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Introduction

Szolnay ceramic
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Let P € Chom[Zy, Zy, -+, Zy). Then

Z(P)={P =0} cCP"

» is generically a smooth complex hypersurface,
» with a constant diffeomorphism type :

1. n=1 Z(P) is the union of d points.
2. n =2 Z(P) is connected compact smooth Riemann surface
of genus 1 (d — 1)(d — 2).
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Lefschetz theorem (1929)
Vke{0--- ,n—2}, Hyo(Z(P),R) = Hy(CP",R).
By Poincaré duality,

Vk € {n,--+,2n — 2}, Hy(Z(P),R) = Ha,_s_x(CP",R).

Chern computation

bo1(Z(P)) ~ d".

Conclusion : the only proper homology of Z(P) is



Wirtinger theorem

VP e Chomiz], Vol(Z(P)) = d(n i
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Same topology and volumes but different shapes
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Local volume

Let U € CP"™ be an open subset with smooth boundary.

O

o
V,&

Vol (Z(P)UU) € [0, d].
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Local topology

o
'4&

bo(Z(P)NU) € [0, +ool.

For a fixed U and large d, are they bounds for the local Betti
numbers ?
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D
'4&

Theorem (Milnor 1963). Let U C CP™ be an open set
defined by real polynomials. Then, there exists Cyy such that

2n—2
> bi(Z(P)NU) < Cyd™.
=0

Recall : Y7 %b;(Z(P)) ~ d™



Random hypersurfaces
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If P is taken at random in (CZ‘””[ZO, -+, Zy and U C CP™,

1. What is the statistic of Vol (Z(P)NU)?
2. What are the statistics of b;(Z(P)NU)?
3.
4

. Is there a local echo of the global rigid constraints ? In

Can we describe generators of H,,_1(Z(P)NU)?

particular, could be the Milnor bound d*" be amended ?



Random local volume

Recall that for any complex hypersurface Z C CP", [Z]
denotes its current of integration, that is for any smooth
(2n — 2)-form ¢ ;

» If n =1, then
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> If ¢ is closed and P € Ch™[Z], then

(2P =d [ wrs e

» Moreover,
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Theorem (Shiffman-Zelditch 1998)

1
SE[Z(P)] - wps.

In particular, for U ¢ CP",

d vol U
E [vol (Z(P)NU)] o (n—1)!vol CP"’



Random local topology

Theorem (G. 2022) Let U C CP" be an open set with
smooth boundary. Then,

Vie {0,2n—2}\ {n—1}, En;(Z(P)NU)] = o(d")

d—o0
Elbo1(Z(P)NU)]  ~ d”w.

Known deterministic Corollary

bo1(Z(P)) ~ d"

d—o0
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Random real algebraic geometry

Theorem (G.-Welschinger 2015) : If P is a real random
polynomial, Z(P) C RP"™, then

Vie {0,n—1}, E[6i(Z(P)nU)] = Vd"Vol(U)
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Real versus complex
bo =< by versus by < by



Lagrangian representatives
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Theorem (G. 2021) Assume n is odd. Let £ C R" be a
compact smooth real hypersurface with x(£) # 0. Then

>0, ¥d>1, ¢ < P[H L1, , Logn pairwise disjoint,
Lagrangian, Vi, £; ~qig £,
and [£1],- -, [Lcan] are independent in H,_1(Z(P)NU, R)}
Lagrangian : wpgir, = 0. In particular, £ is totally real, that

1S
JTLNTL = {0}
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Symplectic fact. For any generic P,(Q € CZ‘"”[Z],

(Z(P),wrs|z(p)) ~sympl (Z(Q)swrs|z(q)) -

Deterministic symplectic Corollary. Under the same
hypotheses, there exists ¢ > 0 such that for any generic
polynomial P of large enough degree d,

3Ly, -, Legn pairwise disjoint,
Lagrangian, Vi, £; ~qig £,
and [£4],- -+ , [Lean] are independent in H,—1(Z(P),R).



Older results in any dimensions :
» Andreotti-Frenkel 1968 : Lagrangian spheres
» Mikhalkin 2002 : Lagrangian spheres and tori
» Corollary of G-Welschinger 2014 : Vd" instead of d™.
» Ancona 2022 : d" Lagrangians in Z(P) NRP".
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The natural measure

» The Fubini-Study measure jg on Chom(Zy, -+ | Z,] :

Zio ... Zin
P =/ (n + d)' Z Ajg--g 20 Tn ,
"Vl iy)!
where Ra;,...i,, , Saj,...i, are i.i.d. standard normal variables.

» These monomials form an ONB for the Fubini-Study
L?-scalar product :

P(Z)Q(Z) wig

<PaQ>FS: .
cpn 1Z|IP4 n!
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» Then, for any Borelian A C Chom[Z],

Hd(A)Z/ eéllPHQLz(th)dP:/ o= 5llall? da
PeA 2m)Ne Jpiayea (2m)Na

» One can use the uniform measure over the sphere S(CZ‘"”
of L?-normalized polynomials.
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Example : Let z € CP"™. What is the average

E[I1P()nps]?

By symmetries, one can assume that z=[1:0:---:0]. Then
the mean equals

(n—l—d)!E[ a0 Z] ]

V| Zp|®

Since

d
Eflaol] = / ’@0|€_%|a0|2ﬂ = / r2e 3" dr = 1,
apeC 27 r>0

we obtain

E(IP(lns) ~_d?.0
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General Kahler framework

Let

> X" be a compact complex manifold, and

v

L — X be an ample holomorphic line bundle equipped with

» a Hermitian metric h with positive curvature w, that is
locally if e is a holomorphic trivialization,

1
w = —00log |||
17

is a Kéhler form, that is for any z € X, w(z) is positive
over any complex line in 7, X.
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Topology of hypersurfaces

For d > 1 and any generic s € H(X, L®9),
» Lefschetz :

Vi<n—1, Hi(Z(s),R) = Hy(X,R).

» Chern :

bu1(Z(s)) ~ d° /X .

> Wirtinger :
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In this general setting :

Theorem (S-Z) 1E([Z(s)] = w.

Theorem (G) The two random topological theorems extend
in this context.
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The natural measure

The measure pg chosen on H°(X, L?) is the Gaussian one
associated to

» the scalar product

Vst € HO(X, 1Y), (s,t>:/ ha(s, )
X n:

» For any Borelian A ¢ H(X, L),

1402 ds
A) = —3lIsll? 2
/’Ld( ) LeAe L (27T)Nd
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» Other saying, if (Si)lﬁiSNd is an ONB of
(HO(Xv Ld)7< ) >FS)7

s = ZaiSi

where Raj,...;, , Sa;,...;, are ii.d. standard normal variables.

» Again, one can use the uniform measure over SH°(X, L9).
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Unrealistic plan of the mini-course

. Current of integration
. Betti numbers

. Local representatives of the homology

N N

. Annexes
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Part [

The mean current of integration

> wra

At

Image : Barnett
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Theorem (B. Shiffman-S. Zelditch 1998) Let X, L, h, w
and (uq)q as before. Then

1
gE[Z(s)] v

Proof Recall that by Poincaré-Lelong formula, for any local
holomorphic function f,

i
(/)] = Zodlog]f].
Hence, for any s € HO(X, L%), if locally s = fe?,
T .= i .=
2] = L0010g]slls — -0d10g |

= dw+ %6510g 15|
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Write s = Zf\fl a;S;, where (S;); is an ONB of H°(X, L%). Then

s 2
Eflog||s|7a] =log Y _|ISill7, +E [log ZHHEHQ} :

If Vi, S; = fie? and F = (f;); € CNa,
Is]]?

E {log ZHSHQ] =E [log l(a, Hi”ﬂ

with a standard Gaussian vector in CV¢. Using a rotation, this
is equal to
E [log]a1 ]

which is killed by the 90.
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Hence,

éE[Z(f)] —wt —aaE

logZIIS [

Standard case :

ZHSH RGN I CAR]
he =

2P o ol d

Hence,
1

JELZ()] = wrs. O
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General case :

1 1 =
EZ(f)] = w+ 5 —00E

log ) _ |15l

Tian Theorem : For any z € X,
Z I1Si(2) |74 = d" + O(d" ™).
Consequently weakly

SE[Z(f)] — w.O



Part 2 - Betti numbers

Image : Leon Lampret

35/95



36 /95

For a generic P € (CZO"L[ZO, e Dl

Lefschetz : Vk#n—1, b;(Z(P)) e O(1)
—00

Chern : bp-1(Z(P)) ~ d"
d—roc0

Random polynomial :

P=y(n+d! > Qi et

where Raj,...i,, , Sai,...;, are i.i.d. standard normal variables.
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Theorem Let U C CP™ be an open set with smooth boundary.
Then,

Vitgn—1, Ep(Z(P)NU)] = o(d")

d—o0
E b (Z(P) D)~ dll(c((f))

Theorem (Milnor). Let U C CP™ be an open set defined by
polynomials. Then, there exists Cy such that

2n—2
> bi(Z(P)NU) < Cyd™.
=0
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”Proof” of Milnor’s theorem
Simplification : assume U = B" C R",

P(x) = Tp — Q(xlv e 7$n—1)'

Then

o 0Q 0
1:Z(P) = O |
v Z(P) = vect (8% * Ox; axn)l<i<”1

Let
fiR" =R, f(z) = |z

Fact. For a generic P, fiz(p) is a Morse function, that is all
its critical points are non-degenerate, i.e the Hessian is
non-degenerate.



Weak Morse inequalities :

Zbi(Z(P)) < terit(fizp))-

Now

Tpn = Q(xh o an—l)
x € Cl"it(f|Z(p)) & Vi<n-—1,
(V]z||?, 22 + 8:Q5%) = 0.

> So, x is critical if it satisfies n algebraic equations in R” of
degree less than deg Q.

» Van der Waerden Theorem (1949) : there exists at
most (deg @)™ solutions.

» Hence,

> bi(Z(P)) < d.

» The constant Cy appears when taking in account the
boundary of U. [

39/95



Holomorphic specificities ?

N
s e
N
T oS
A
R i

Y
Nanunes

NI 8
NI

Affine real function. Let Z be a generic complex
hypersurface such that

0 € crit (z,)7).
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Then, Z is locally writes
Z={m=> kzl+0(3)}
i
Since

xn(zl7"' 7Zn—1uzk’izi2) = Zkl<xl2 - y22)7
% i

» 0 is a critical point of x, 7 with index n —1

» the spectrum of the Hessian is even.
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Conclusion : The Hessian of the restriction of a linear real
function on Z at a critical point has an even spectrum. In
particular, it has index n — 1.
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General function

L

Here : n =2 and Z is a complex curve.
» Left, an index 1 critical point. The curve can be very
curved.

> Right, an index 2 critical point. The curve cannot be
locally very curved.

> If f is strictly (pseudo)convex, there is no index 0 critical
point.
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Revisiting Milnor’s proof

——
A

» No maximum (index 2)

» The saddle points (index 1) are favored in comparison with
minima (index 0).
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Heuristic Proposition : Statistically,

#Criti(fiz(p))

Vi<n-—1, :
#Critn—1(fiz(p))

”Proof” :

» Near [1:0---:0], p(z) := \/&!% equals
0

ag + \/&Z a;z + dz a;j2;2j + ete (Z\/g)
i1 i

» Then, p(id) becomes independent on d.
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1

ﬁ.

After rescaling by x+v/d we should have a bounded
geometry.

Hence, the natural scale of Z(P) is

Hence statistically the curvature Z(P) has order d.
However critical points with large curvature have index
n— 1.

Hence #Criti(f‘z(m)) —4 0, statistically. [J

#Critn—1(f|z(p)



Proposition Let U C X be an open set with smooth boundary.
Then,

Vi£En—1, E [#criti(f‘z(p) N U)] = o(d")

d—o0
. n Vol (U
E [#critn-1(fiz(py N U)] doo d vol@((:P)”)'

A7/95
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Weak and strong Morse inequalities Let f: Z — R be a
Morse function. Then,

> (weak)
Vi, bj(Z) < #crit;(f)

> (strong)

Consequence :

bn1(Z) > #erity 1 (f) —2 > #eriti(f).
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The Proposition for critical points and Morse inequalities
imply :

Vizn—1, Ebi(Z(s)NU) = o(d")

d—o0

d—o0

Elby 1(Z(s5)NUY ~ d /U o,

How do we estimate E [criti(f‘z(s))] ?

With the help of Kac-Rice formula



Simplest Kac-Rice formula

Let f: R — R be random and U C R. Then
EWHZ() N0 = [ B(F@)] ] 1) = 0650 0o
where ¢y (,) denotes the density of f(z).

”Proof”.

» If f vanishes transversally,

e—0 2¢€

#Z(f) ﬂU—hm/|f ) |1} f)<cde,
» hence

B#2(1) ) = [ B(1f (@)l 3117<.) dz. O

e—0 2
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A friendly Kac-Rice formula

Proposition (G.-Welschinger 2015, G. 2022)

E# (criti(p;z(p)) NU)

is equal to

/GU /aeconto T(EM Ez

ker aCker dp(x

det CK‘ ker™ o

E|: {Ind (V2p|z(p))=i} det ((v P(x)\keroue(m’a»

v2p( )\kera .
~a(Vp(e), el ) S5 )| | P(r) =0,V P(r) =

Px (2)(0, @)dvol(a)dvol(z).
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How is it possible to compute such a thing?

» General fact for Gaussian fields. Kac-Rice formula
can be expressed in terms of the sole covariance of f :

cov (f(z), f(y) =E[f(z)f(y)]

and its (2,2)-jet on the diagonal.

» The covariance of P € Ch™[Z] or s € H(X, L9) is the
Bergman kernel which is known to converge to a universal
covariance, after rescaling by v/d.
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Covariance and Bergman kernel

Define the Bergman kernel

Va,y € X, ka(z,y) = _ Si(x)® Si(y)* € LI @ L
=1

where for any s € Ly,

Vte L, s*(t) = hq(s,t).
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Fact. k; is the kernel of the projection :
mq: L*(X,L) — HY(X, LY.

Proof : For any s € L*(X, L),

mas(x) = > (Si s)12Si(x)

%

- / (i, y)s(y)dvol (y). O
X



Now the covariance of the random section s € H(X, L9) is

defined by
cov (s(z), s(y)) := E[s(z) @ s"(y)].
Fact :
cov(s(z),s(y)) = ka(x,y).
Proof :

E[ ZE a/Zaj ®S( )

Since a; and a; are independent,
E [aia;] = 64,

hence the result. O
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Propreties of the covariance :
> If x =y,

var(s(x)) = cov ( Z [|5i(z th'

» If s(x) is independent of s(y), the we would have

cov(s(x),s(y)) = 0.



» Hence, the covariance measures the dependency between
s(z) and s(y).

» The intuition is that cov — 0 when dist(z, y) becomes
large.

» The distance where cov ~ 0 should be the natural scale of
Z(s).

Is there a simplification of the Bergman kernel when d — oo ?
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Theorem (Tian 1988) For any = € X, for any d > 1, there
exists

S% e SHY(X, LY,

such that 2
1S%(W)ln, ~ dze vl
d—o0

and {s € SH°(X, L%), s(z) = 0} is asymptotically orthogonal to
ST
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Corollary : The Bergman kernel has a universal limit shape
at scale %..

Proof. Fix z € X. Choose as an ONB of H°(X, L%)

S = S% and (Si)a<n, € (S5)*.

Then,
ZIIS o)y, ~d"
and
- Y
lka(e, @+ “=)lh, = 1~ Si() @ Si(w + —=)*[In,
Vd — Vd

~ d"exp(—|y[*). O
d—o0



Standard example : X =CP", L = O(1), h = hpg. Then,
Let = [1:0...: 0]. Then

Sd = ng

Indeed,
1580 L2 (ps) = 1

and pointwise
1
1+ [|2|]?

1S4 pg ~ d™/? oy 2= 34l
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Moreover

) in
NN
10- in-
02 ot rin=d

is an ONB of O(d). Hence

ka((2), W) = W;‘d 3 <Zowo3:!-'-'-.<iz'nwn>ln
io+-+in=d n:
_ Wy
R
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Hence,
lfallagy = AT
Izl )4
In coordinates near [1:0---: 0], with Z = (1,0) and
W =(1,wy, - ,w,), we have

w
a0, )y =



Why d" in complex versus Vd' in real ?

Since the natural scale is %,

> Z(s)N B, L after rescaling x+/d, should look like a
’Vd
uniform random Z in B(0,1).

» So the topology should be uniform in such a ball. In
particular, the Betti numbers of Z(s) N B, 1 should be

va
bounded.
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B(z,1/Vd)

At least < d" disjoint small balls in X

> Since vol B, 3 = ( %)2", there are around d” such balls.

» The total topology should be of order d".
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In the real world

At least =< /d" disjoint small balls in RX

» In RX, there are around Vd" balls.
» The total topology should be Vd'
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Part 3 - Topology

Image : Lorenzo Sirigatti, 1596
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Theorem (G. 2021) Let £ C R"° be any compact
hypersurface with x(£) # 0, and U C X an open subset with
smooth bounary. Then

>0, Vd>1, ¢ < ]P’[H L1, Logn pairwise disjoint,
Lagrangian, Vi, £; ~qig L,
and [£4], -+ , [Lean] are independent in H,_1(Z(s) NU, Z)]



At microscopical scale

Proposition. Let z € X and £ C R" any compact smooth
hypersurface. Then,

dep > 0,Vd > 1, P (3L ~qi £, L and totally real |

L c Z(S)HBL%, > cr.
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Proposition implies Theorem :
By Proposition :

1 (U)d" < P|Z(s)NB DL
ol O <Y Blz)0B,
:EEWZ"HU
vol (U)d"™

= Z kP[# small balls containing £ = k]
1

1 1
c§vol (U)d"P[# balls with £ < cgvol (U)d"]

IN

+vol (U)d"P[# balls with £ > c%vol (U)d"|,

so that .
< P |# balls with £ > C§V01 U)d"| .

[\l e}



Proof of the proposition in the standard case
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(Based on the real proof done with J.-Y. Welschinger)

Theorem (Seifert 1936). Every compact smooth real
hypersurface £ in R” can be C'-perturbed into a component £’

of an algebraic regular hypersurface.



By symmetry one can assume that z =[1:0---: 0]. Recall that
S;l = 2Zg

has
1. L? norm ~ 1

2. is exponentially concentrated near x at scale ﬁ.
3. On B(z, \[) )
Sg =g dz.
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/\

By Seifert Theorem, let p € R[xy, -+, x,] be such that
1. p vanishes transversally onto ¥ := Z(p) NB C C™.
2. X NR"™ contains a diffeomorphic copy of L ;

3. L is Lagrangian, hence totally real.
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Z(p) and Z(P)

Fori>1, let z; = %’ and define :

= p(2Vd)SZ.

Then

1. ||P||z2 < 1 since S¢ has an exponential decay against a
polynome.

2. P vanishes along ¥/ ~ ¥, containing £’ ~gg £ (and other
things) in B, 1 and £’ is totally real.
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Now a random @ € C°™[Z] can be written as
OQ=aP+R,

with

a ~ N¢(0,1) and R € P+ c Chom (7]
taken at random for the restriction of the Gaussian law on the
hyperplane R'. Then a and R are independent.



Intuitive fact : If R is C'-small compared to aP, then
L Z(Q)NB, 1 ~aig XD L ~ai L;
’Vd
2. L' remains totally real.
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Making the intuition quantitative :
Second, we saw in the introduction that

E[|R(z)||Fs] ~a dz.

. 1
Since the scale is Nl

E | max ||R||rs de%.
B 3

T, ——

'Vd

. 1
Again because of 7a scale,



Since p vanishes transversally, there exists € > 0, tel que
Vz € B, |p(z)| < e=|dp(z)| > e
This implies that on BL1 Nt
|P| < ed"/? = |VP| > eVddV?.
Ehresmann Theorem : For any M > 0,

M
%ed

w3

A

lal
1
{ (IR + WHVRH)L(’O(B%ﬁ)

implies that
Z(f)N By, 1 ~aige X

with ¥ D L' ~gisp £ and L' totally real.
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Hence, P[Z(Q)N B

z,

S

Y] is larger than

1 M =»
Plla| > M] P {HR”LW and —= | VR < —-ed?

Markov inequality : P[X > m] < ==

Hence,

P [HRHLOO >

Same for %HVRHLOO.

M
4€d2:| S 4

Vd

EX

n

E|R|z~ _ 4
MedV/?2 d500 Me'



Hence,

8
P|Z B ~Y] > e M- 2
Hence, for M = 16 we obtain a uniform positive probability. [

For the Theorem, it remains to prove that totally real implies
non trivial homology
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Totally reality and homology
Facts : If £L C (Z,J) is totally real, then
» JTLNTL = {0}, so that
NL~TL.
» If moreover x(£) # 0 then
0% [£] € Hoy(2).
Proof : for £ orientable,

X(L£) = #{ zeros of a tangent vector field with signs}.

#{ zeros of a normal vector field with signs}

= [£]-14.0
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> If L1, -+, L are disjoint totally real submanifolds with
X(L;) # 0, then they form an independent family.

Proof : Assume that

Intersecting with £; gives
NlL)?=0

so that Vj,A\; = 0 .



See the annex for the general proof (for X, L, h,w).
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Annexes

1. An open question : holomorphic percolation
2. A proof in the general setting

3. Peak sections
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Bonus : holomorphic percolation

/

\__/

Let P as before, U € CP? a ball, V C U and W C 9U two
open subsets of the sphere, whose adherence are disjoint.
Conjecture. There exists ¢ > 0, such that for d large enough,

P(3 ac. c. of Z(P)NU intersecting V and W) > c.

» Prove in real in R? by G.-Beffara
» and in RP? by Belyaev-Muirhead-Wigman.
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Proof of the Proposition

» Let p € R[xy,- - ,xy,] such that Z(p) C R™ contains a
diffeomorphic copy of £ and vanishing transversally.

» Fix € X and let S¢ be a peak section at x for L%
> Let
x: X —=R
be a cut-off function, that is x = 1 in the ball B(z,d) and
X = 0 oustide B(x,24), where § > 0 is small enough.
» Then,
se 1= xp(2Vd)S3(2) € C=(X, L)
is holomorphic over B(x,d) and vanishes along L' ~gg £
(and other things).

» Since £’ C R"™ in complex coordinates, it is totally real.
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Hoérmander theorem : There exist C' > 0 depending only on
(X,L,h), and u € C>°(X, L%), such that

0y = 5, +u € HO(X, LY

and )
ullL2(hy) < CllOszl L2(hy)-

However

105zlln, = OXIS3 L1215} Ing
< Cexp(—dé?).

Since u is holomorphic in B,

)

a1, S%c is a holomorphic function,
and by the mean inequality,

) < d"Cexp(—ds?).

T,

==
S L>(B

Sk
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Now a random s € HY(X, L9) can be written as

Ox

S + 7,

= qQq———
ozl L2(hy)

with
a~ Ng(0,1) and 7 € o € H(X, LY)

taken at random for the restriction of the Gaussian law. Then a
and 7 are independent.

Intuitive fact : If 7 is C''-small compared to a , then

Oz
”‘TZHL?(hd)
!/
>L ~diff ‘Ca

and L' is totally real.



Making the intuition quantitative : First,

_dl|2|2
loall?. = / Ip(2Vd)|2e I a2
B(0

d—o00 logd)
> Vd

~d d_”/ \p[Qe_‘Zsz.
Cn
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Second, writing over B, 1
'Vd

s = fS% and 7 = ¢S,

we have

f=ap(zVd)d? +g.

Since p vanishes transversally, there exists € > 0, tel que

Vz € B%%, Ip(zVd)| < e = |d(p(zVd))| > eVd.
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Ehresmann Theorem : For any M > 0,

lal > M
(lgll+ Jaldalz, , < ged3 = Z(f)NB, 1 ~%.
d

Now, since g is holomorphic, |g|? is plurisubharmonic so that

1
D 2dvol
9OF < [ lePaw

Ty,—F—= T

¢! 2 dvol
wolB 5 5 ||T”hd VO

xT, z,

»

é
e

S
S
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This implies that
Elg(2)]* < CmaxE|]|3,

Let (Si)i=1,....n, be an orthonormal basis of HO(X, LY. Then,
Ell7ll7, = > 1S,
i
Theorem (Tian 1988) : For any z € X,

Z 1Si(2) |20 = d™ + O(d™ ™).



. N EX
Markov inequality : P[X > m] < ==

Hence,

M E|7ll7, AC

Pllg| > —ed?] < 4C

4 M2E2d7 dsoo M262
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Hence,

P[Z(s) mb,ﬁ ~ Y] > Plla| > M]
Pllg| < %ed% and
dg| < %ed% Vd
> e M1 - %).
Hence, for M? = 8% we obtain a uniform positive probability.

Lastly, £ C ¥ NR" is totally real, that is 7L NiTL = {0} (it is
even Lagrangian). Hence, after C' perturbation, its copy
L' C Z(s) remains totally real.



Existence of a peak section
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Proposition (Existence of a local peak section) For any
x € X, there exists a local holomorophic trivizalization S, of L
such that

15:(2) s = exp (=121 + O(||=[1*))

Let z € X and e, be a local trivialization.
Proof. Let e, any local trivialization and write

leln = exp(—¢),
where ¢ is a plurisubharmonic function satisfying

i00p = w.



The Taylor expansion of ¢ at x writes

p(r + 2) Z ? =(@)ziz + O(||z]*),
where
Q(Z) + Z azj (,OZ] + Z azlzj szlzja
J i,J
so that

leae @+ Q@ | < exp(—2]2,),

where g, is the metric associated to w(x). O

Proof of the first part of Tian’s theorem.
Hormander estimate for S¢, as above. [J
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