\}, \ \mathbb{E}\left[b_i(Z(P) \cap U)\right] \quad \underset{d \to \infty}{=} \quad o(d^n)$$

$$\mathbb{E}\left[b_{n - 1}(Z(P) \cap U)\right] \quad \underset{d \to \infty}{\sim} \quad d^n \frac{\operatorname{vol}(U)}{\operatorname{vol}(\mathbb{C}P^n)}.$$

Known deterministic Corollary

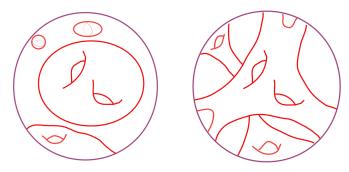
$$b_{n-1}(Z(P)) \underset{d\to\infty}{\sim} d^n.$$

14/9!

Random real algebraic geometry

Theorem (G.-Welschinger 2015): If P is a real random polynomial, $Z(P) \subset \mathbb{R}P^n$, then

$$\forall i \in \{0, n-1\}, \ \mathbb{E}\left[b_i(Z(P) \cap U)\right] \underset{d \to \infty}{\simeq} \sqrt{d}^n \text{Vol}(U)$$



Real versus complex $b_0 \approx b_1$ versus $b_0 \ll b_1$

Lagrangian representatives

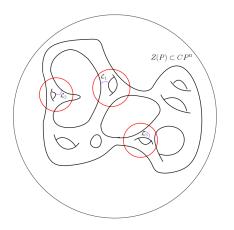
Theorem (G. 2021) Assume n is odd. Let $\mathcal{L} \subset \mathbb{R}^n$ be a compact smooth real hypersurface with $\chi(\mathcal{L}) \neq 0$. Then

$$\exists c > 0, \ \forall d \gg 1, \ c \leq \mathbb{P}\Big[\exists \ \mathcal{L}_1, \cdots, \mathcal{L}_{cd^n} \text{ pairwise disjoint}, \\ \text{Lagrangian}, \forall i, \mathcal{L}_i \sim_{\text{diff}} \mathcal{L}, \\ \text{nd} \ [\mathcal{L}_1], \cdots, [\mathcal{L}_{cd^n}] \text{ are independent in } H_{n-1}(Z(P) \cap U, \mathbb{R})\Big].$$

and $[\mathcal{L}_1], \dots, [\mathcal{L}_{cd^n}]$ are independent in $H_{n-1}(Z(P) \cap U, \mathbb{R})$.

Lagrangian: $\omega_{FS|TL} = 0$. In particular, \mathcal{L} is totally real, that is

$$JT\mathcal{L} \cap T\mathcal{L} = \{0\}.$$



Symplectic fact. For any generic $P, Q \in \mathbb{C}_d^{hom}[Z]$,

$$(Z(P), \omega_{FS|Z(P)}) \sim_{sympl} (Z(Q), \omega_{FS|Z(Q)}).$$

Deterministic symplectic Corollary. Under the same hypotheses, there exists c > 0 such that for any generic polynomial P of large enough degree d,

 $\exists \ \mathcal{L}_1, \cdots, \mathcal{L}_{cd^n}$ pairwise disjoint, Lagrangian, $\forall i, \mathcal{L}_i \sim_{\text{diff}} \mathcal{L}$, and $[\mathcal{L}_1], \cdots, [\mathcal{L}_{cd^n}]$ are independent in $H_{n-1}(Z(P), \mathbb{R})$.

Older results in any dimensions:

- ► Andreotti-Frenkel 1968 : Lagrangian spheres
- ▶ Mikhalkin 2002 : Lagrangian spheres and tori
- ▶ Corollary of G-Welschinger 2014 : \sqrt{d}^n instead of d^n .
- ▶ Ancona 2022 : d^n Lagrangians in $Z(P) \cap \mathbb{R}P^n$.

The natural measure

▶ The Fubini-Study measure μ_d on $\mathbb{C}_d^{hom}[Z_0, \dots, Z_n]$:

$$P = \sqrt{(n+d)!} \sum_{i_0 + \dots + i_n = d} a_{i_0 \dots i_n} \frac{Z_0^{i_0} \dots Z_n^{i_n}}{\sqrt{i_0! \dots i_n!}},$$

where $\Re a_{i_0\cdots i_n}$, $\Im a_{i_0\cdots i_n}$ are i.i.d. standard normal variables.

▶ These monomials form an ONB for the Fubini-Study L^2 -scalar product :

$$\langle P, Q \rangle_{FS} = \int_{\mathbb{C}P^n} \frac{P(Z)\overline{Q(Z)}}{\|Z\|^{2d}} \frac{\omega_{FS}^n}{n!}.$$

▶ Then, for any Borelian $A \subset \mathbb{C}_d^{hom}[Z]$,

$$\mu_d(A) = \int_{P \in A} e^{-\frac{1}{2} \|P\|_{L^2(h_{FS})}^2} \frac{dP}{(2\pi)^{N_d}} = \int_{P(a) \in A} e^{-\frac{1}{2} \|a\|^2} \frac{da}{(2\pi)^{N_d}}$$

One can use the uniform measure over the sphere \mathbb{SC}_d^{hom} of L^2 -normalized polynomials.

Example : Let $z \in \mathbb{C}P^n$. What is the average

$$\mathbb{E}\left[\|P(z)\|_{h_{FS}}\right]?$$

By symmetries, one can assume that $z = [1:0:\cdots:0]$. Then the mean equals

$$\sqrt{(n+d)!} \mathbb{E}\left[\frac{|a_0 Z_0^d|}{\sqrt{d!}|Z_0|^d}\right].$$

Since

$$\mathbb{E}[|a_0|] = \int_{a_0 \in \mathbb{C}} |a_0| e^{-\frac{1}{2}|a_0|^2} \frac{da_0}{2\pi} = \int_{r>0} r^2 e^{-\frac{1}{2}r^2} dr = 1,$$

we obtain

$$\mathbb{E}\left[\|P(z)\|_{h_{FS}}\right] \underset{d\to\infty}{\sim} d^{\frac{n}{2}}.$$

General Kähler framework

Let

- $ightharpoonup X^n$ be a compact complex manifold, and
- ightharpoonup L o X be an ample holomorphic line bundle equipped with
- ▶ a Hermitian metric h with positive curvature ω , that is locally if e is a holomorphic trivialization,

$$\omega = \frac{1}{i\pi} \partial \bar{\partial} \log \|e\|_h$$

is a Kähler form, that is for any $z \in X$, $\omega(z)$ is positive over any complex line in T_zX .

Topology of hypersurfaces

For $d \gg 1$ and any generic $s \in H^0(X, L^{\otimes d})$,

► Lefschetz :

$$\forall i < n-1, \ H_i(Z(s), \mathbb{R}) = H_i(X, \mathbb{R}).$$

► Chern:

$$b_{n-1}(Z(s)) \underset{d\to\infty}{\sim} d^n \int_{Y} \omega^n.$$

Wirtinger :

vol
$$(Z(s)) = d \frac{\int_X \omega^n}{(n-1)!}$$
.

In this general setting :

Theorem (S-Z) $\frac{1}{d}\mathbb{E}([Z(s)] \to \omega$.

Theorem (G) The two random topological theorems extend in this context.

The natural measure

The measure μ_d chosen on $H^0(X, L^d)$ is the Gaussian one associated to

▶ the scalar product

$$\forall s, t \in H^0(X, L^d), \ \langle s, t \rangle = \int_X h_d(s, t) \frac{\omega^n}{n!}.$$

▶ For any Borelian $A \subset H^0(X, L^d)$,

$$\mu_d(A) = \int_{s \in A} e^{-\frac{1}{2} \|s\|_{L^2}^2} \frac{ds}{(2\pi)^{N_d}}$$

▶ Other saying, if $(S_i)_{1 \le i \le N_d}$ is an ONB of $(H^0(X, L^d), \langle , \rangle_{FS}),$

$$s = \sum_{i} a_i S_i$$

where $\Re a_{i_0\cdots i_n}$, $\Im a_{i_0\cdots i_n}$ are i.i.d. standard normal variables.

▶ Again, one can use the uniform measure over $\mathbb{S}H^0(X, L^d)$.

Unrealistic plan of the mini-course

- 1. Current of integration
- 2. Betti numbers
- 3. Local representatives of the homology
- 4. Annexes

Part I The mean current of integration

Image: Barnett

Theorem (B. Shiffman-S. Zelditch 1998) Let X, L, h, ω and $(\mu_d)_d$ as before. Then

$$\frac{1}{d}\mathbb{E}[Z(s)] \underset{d \to \infty}{\to} \omega.$$

Proof Recall that by Poincaré-Lelong formula, for any local holomorphic function f,

$$[Z(f)] = \frac{i}{\pi} \partial \bar{\partial} \log |f|.$$

Hence, for any $s \in H^0(X, L^d)$, if locally $s = fe^d$,

$$[Z(f)] = \frac{i}{\pi} \partial \bar{\partial} \log \|s\|_{h^d} - \frac{i}{\pi} \partial \bar{\partial} \log \|e^d\|_h$$
$$= d\omega + \frac{i}{\pi} \partial \bar{\partial} \log \|s\|_{h^d}$$

Write $s = \sum_{i=1}^{N_d} a_i S_i$, where $(S_i)_i$ is an ONB of $H^0(X, L^d)$. Then

$$\mathbb{E}[\log ||s||_{h^d}^2] = \log \sum_{i} ||S_i||_{h_d}^2 + \mathbb{E}\left[\log \frac{||s||^2}{\sum_{i} ||S_i||^2}\right].$$

If $\forall i, S_i = f_i e^d$ and $F = (f_i)_i \in \mathbb{C}^{N_d}$,

$$\mathbb{E}\left[\log \frac{\|s\|^2}{\sum_i \|S_i\|^2}\right] = \mathbb{E}\left[\log |\langle a, \frac{F}{\|F\|} \rangle|^2\right]$$

with a standard Gaussian vector in \mathbb{C}^{N_d} . Using a rotation, this is equal to

$$\mathbb{E}\left[\log|a_1|^2\right]$$

which is killed by the $\partial \bar{\partial}$.

Hence,

$$\frac{1}{d}\mathbb{E}[Z(f)] = \omega + \frac{i}{2\pi d}\partial\bar{\partial}\mathbb{E}\left[\log\sum_{i}\|S_{i}\|_{h^{d}}^{2}\right].$$

Standard case:

$$\sum_{i} \|S_{i}\|_{h^{d}}^{2} = \frac{(n+d)!}{\|Z\|^{2d}} \sum_{i_{0}+\dots+i_{n}=d} \frac{|Z_{0}|^{2i_{0}} \dots |Z_{n}|^{2i_{n}}}{i_{0}! \dots i_{n}!} = \frac{(n+d)!}{d!}$$

Hence,

$$\frac{1}{d}\mathbb{E}[Z(f)] = \omega_{FS}. \ \Box$$

General case:

$$\frac{1}{d}\mathbb{E}[Z(f)] = \omega + \frac{i}{2\pi d}\partial\bar{\partial}\mathbb{E}\left[\log\sum_{i}||S_{i}||_{h^{d}}^{2}\right].$$

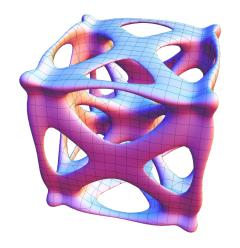
Tian Theorem: For any $x \in X$,

$$\sum_{i} ||S_i(x)||_{h^d}^2 = d^n + O(d^{n-1}).$$

Consequently weakly

$$\frac{1}{d}\mathbb{E}[Z(f)] \underset{d \to \infty}{\longrightarrow} \omega. \square$$

Part 2 - Betti numbers



 ${\bf Image: Leon\ Lampret}$

For a generic $P \in \mathbb{C}_d^{hom}[Z_0, \cdots, Z_n]$,

Lefschetz:
$$\forall k \neq n-1, b_i(Z(P)) = O(1)$$

Lefschetz:
$$\forall k \neq n-1, b_i(Z(P)) = O(1)$$

Chern: $b_{n-1}(Z(P)) \sim d^n$.

Random polynomial:

$$P = \sqrt{(n+d)!} \sum_{i_0 + \dots + i_n = d} a_{i_0 \dots i_n} \frac{Z_0^{i_0} \dots Z_n^{i_n}}{\sqrt{i_0! \dots i_n!}},$$

where $\Re a_{i_0\cdots i_n}$, $\Im a_{i_0\cdots i_n}$ are i.i.d. standard normal variables.

Theorem Let $U \subset \mathbb{C}P^n$ be an open set with smooth boundary. Then,

$$\forall i \neq n-1, \ \mathbb{E}\left[b_i(Z(P) \cap U)\right] \quad \underset{d \to \infty}{=} \quad o(d^n)$$

$$\mathbb{E}\left[b_{n-1}(Z(P) \cap U)\right] \quad \underset{d \to \infty}{\sim} \quad d^n \frac{\operatorname{vol}\left(U\right)}{\operatorname{vol}\left(\mathbb{C}P^n\right)}.$$

Theorem (Milnor). Let $U \subset \mathbb{C}P^n$ be an open set defined by polynomials. Then, there exists C_U such that

$$\sum_{i=0}^{2n-2} b_i(Z(P) \cap U) \le C_U d^{2n}.$$

"Proof" of Milnor's theorem

Simplification : assume $U = \mathbb{B}^n \subset \mathbb{R}^n$,

$$P(x) = x_n - Q(x_1, \cdots, x_{n-1}).$$

Then

$$T_x Z(P) = \operatorname{vect} \left(\frac{\partial}{\partial x_i} + \frac{\partial Q}{\partial x_i} \frac{\partial}{\partial x_n} \right)_{1 \le i \le n-1}.$$

Let

$$f: \mathbb{R}^n \to \mathbb{R}, \ f(x) = ||x||^2.$$

Fact. For a generic P, $f_{|Z(P)}$ is a Morse function, that is all its critical points are non-degenerate, i.e the Hessian is non-degenerate.

Weak Morse inequalities:

$$\sum_{i} b_i(Z(P)) \le \# \operatorname{crit}(f_{|Z(P)}).$$

Now

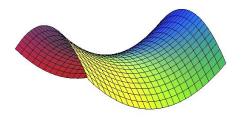
$$x \in \operatorname{crit}(f_{|Z(P)}) \Leftrightarrow \begin{cases} x_n = Q(x_1, \cdots, x_{n-1}) \\ \forall i \leq n-1, \\ \langle \nabla ||x||^2, \frac{\partial}{\partial x_i} + \partial_i Q \frac{\partial}{\partial x_n} \rangle = 0. \end{cases}$$

- ▶ So, x is critical if it satisfies n algebraic equations in \mathbb{R}^n of degree less than deg Q.
- ▶ Van der Waerden Theorem (1949) : there exists at most $(\deg Q)^n$ solutions.
- ► Hence,

$$\sum_{i} b_i(Z(P)) \le d^n.$$

▶ The constant C_U appears when taking in account the boundary of U. \square

Holomorphic specificities?



Affine real function. Let Z be a generic complex hypersurface such that

 $0 \in \operatorname{crit}(x_{n|Z}).$

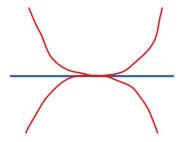
Then, Z is locally writes

$$Z = \{z_n = \sum_{i} k_i z_i^2 + O(3)\}.$$

Since

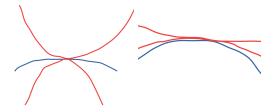
$$x_n(z_1, \dots, z_{n-1}, \sum_i k_i z_i^2) = \sum_i k_i (x_i^2 - y_i^2),$$

- ▶ 0 is a critical point of $x_{n|Z}$ with index n-1
- ▶ the spectrum of the Hessian is even.



Conclusion : The Hessian of the restriction of a linear real function on Z at a critical point has an even spectrum. In particular, it has index n-1.

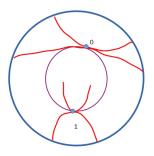
General function



Here: n = 2 and Z is a complex curve.

- ► Left, an index 1 critical point. The curve can be very curved.
- ▶ Right, an index 2 critical point. The curve cannot be locally very curved.
- ▶ If f is strictly (pseudo)convex, there is no index 0 critical point.

Revisiting Milnor's proof



- ▶ No maximum (index 2)
- ► The saddle points (index 1) are favored in comparison with minima (index 0).

Heuristic Proposition: Statistically,

$$\forall i < n-1, \ \frac{\# \text{Crit}_i(f_{|Z(P)})}{\# \text{Crit}_{n-1}(f_{|Z(P)})} \to_d 0$$

"Proof":

Near $[1:0\cdots:0]$, $p(z):=\sqrt{d}!\frac{P(Z)}{Z_{\alpha}^{d}}$ equals

$$a_0 + \sqrt{d} \sum_{i=1}^n a_i z_i + d \sum_{i,j} a_{ij} z_i z_j + \text{etc } (z\sqrt{d}).$$

▶ Then, $p(\frac{z}{\sqrt{d}})$ becomes independent on d.

- ▶ Hence, the natural scale of Z(P) is $\frac{1}{\sqrt{d}}$.
- ▶ After rescaling by $\times \sqrt{d}$ we should have a bounded geometry.
- \blacktriangleright Hence statistically the curvature Z(P) has order d.
- ▶ However critical points with large curvature have index n-1.
- ▶ Hence $\frac{\#\operatorname{Crit}_i(f|_{Z(P)})}{\#\operatorname{Crit}_{n-1}(f|_{Z(P)})} \to_d 0$, statistically. \square

Proposition Let $U \subset X$ be an open set with smooth boundary. Then,

$$\forall i \neq n-1, \ \mathbb{E}\left[\#\mathrm{crit}_i(f_{|Z(P)} \cap U)\right] = \underset{d \to \infty}{=} o(d^n)$$

$$\mathbb{E}\left[\#\mathrm{crit}_{n-1}(f_{|Z(P)} \cap U)\right] \sim \underset{d \to \infty}{\sim} d^n \frac{\mathrm{vol}(U)}{\mathrm{vol}(\mathbb{C}P^n)}.$$

Weak and strong Morse inequalities Let $f: Z \to \mathbb{R}$ be a Morse function. Then,

► (weak)

$$\forall i, \ b_i(Z) \leq \# \operatorname{crit}_i(f)$$

► (strong)

$$\forall i, \ \sum_{k=0}^{i} (-1)^{i-k} b_k(Z) \ge \sum_{k=0}^{i} (-1)^{i-k} \# \operatorname{crit}_k(f)$$

Consequence:

$$b_{n-1}(Z) \ge \# \operatorname{crit}_{n-1}(f) - 2 \sum_{i \le n-1} \# \operatorname{crit}_i(f).$$

The Proposition for critical points and Morse inequalities imply:

$$\forall i \neq n-1, \ \mathbb{E}\left[b_i(Z(s) \cap U)\right] \quad \underset{d \to \infty}{=} \quad o(d^n)$$

$$\mathbb{E}\left[b_{n-1}(Z(s) \cap U)\right] \quad \underset{d \to \infty}{\sim} \quad d^n \int_U \omega^n.$$

How do we estimate $\mathbb{E}\left[\operatorname{crit}_{i}(f_{|Z(s)})\right]$?

With the help of Kac-Rice formula

Simplest Kac-Rice formula

Let $f: \mathbb{R} \to \mathbb{R}$ be random and $U \subset \mathbb{R}$. Then

$$\mathbb{E}[\#Z(f) \cap U] = \int_{U} \mathbb{E}(|f'(x)| \mid f(x) = 0) \phi_{f(x)}(0) dx,$$

where $\phi_{f(x)}$ denotes the density of f(x).

"Proof".

 \triangleright If f vanishes transversally,

$$\#Z(f) \cap U = \lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_{\mathbb{D}} |f'(x)| \mathbf{1}_{|f| \le \epsilon} dx,$$

hence

$$\mathbb{E}\left[\#Z(f)\cap U\right] = \int_{\mathbb{R}} \mathbb{E}\left(|f'(x)|\lim_{\epsilon\to 0} \frac{1}{2\epsilon}\mathbf{1}_{|f|\leq \epsilon}\right) dx. \ \Box$$

A friendly Kac-Rice formula

Proposition (G.-Welschinger 2015, G. 2022)

$$\mathbb{E}\#\left(\operatorname{crit}_i(p_{|Z(P)})\cap U\right)$$

is equal to

$$\begin{split} & \int_{x \in U} \int_{\substack{\alpha \in \mathcal{L}_{onto}(T_xM, E_x) \\ \ker{\alpha} \subset \ker{dp(x)}}} \left| \det{\alpha_{|\ker^{\perp}{\alpha}|}} \right| \\ & \mathbb{E} \Big[\mathbf{1}_{\{ \text{Ind } (\nabla^2 p_{|Z(P)}) = i \}} \left| \det{\left(\langle \nabla^2 P(x)_{|\ker{\alpha}}, \epsilon(x, \alpha) \rangle \right. \right.} \right. \\ & \left. - \langle \alpha(\nabla p(x)), \epsilon(x, \alpha) \rangle \frac{\nabla^2 p(x)_{|\ker{\alpha}}}{\|dp(x)\|^2} \right) \right| \mid P(x) = 0, \nabla P(x) = \alpha \left. \right] \\ & \rho_{X(x)}(0, \alpha) d \text{vol}(\alpha) d \text{vol}(x). \end{split}$$

How is it possible to compute such a thing?

▶ General fact for Gaussian fields. Kac-Rice formula can be expressed in terms of the sole covariance of f:

$$cov (f(x), f(y)) = \mathbb{E} [f(x)f(y)]$$

and its (2,2)-jet on the diagonal.

▶ The covariance of $P \in \mathbb{C}_d^{hom}[Z]$ or $s \in H^0(X, L^d)$ is the Bergman kernel which is known to converge to a universal covariance, after rescaling by \sqrt{d} .

Covariance and Bergman kernel

Define the Bergman kernel

$$\forall x, y \in X, \ k_d(x, y) := \sum_{i=1}^n S_i(x) \otimes S_i(y)^* \in L_x^d \otimes L_y^{d*}$$

where for any $s \in L_y$,

$$\forall t \in L, \ s^*(t) = h_d(s, t).$$

Fact. k_d is the kernel of the projection :

$$\pi_d: L^2(X, L) \to H^0(X, L^d).$$

Proof: For any $s \in L^2(X, L^d)$,

$$\pi_d s(x) = \sum_i \langle S_i, s \rangle_{L^2} S_i(x)$$

$$-\sum_{i}\langle \mathcal{O}_{i},\mathcal{S}/L^{2}\mathcal{O}_{i}(x)\rangle$$

 $= \int_X k_d(x,y)s(y)d\text{vol }(y). \square$

Now the *covariance* of the random section $s \in H^0(X, L^d)$ is defined by

$$cov (s(x), s(y)) := \mathbb{E}[s(x) \otimes s^*(y)].$$

Fact:

$$cov(s(x), s(y)) = k_d(x, y).$$

Proof:

$$\mathbb{E}[s(x) \otimes s^*(y)] = \sum_{i,j} \mathbb{E}[a_i \bar{a_j}] S_i(x) \otimes S_j(y)^*.$$

Since a_i and a_j are independent,

$$\mathbb{E}\left[a_i\bar{a_j}\right] = \delta_{ij},$$

hence the result. \square

Propreties of the covariance:

ightharpoonup If x = y,

$$var(s(x)) = cov (s(x), s(x)) = \sum_{i} ||S_i(x)||_{h_d}^2.$$

▶ If s(x) is independent of s(y), the we would have

$$cov(s(x), s(y)) = 0.$$

- ▶ Hence, the covariance measures the dependency between s(x) and s(y).
- ▶ The intuition is that $cov \rightarrow 0$ when dist(x, y) becomes large.
- ▶ The distance where $cov \approx 0$ should be the natural scale of Z(s).

Is there a simplification of the Bergman kernel when $d \to \infty$?

Theorem (Tian 1988) For any $x \in X$, for any $d \gg 1$, there exists

$$S_d^x \in \mathbb{S}H^0(X, L^d),$$

such that

$$||S_d^x(y)||_{h_d} \sim_{d\to\infty} d^{\frac{n}{2}} e^{-d||y-x||^2}$$

and $\{s\in \mathbb{S}H^0(X,L^d), s(x)=0\}$ is asymptotically orthogonal to S^x_J .

Corollary: The Bergman kernel has a universal limit shape at scale $\frac{1}{\sqrt{d}}$..

Proof. Fix $x \in X$. Choose as an ONB of $H^0(X, L^d)$

$$S_1 = S_d^x \text{ and } (S_i)_{1 \leq N_d} \in (S_d^x)^{\perp}.$$

Then,

$$\sum_{i} ||S_i(x)||_{h_d}^2 \sim d^n$$

and

$$||k_{d}(x, x + \frac{y}{\sqrt{d}})||_{h_{d}} = ||\sum_{i=1}^{n} S_{i}(x) \otimes S_{i}(x + \frac{y}{\sqrt{d}})^{*}||_{h_{d}}$$

$$\underset{d \to \infty}{\sim} d^{n} \exp(-||y||^{2}). \square$$

Standard example : $X = \mathbb{C}P^n$, $L = \mathcal{O}(1)$, $h = h_{FS}$. Then, Let x = [1 : 0 ... : 0]. Then

$$S_d^x = \sqrt{\frac{(d+n)!}{d!}} Z_0^d.$$

Indeed,

$$||S_x^d||_{L^2(FS)} = 1$$

and pointwise

$$||S_x^d||_{FS} \sim d^{n/2} \frac{1}{\sqrt{1+||z||^2}} \sim_d d^{n/2} e^{-\frac{1}{2}d||z||^2}.$$

Moreover

$$\left(\frac{Z_0^{i_0}\cdots Z_n^{i_n}}{\sqrt{i_0!\cdots i_n!}}\right)_{i_0+\cdots+i_n=d}$$

is an ONB of $\mathcal{O}(d)$. Hence

$$k_d([Z], [W]) = \frac{1}{\|W\|^d} \sum_{i_0 + \dots + i_n = d} \frac{(Z_0 \overline{W_0})^{i_0} \cdots (Z_n \overline{W_n})^{i_n}}{i_0! \cdots i_n!}$$
$$= \frac{(\langle Z, W \rangle)^d}{\|W\|^d}$$

Hence,

$$||k_d||_{h_{FS}} = \frac{(\langle Z, W \rangle)^d}{(||Z||||W||)^d}.$$

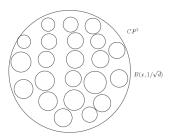
In coordinates near $[1:0\cdots:0]$, with Z=(1,0) and $W=(1,w_1,\cdots,w_n)$, we have

$$||k_d(0, \frac{w}{\sqrt{d}})||_{h_{FS}} = \frac{1}{\sqrt{1 + \frac{||w||^2}{d}}} \underset{d \to \infty}{\sim} \exp(-||w||^2). \square$$

Why d^n in complex versus \sqrt{d}^n in real?

Since the natural scale is $\frac{1}{\sqrt{d}}$,

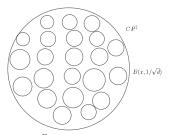
- ▶ $Z(s) \cap B_{x,\frac{1}{\sqrt{d}}}$, after rescaling $\times \sqrt{d}$, should look like a uniform random Z in $\mathbb{B}(0,1)$.
- ▶ So the topology should be uniform in such a ball. In particular, the Betti numbers of $Z(s) \cap B_{x,\frac{1}{\sqrt{d}}}$ should be bounded.



At least $\approx d^n$ disjoint small balls in X

- ▶ Since vol $B_{x,\frac{1}{\sqrt{d}}} \approx (\frac{1}{\sqrt{d}})^{2n}$, there are around d^n such balls.
- ightharpoonup The total topology should be of order d^n .

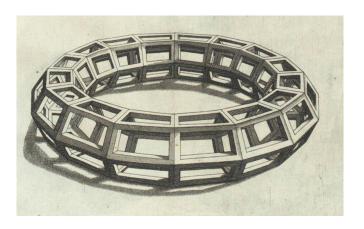
In the real world



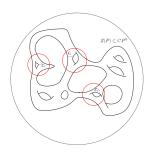
At least $\simeq \sqrt{d}^n$ disjoint small balls in $\mathbb{R}X$

- ▶ In $\mathbb{R}X$, there are around \sqrt{d}^n balls.
- ▶ The total topology should be \sqrt{d}^n

Part 3 - Topology



 ${\bf Image: Lorenzo\ Sirigatti,\ 1596}$



Theorem (G. 2021) Let $\mathcal{L} \subset \mathbb{R}^n$ odd be any compact hypersurface with $\chi(\mathcal{L}) \neq 0$, and $U \subset X$ an open subset with smooth bounary. Then

$$\exists c > 0, \ \forall d \gg 1, \ c \leq \mathbb{P}\Big[\exists \ \mathcal{L}_1, \cdots, \mathcal{L}_{cd^n} \text{ pairwise disjoint,} \\ \text{Lagrangian,} \ \forall i, \mathcal{L}_i \sim_{\text{diff}} \mathcal{L}, \\ \text{and } [\mathcal{L}_1], \cdots, [\mathcal{L}_{cd^n}] \text{ are independent in } H_{n-1}\big(Z(s) \cap U, \mathbb{Z}\big)\Big].$$

At microscopical scale

Proposition. Let $x \in X$ and $\mathcal{L} \subset \mathbb{R}^n$ any compact smooth hypersurface. Then,

$$\exists c_{\mathcal{L}} > 0, \forall d \gg 1, \ \mathbb{P} \ \left[\exists \mathcal{L}' \sim_{\text{diff}} \mathcal{L}, \mathcal{L}' \text{ and totally real } \mid \right.$$

$$\left. \mathcal{L}' \subset Z(s) \cap B_{x, \frac{1}{\sqrt{d}}}, \right] \geq c_{\mathcal{L}}.$$

Proposition implies Theorem:

By Proposition:

$$\begin{split} \operatorname{cvol}\;(U)d^n & \leq & \sum_{x \in \frac{2}{\sqrt{d}}\mathbb{Z}^n \cap U} \mathbb{P}\left[Z(s) \cap B_{x,\frac{1}{\sqrt{d}}} \supset \mathcal{L}\right] \\ & = & \sum_{1}^{\operatorname{vol}\;(U)d^n} k\mathbb{P}[\# \text{ small balls containing } \mathcal{L} = k] \\ & \leq & c\frac{1}{2} \mathrm{vol}\;(U)d^n\mathbb{P}[\# \text{ balls with } \mathcal{L} \leq c\frac{1}{2} \mathrm{vol}\;(U)d^n] \\ & + \operatorname{vol}\;(U)d^n\mathbb{P}[\# \text{ balls with } \mathcal{L} \geq c\frac{1}{2} \mathrm{vol}\;(U)d^n], \end{split}$$

so that

$$\frac{c}{2} \leq \mathbb{P}\left[\# \text{ balls with } \mathcal{L} \geq c\frac{1}{2} \text{vol } (U)d^n\right].$$

Proof of the proposition in the standard case

(Based on the real proof done with J.-Y. Welschinger)

Theorem (Seifert 1936). Every compact smooth real hypersurface \mathcal{L} in \mathbb{R}^n can be C^1 -perturbed into a component \mathcal{L}' of an algebraic regular hypersurface.

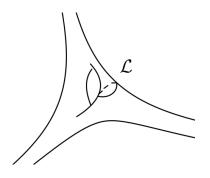
By symmetry one can assume that $x = [1:0\cdots:0]$. Recall that

$$S_x^d := d^{n/2} Z_0^d$$

has

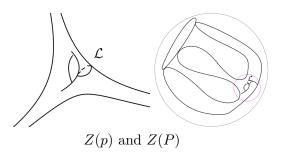
- 1. L^2 norm $\simeq 1$
- 2. is exponentially concentrated near x at scale $\frac{1}{\sqrt{d}}$.
- 3. On $B(x, \frac{1}{\sqrt{d}})$,

$$S_x^d \asymp_d d^{\frac{n}{2}}$$
.



By Seifert Theorem, let $p \in \mathbb{R}[x_1, \dots, x_n]$ be such that

- 1. p vanishes transversally onto $\Sigma := Z(p) \cap \mathbb{B} \subset \mathbb{C}^n$.
- 2. $\Sigma \cap \mathbb{R}^n$ contains a diffeomorphic copy of \mathcal{L} ;
- 3. \mathcal{L} is Lagrangian, hence totally real.



For $i \geq 1$, let $z_i = \frac{Z_i}{Z_0}$, and define :

$$P := p(z\sqrt{d})S_x^d.$$

Then

- 1. $||P||_{L^2} \approx 1$ since S_x^d has an exponential decay against a polynome.
- 2. P vanishes along $\Sigma' \sim \Sigma$, containing $\mathcal{L}' \sim_{\text{diff}} \mathcal{L}$ (and other things) in $B_{x,\frac{1}{\sqrt{2}}}$, and \mathcal{L}' is totally real.

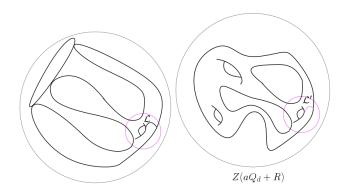
Now a random $Q \in \mathbb{C}_d^{hom}[Z]$ can be written as

$$Q = aP + R$$
,

with

$$a \sim N_{\mathbb{C}}(0,1)$$
 and $R \in P^{\perp} \subset \mathbb{C}_d^{hom}[Z]$

taken at random for the restriction of the Gaussian law on the hyperplane R^{\perp} . Then a and R are independent.



Intuitive fact: If R is C^1 -small compared to aP, then

- 1. $Z(Q) \cap B_{x,\frac{1}{\sqrt{d}}} \sim_{\text{diff}} \Sigma \supset \mathcal{L}' \sim_{\text{diff}} \mathcal{L};$
- 2. \mathcal{L}' remains totally real.

Making the intuition quantitative:

Second, we saw in the introduction that

$$\mathbb{E}\left[\|R(x)\|_{FS}\right] \sim_d d^{\frac{n}{2}}.$$

Since the scale is $\frac{1}{\sqrt{d}}$,

$$\mathbb{E}\left[\max_{B_{x,\frac{1}{\sqrt{d}}}}\|R\|_{FS}\right] \asymp_{d} d^{\frac{n}{2}}.$$

Again because of $\frac{1}{\sqrt{d}}$ scale,

$$\mathbb{E}\left[\max_{B_{x,\frac{1}{\sqrt{d}}}} \frac{1}{\sqrt{d}} \|\nabla R\|_{FS}\right] \asymp_{d} d^{\frac{n}{2}}.$$

Since p vanishes transversally, there exists $\epsilon > 0$, tel que

$$\forall z \in \mathbb{B}, |p(z)| < \epsilon \Rightarrow |dp(z)| > \epsilon.$$

This implies that on $B_{x,1\sqrt{d}}$,

$$|P| < \epsilon d^{n/2} \Rightarrow |\nabla P| > \epsilon \sqrt{d} d^{n/2}.$$

Ehresmann Theorem : For any M > 0,

$$\left\{ \begin{array}{ccc} |a| & \geq & M \\ (\|R\| + \frac{1}{\sqrt{d}} \|\nabla R\|)_{L^{\infty}(B_{x,\frac{1}{\sqrt{d}}})} & < & \frac{M}{2} \epsilon d^{\frac{n}{2}} \end{array} \right.$$

implies that

$$Z(f) \cap B_{x,\frac{1}{\sqrt{d}}} \sim_{\text{diff}} \Sigma$$

with $\Sigma \supset \mathcal{L}' \sim_{diff} \mathcal{L}$ and \mathcal{L}' totally real.

Hence, $\mathbb{P}[Z(Q) \cap B_{x,\frac{1}{\sqrt{d}}} \sim \Sigma]$ is larger than

$$\mathbb{P}[|a| > M] \, \mathbb{P}\left[\|R\|_{L^{\infty}} \text{ and } \frac{1}{\sqrt{d}} \|\nabla R\|_{L^{\infty}} < \frac{M}{4} \epsilon d^{\frac{n}{2}} \right].$$

Markov inequality: $\mathbb{P}[X > m] < \frac{\mathbb{E}X}{m}$.

Hence,

$$\mathbb{P}\left[\|R\|_{L^{\infty}} > \frac{M}{4}\epsilon d^{\frac{n}{2}}\right] \le 4\frac{\mathbb{E}\|R\|_{L^{\infty}}}{M\epsilon d^{n/2}} \underset{d\to\infty}{\asymp} \frac{4}{M\epsilon}.$$

Same for $\frac{1}{\sqrt{d}} \|\nabla R\|_{L^{\infty}}$.

Hence,

$$\mathbb{P}[Z(Q) \cap B_{x,\frac{1}{\sqrt{d}}} \sim \Sigma] \ge e^{-M^2} (1 - \frac{8}{M\epsilon}).$$

Hence, for $M = \frac{16}{\epsilon}$, we obtain a uniform positive probability. \square

For the Theorem, it remains to prove that totally real implies non trivial homology

Totally reality and homology

Facts: If $\mathcal{L} \subset (Z, J)$ is totally real, then

 $ightharpoonup JT\mathcal{L} \cap T\mathcal{L} = \{0\}$, so that

$$N\mathcal{L} \sim T\mathcal{L}$$
.

▶ If moreover $\chi(\mathcal{L}) \neq 0$ then

$$0 \neq [\mathcal{L}] \in H_{n-1}(Z).$$

Proof: for \mathcal{L} orientable,

$$\chi(\mathcal{L}) = \#\{ \text{ zeros of a tangent vector field with signs} \}.$$

$$= \#\{ \text{ zeros of a normal vector field with signs} \}$$

$$= [\mathcal{L}] \cdot [\mathcal{L}]. \square$$

▶ If $\mathcal{L}_1, \dots, \mathcal{L}_k$ are disjoint totally real submanifolds with $\chi(\mathcal{L}_i) \neq 0$, then they form an independent family.

Proof: Assume that

$$\sum_{i=1}^{k} \lambda_i [\mathcal{L}_i] = 0.$$

Intersecting with \mathcal{L}_i gives

$$\lambda_i [\mathcal{L}_i]^2 = 0$$

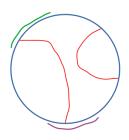
so that $\forall j, \lambda_j = 0 \square$.

See the annex for the general proof (for X, L, h, ω).

Annexes

- 1. An open question : holomorphic percolation
- 2. A proof in the general setting
- 3. Peak sections

Bonus: holomorphic percolation



Let P as before, $U \subset \mathbb{C}P^2$ a ball, $V \subset \partial U$ and $W \subset \partial U$ two open subsets of the sphere, whose adherence are disjoint. **Conjecture.** There exists c > 0, such that for d large enough,

 $\mathbb{P}(\exists \text{ a c. c. of } Z(P) \cap U \text{ intersecting } V \text{ and } W) > c.$

- ightharpoonup Prove in real in \mathbb{R}^2 by G.-Beffara
- ▶ and in $\mathbb{R}P^2$ by Belyaev-Muirhead-Wigman.

Proof of the Proposition

- Let $p \in \mathbb{R}[x_1, \dots, x_n]$ such that $Z(p) \subset \mathbb{R}^n$ contains a diffeomorphic copy of \mathcal{L} and vanishing transversally.
- Fix $x \in X$ and let S_x^d be a peak section at x for L^d .
- ► Let

$$\chi: X \to \mathbb{R}$$

be a cut-off function, that is $\chi = 1$ in the ball $B(x, \delta)$ and $\chi = 0$ oustide $B(x, 2\delta)$, where $\delta > 0$ is small enough.

► Then,

$$s_x := \chi p(z\sqrt{d})S_x^d(z) \in C^\infty(X, L^d)$$

is holomorphic over $B(x, \delta)$ and vanishes along $\mathcal{L}' \sim_{\text{diff}} \mathcal{L}$ (and other things).

▶ Since $\mathcal{L}' \subset \mathbb{R}^n$ in complex coordinates, it is totally real.

Hörmander theorem : There exist C > 0 depending only on (X, L, h), and $u \in C^{\infty}(X, L^d)$, such that

$$\sigma_x := s_x + u \in H^0(X, L^d)$$

and

$$||u||_{L^2(h_d)} \le C||\bar{\partial} s_x||_{L^2(h_d)}.$$

However

$$\|\bar{\partial}s_x\|_{h_d} = |\bar{\partial}\chi| \|S_d^x \mathbf{1}_{\{|z| > \delta\}}\|_{h_d}$$

$$\leq C \exp(-d\delta^2).$$

Since u is holomorphic in $B_{x,\frac{1}{\sqrt{d}}},\,\frac{u}{S_d^x}$ is a holomorphic function, and by the mean inequality,

$$\left\| \frac{u}{S_d^x} \right\|_{L^{\infty}(B_{x,\frac{1}{\sqrt{d}}})} \le d^n C \exp(-d\delta^2).$$

Now a random $s \in H^0(X, L^d)$ can be written as

$$s = a \frac{\sigma_x}{\|\sigma_x\|_{L^2(h_d)}} + \tau,$$

with

$$a \sim N_{\mathbb{C}}(0,1)$$
 and $\tau \in \sigma_x^{\perp} \subset H^0(X,L^d)$

taken at random for the restriction of the Gaussian law. Then a and τ are independent.

Intuitive fact: If τ is C^1 -small compared to $a_{\|\sigma_x\|_{L^2(h,\lambda)}}$, then

$$Z(s) \cap B_{x,\frac{1}{\sqrt{s}}} \supset \mathcal{L}' \sim_{\text{diff}} \mathcal{L},$$

and \mathcal{L}' is totally real.

Making the intuition quantitative: First,

$$\|\sigma_x\|_{L^2}^2 \underset{d\to\infty}{\simeq} \int_{B(0,\frac{\log d}{\sqrt{d}})} |p(z\sqrt{d})|^2 e^{-d\|z\|^2} dz$$
$$\sim_d d^{-n} \int_{\mathbb{C}^n} |p|^2 e^{-|z|^2} dz.$$

Second, writing over $B_{x,\frac{1}{\sqrt{d}}}$

$$s = fS_x^d$$
 and $\tau = gS_x^d$,

we have

$$f \simeq ap(z\sqrt{d})d^{\frac{n}{2}} + g.$$

Since p vanishes transversally, there exists $\epsilon > 0$, tel que

$$\forall z \in B_{x,\frac{1}{\sqrt{d}}}, |p(z\sqrt{d})| < \epsilon \Rightarrow |d(p(z\sqrt{d}))| > \epsilon \sqrt{d}.$$

Ehresmann Theorem: For any M > 0,

$$\left\{\begin{array}{ccc} |a| & \geq & M \\ (\|g\| + \frac{1}{\sqrt{d}}\|dg\|)_{B_{x,\frac{1}{\sqrt{d}}}} & < & \frac{M\epsilon}{2}d^{\frac{n}{2}} & \Rightarrow Z(f) \cap B_{x,\frac{1}{\sqrt{d}}} \sim \Sigma. \end{array}\right.$$

Now, since g is holomorphic, $|g|^2$ is plurisubharmonic so that

$$\begin{split} |g(z)|^2 & \leq & \frac{1}{\operatorname{vol} B_{x,\frac{2}{\sqrt{d}}}} \int_{B_{x,\frac{2}{\sqrt{d}}}} |g|^2 d \operatorname{vol} \\ & \leq & \frac{e^4}{\operatorname{vol} B_{x,\frac{2}{\sqrt{d}}}} \int_{B_{x,\frac{2}{\sqrt{d}}}} \|\tau\|_{h_d}^2 d \operatorname{vol} \end{split}$$

This implies that

$$\mathbb{E}|g(z)|^2 \le C \max \mathbb{E}||\tau||_{h_d}^2$$

Let $(S_i)_{i=1,\dots,N_d}$ be an orthonormal basis of $H^0(X,L^d)$. Then,

$$\mathbb{E} \|\tau\|_{h_d}^2 = \sum_{i} \|S_i\|_{h_d}^2.$$

Theorem (Tian 1988): For any $x \in X$,

$$\sum_{i} ||S_i(x)||_{h^d}^2 = d^n + O(d^{n-1}).$$

Markov inequality: $\mathbb{P}[X > m] < \frac{\mathbb{E}X}{m}$.

Hence,

$$\mathbb{P}[|g| > \frac{M}{4} \epsilon d^{\frac{n}{2}}] \le 4C \frac{\mathbb{E} \|\tau\|_{h_d}^2}{M^2 \epsilon^2 d^n} \underset{d \to \infty}{\sim} \frac{4C}{M^2 \epsilon^2}$$

Hence,

$$\begin{split} \mathbb{P}[Z(s)\cap B_{x,\frac{1}{\sqrt{d}}}\sim \Sigma] & \geq & \mathbb{P}[|a|>M] \\ & \mathbb{P}[|g|<\frac{M}{4}\epsilon d^{\frac{n}{2}} \text{ and } \\ & |dg|<\frac{M}{4}\epsilon d^{\frac{n}{2}}\sqrt{d}] \\ & \geq & e^{-M^2}(1-\frac{8C}{M^2\epsilon^2}). \end{split}$$

Hence, for $M^2 = \frac{8C}{\epsilon^2}$, we obtain a uniform positive probability.

Lastly, $\mathcal{L} \subset \Sigma \cap \mathbb{R}^n$ is totally real, that is $T\mathcal{L} \cap iT\mathcal{L} = \{0\}$ (it is even Lagrangian). Hence, after C^1 perturbation, its copy $\mathcal{L}' \subset Z(s)$ remains totally real.

Existence of a peak section

Proposition (Existence of a local peak section) For any $x \in X$, there exists a local holomorophic trivizalization S_x of L such that

$$||S_x(z)||_h = \exp(-||z||^2 + O(||z||^3))$$

Let $x \in X$ and e_x be a local trivialization.

Proof. Let e_x any local trivialization and write

$$||e_x||_h = \exp(-\varphi),$$

where φ is a plurisubharmonic function satisfying

$$i\partial\bar\partial\varphi=\omega.$$

The Taylor expansion of φ at x writes

$$\varphi(x+z) = \Re Q(z) + \sum_{i,j} \partial^2_{z_i \overline{z_j}} \varphi(x) z_i \overline{z_j} + O(\|z\|^3),$$

where

$$Q(z) = \varphi(x) + \sum_{j} \partial_{z_j} \varphi z_j + \sum_{i,j} \partial^2_{z_i z_j} \varphi z_i z_j,$$

so that

$$||e_x e^{\varphi(x) + Q(z)}|| \le \exp(-||z||_{g_\omega}^2),$$

where g_{ω} is the metric associated to $\omega(x)$. \square

Proof of the first part of Tian's theorem.

Hörmander estimate for S_x^d , as above. \square