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Introduction

Szolnay ceramic
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Let P ∈ Chomd [Z0, Z1, · · · , Zn]. Then

Z(P ) = {P = 0} ⊂ CPn

I is generically a smooth complex hypersurface,

I with a constant diffeomorphism type :

1. n = 1 Z(P ) is the union of d points.
2. n = 2 Z(P ) is connected compact smooth Riemann surface

of genus 1
2 (d− 1)(d− 2).
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Lefschetz theorem (1929)

∀k ∈ {0 · · · , n− 2}, Hk(Z(P ),R) = Hk(CPn,R).

By Poincaré duality,

∀k ∈ {n, · · · , 2n− 2}, Hk(Z(P ),R) = H2n−2−k(CPn,R).

Chern computation

bn−1(Z(P )) ∼ dn.

Conclusion : the only proper homology of Z(P ) is
Hn−1(Z(P )).
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Wirtinger theorem

∀P ∈ Chomd [Z], Vol(Z(P )) = d
1

(n− 1)!
.
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Same topology and volumes but different shapes

Z(Zd0 + εQ) and Z(Zd00 · · ·Zd0n + εQ)
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Local volume

Let U ⊂ CPn be an open subset with smooth boundary.

Vol (Z(P ) ∪ U) ∈ [0, d].
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Local topology

b0(Z(P ) ∩ U) ∈ [0,+∞[.

For a fixed U and large d, are they bounds for the local Betti
numbers ?
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Theorem (Milnor 1963). Let U ⊂ CPn be an open set
defined by real polynomials. Then, there exists CU such that

2n−2∑
i=0

bi(Z(P ) ∩ U) ≤ CUd2n.

Recall :
∑2n−2

i=0 bi(Z(P )) ∼ dn.
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Random hypersurfaces

If P is taken at random in Chomd [Z0, · · · , Zn] and U ⊂ CPn,

1. What is the statistic of Vol (Z(P ) ∩ U) ?

2. What are the statistics of bi(Z(P ) ∩ U) ?

3. Can we describe generators of Hn−1(Z(P ) ∩ U) ?

4. Is there a local echo of the global rigid constraints ? In
particular, could be the Milnor bound d2n be amended ?
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Random local volume

Recall that for any complex hypersurface Z ⊂ CPn, [Z]
denotes its current of integration, that is for any smooth
(2n− 2)-form ϕ ;

〈[Z], ϕ〉 =

∫
Z
ϕ.

I If n = 1, then

[Z(P )] =
∑

x∈CP 1, P (x)=0

δx.
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I If ϕ is closed and P ∈ Chomd [Z], then

〈[Z(P )], ϕ〉 = d

∫
CPn

ωFS ∧ ϕ.

I Moreover,

”vol(Z(P ) ∪ U) = 〈[Z(P )],
1Uω

n−1
FS

(n− 1)!
〉”
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Theorem (Shiffman-Zelditch 1998)

1

d
E[Z(P )] →

d→∞
ωFS .

In particular, for U ⊂ CPn,

E [vol (Z(P ) ∩ U)] '
d→∞

d

(n− 1)!

vol U

vol CPn
.
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Random local topology

Theorem (G. 2022) Let U ⊂ CPn be an open set with
smooth boundary. Then,

∀i ∈ {0, 2n− 2} \ {n− 1}, E [bi(Z(P ) ∩ U)] =
d→∞

o(dn)

E [bn−1(Z(P ) ∩ U)] ∼
d→∞

dn
vol(U)

vol(CPn)
.

Known deterministic Corollary

bn−1(Z(P )) ∼
d→∞

dn.
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Random real algebraic geometry

Theorem (G.-Welschinger 2015) : If P is a real random
polynomial, Z(P ) ⊂ RPn, then

∀i ∈ {0, n− 1}, E [bi(Z(P ) ∩ U)] �
d→∞

√
d
n
Vol(U)
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Real versus complex
b0 � b1 versus b0 � b1
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Lagrangian representatives

Theorem (G. 2021) Assume n is odd. Let L ⊂ Rn be a
compact smooth real hypersurface with χ(L) 6= 0. Then

∃c > 0, ∀d� 1, c ≤ P
[
∃ L1, · · · ,Lcdn pairwise disjoint,

Lagrangian,∀i,Li ∼diff L,

and [L1], · · · , [Lcdn ] are independent in Hn−1

(
Z(P ) ∩ U,R

)]
.

Lagrangian : ωFS|TL = 0. In particular, L is totally real, that
is

JTL ∩ TL = {0}.

17/95



18/95



Symplectic fact. For any generic P,Q ∈ Chomd [Z],(
Z(P ), ωFS|Z(P )

)
∼sympl

(
Z(Q), ωFS|Z(Q)

)
.

Deterministic symplectic Corollary. Under the same
hypotheses, there exists c > 0 such that for any generic
polynomial P of large enough degree d,

∃ L1, · · · ,Lcdn pairwise disjoint,

Lagrangian, ∀i,Li ∼diff L,
and [L1], · · · , [Lcdn ] are independent in Hn−1

(
Z(P ),R

)
.
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Older results in any dimensions :

I Andreotti-Frenkel 1968 : Lagrangian spheres

I Mikhalkin 2002 : Lagrangian spheres and tori

I Corollary of G-Welschinger 2014 :
√
d
n

instead of dn.

I Ancona 2022 : dn Lagrangians in Z(P ) ∩ RPn.
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The natural measure

I The Fubini-Study measure µd on Chomd [Z0, · · · , Zn] :

P =
√

(n+ d)!
∑

i0+···+in=d

ai0···in
Zi00 · · ·Zinn√
i0! · · · in!

,

where <ai0···in ,=ai0···in are i.i.d. standard normal variables.

I These monomials form an ONB for the Fubini-Study
L2-scalar product :

〈P,Q〉FS =

∫
CPn

P (Z)Q(Z)

‖Z‖2d
ωnFS
n!

.
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I Then, for any Borelian A ⊂ Chomd [Z],

µd(A) =

∫
P∈A

e
− 1

2
‖P‖2

L2(hFS)
dP

(2π)Nd
=

∫
P (a)∈A

e−
1
2
‖a‖2 da

(2π)Nd

I One can use the uniform measure over the sphere SChomd

of L2-normalized polynomials.
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Example : Let z ∈ CPn. What is the average

E [‖P (z)‖hFS
]?

By symmetries, one can assume that z = [1 : 0 : · · · : 0]. Then
the mean equals

√
(n+ d)! E

[
|a0Z

d
0 |√

d!|Z0|d

]
.

Since

E[|a0|] =

∫
a0∈C

|a0|e−
1
2
|a0|2 da0

2π
=

∫
r>0

r2e−
1
2
r2dr = 1,

we obtain
E [‖P (z)‖hFS

] ∼
d→∞

d
n
2 . �
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General Kähler framework

Let

I Xn be a compact complex manifold, and

I L→ X be an ample holomorphic line bundle equipped with

I a Hermitian metric h with positive curvature ω, that is
locally if e is a holomorphic trivialization,

ω =
1

iπ
∂∂̄ log ‖e‖h

is a Kähler form, that is for any z ∈ X, ω(z) is positive
over any complex line in TzX.
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Topology of hypersurfaces

For d� 1 and any generic s ∈ H0(X,L⊗d),

I Lefschetz :

∀i < n− 1, Hi(Z(s),R) = Hi(X,R).

I Chern :

bn−1(Z(s)) ∼
d→∞

dn
∫
X
ωn.

I Wirtinger :

vol (Z(s)) = d

∫
X ω

n

(n− 1)!
.
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In this general setting :

Theorem (S-Z) 1
dE([Z(s)]→ ω.

Theorem (G) The two random topological theorems extend
in this context.
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The natural measure

The measure µd chosen on H0(X,Ld) is the Gaussian one
associated to

I the scalar product

∀s, t ∈ H0(X,Ld), 〈s, t〉 =

∫
X
hd(s, t)

ωn

n!
.

I For any Borelian A ⊂ H0(X,Ld),

µd(A) =

∫
s∈A

e−
1
2
‖s‖2

L2
ds

(2π)Nd
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I Other saying, if (Si)1≤i≤Nd
is an ONB of

(H0(X,Ld), 〈 , 〉FS),

s =
∑
i

aiSi

where <ai0···in ,=ai0···in are i.i.d. standard normal variables.

I Again, one can use the uniform measure over SH0(X,Ld).
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Unrealistic plan of the mini-course

1. Current of integration

2. Betti numbers

3. Local representatives of the homology

4. Annexes
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Part I
The mean current of integration

Image : Barnett
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Theorem (B. Shiffman-S. Zelditch 1998) Let X, L, h, ω
and (µd)d as before. Then

1

d
E[Z(s)] →

d→∞
ω.

Proof Recall that by Poincaré-Lelong formula, for any local
holomorphic function f ,

[Z(f)] =
i

π
∂∂̄ log |f |.

Hence, for any s ∈ H0(X,Ld), if locally s = fed,

[Z(f)] =
i

π
∂∂̄ log ‖s‖hd −

i

π
∂∂̄ log ‖ed‖h

= dω +
i

π
∂∂̄ log ‖s‖hd
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Write s =
∑Nd

i=1 aiSi, where (Si)i is an ONB of H0(X,Ld). Then

E[log ‖s‖2hd ] = log
∑
i

‖Si‖2hd + E
[
log

‖s‖2∑
i ‖Si‖2

]
.

If ∀i, Si = fie
d and F = (fi)i ∈ CNd ,

E
[
log

‖s‖2∑
i ‖Si‖2

]
= E

[
log |〈a, F

‖F‖
〉|2
]

with a standard Gaussian vector in CNd . Using a rotation, this
is equal to

E
[
log |a1|2

]
which is killed by the ∂∂̄.

32/95



Hence,

1

d
E[Z(f)] = ω +

i

2πd
∂∂̄E

[
log
∑
i

‖Si‖2hd

]
.

Standard case :∑
i

‖Si‖2hd =
(n+ d)!

‖Z‖2d
∑

i0+···+in=d

|Z0|2i0 · · · |Zn|2in
i0! · · · in!

=
(n+ d)!

d!

Hence,
1

d
E[Z(f)] = ωFS . �
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General case :

1

d
E[Z(f)] = ω +

i

2πd
∂∂̄E

[
log
∑
i

‖Si‖2hd

]
.

Tian Theorem : For any x ∈ X,∑
i

‖Si(x)‖2hd = dn +O(dn−1).

Consequently weakly

1

d
E[Z(f)] →

d→∞
ω. �
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Part 2 - Betti numbers

Image : Leon Lampret
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For a generic P ∈ Chomd [Z0, · · · , Zn],

Lefschetz : ∀k 6= n− 1, bi(Z(P )) =
d→∞

O(1)

Chern : bn−1(Z(P )) ∼
d→∞

dn.

Random polynomial :

P =
√

(n+ d)!
∑

i0+···+in=d

ai0···in
Zi00 · · ·Zinn√
i0! · · · in!

,

where <ai0···in ,=ai0···in are i.i.d. standard normal variables.
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Theorem Let U ⊂ CPn be an open set with smooth boundary.
Then,

∀i 6= n− 1, E [bi(Z(P ) ∩ U)] =
d→∞

o(dn)

E [bn−1(Z(P ) ∩ U)] ∼
d→∞

dn
vol (U)

vol (CPn)
.

Theorem (Milnor). Let U ⊂ CPn be an open set defined by
polynomials. Then, there exists CU such that

2n−2∑
i=0

bi(Z(P ) ∩ U) ≤ CUd2n.
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”Proof” of Milnor’s theorem
Simplification : assume U = Bn ⊂ Rn,

P (x) = xn −Q(x1, · · · , xn−1).

Then

TxZ(P ) = vect

(
∂

∂xi
+
∂Q

∂xi

∂

∂xn

)
1≤i≤n−1

.

Let
f : Rn → R, f(x) = ‖x‖2.

Fact. For a generic P , f|Z(P ) is a Morse function, that is all
its critical points are non-degenerate, i.e the Hessian is
non-degenerate.
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Weak Morse inequalities :∑
i

bi(Z(P )) ≤ #crit(f|Z(P )).

Now

x ∈ crit(f|Z(P ))⇔


xn = Q(x1, · · · , xn−1)
∀i ≤ n− 1,

〈∇‖x‖2, ∂
∂xi

+ ∂iQ
∂
∂xn
〉 = 0.

I So, x is critical if it satisfies n algebraic equations in Rn of
degree less than deg Q.

I Van der Waerden Theorem (1949) : there exists at
most (deg Q)n solutions.

I Hence, ∑
i

bi(Z(P )) ≤ dn.

I The constant CU appears when taking in account the
boundary of U . �
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Holomorphic specificities ?

Affine real function. Let Z be a generic complex
hypersurface such that

0 ∈ crit (xn|Z).
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Then, Z is locally writes

Z = {zn =
∑
i

kiz
2
i +O(3)}.

Since

xn(z1, · · · , zn−1,
∑
i

kiz
2
i ) =

∑
i

ki(x
2
i − y2

i ),

I 0 is a critical point of xn|Z with index n− 1

I the spectrum of the Hessian is even.
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Conclusion : The Hessian of the restriction of a linear real
function on Z at a critical point has an even spectrum. In
particular, it has index n− 1.
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General function

Here : n = 2 and Z is a complex curve.

I Left, an index 1 critical point. The curve can be very
curved.

I Right, an index 2 critical point. The curve cannot be
locally very curved.

I If f is strictly (pseudo)convex, there is no index 0 critical
point.
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Revisiting Milnor’s proof

I No maximum (index 2)

I The saddle points (index 1) are favored in comparison with
minima (index 0).
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Heuristic Proposition : Statistically,

∀i < n− 1,
#Criti(f|Z(P ))

#Critn−1(f|Z(P ))
→d 0

”Proof” :

I Near [1 : 0 · · · : 0], p(z) :=
√
d!P (Z)

Zd
0

equals

a0 +
√
d

n∑
i=1

aizi + d
∑
i,j

aijzizj + etc (z
√
d).

I Then, p( z√
d
) becomes independent on d.
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I Hence, the natural scale of Z(P ) is 1√
d
.

I After rescaling by ×
√
d we should have a bounded

geometry.

I Hence statistically the curvature Z(P ) has order d.

I However critical points with large curvature have index
n− 1.

I Hence
#Criti(f|Z(P ))

#Critn−1(f|Z(P ))
→d 0, statistically. �
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Proposition Let U ⊂ X be an open set with smooth boundary.
Then,

∀i 6= n− 1, E
[
#criti(f|Z(P ) ∩ U)

]
=

d→∞
o(dn)

E
[
#critn−1(f|Z(P ) ∩ U)

]
∼

d→∞
dn

vol (U)

vol (CPn)
.
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Weak and strong Morse inequalities Let f : Z → R be a
Morse function. Then,

I (weak)
∀i, bi(Z) ≤ #criti(f)

I (strong)

∀i,
i∑

k=0

(−1)i−kbk(Z) ≥
i∑

k=0

(−1)i−k#critk(f)

Consequence :

bn−1(Z) ≥ #critn−1(f)− 2
∑
i<n−1

#criti(f).
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The Proposition for critical points and Morse inequalities
imply :

∀i 6= n− 1, E [bi(Z(s) ∩ U)] =
d→∞

o(dn)

E [bn−1(Z(s) ∩ U)] ∼
d→∞

dn
∫
U
ωn.

How do we estimate E
[
criti(f|Z(s))

]
?

With the help of Kac-Rice formula
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Simplest Kac-Rice formula

Let f : R→ R be random and U ⊂ R. Then

E [#Z(f) ∩ U ] =

∫
U
E
(
|f ′(x)| | f(x) = 0

)
φf(x)(0)dx,

where φf(x) denotes the density of f(x).

”Proof”.

I If f vanishes transversally,

#Z(f) ∩ U = lim
ε→0

1

2ε

∫
R
|f ′(x)|1|f |≤εdx,

I hence

E [#Z(f) ∩ U ] =

∫
R
E
(
|f ′(x)| lim

ε→0

1

2ε
1|f |≤ε

)
dx. �
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A friendly Kac-Rice formula

Proposition (G.-Welschinger 2015, G. 2022)

E#
(
criti(p|Z(P )) ∩ U

)
is equal to∫

x∈U

∫
α∈Lonto(TxM,Ex)

kerα⊂ker dp(x)

∣∣∣detα| ker⊥ α

∣∣∣
E
[
1{Ind (∇2p|Z(P ))=i}

∣∣∣det
(
〈∇2P (x)| kerα, ε(x, α)〉

−〈α(∇p(x)), ε(x, α)〉
∇2p(x)| kerα

‖dp(x)‖2
)∣∣∣ | P (x) = 0,∇P (x) = α

]
ρX(x)(0, α)dvol(α)dvol(x).
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How is it possible to compute such a thing ?

I General fact for Gaussian fields. Kac-Rice formula
can be expressed in terms of the sole covariance of f :

cov (f(x), f(y)) = E [f(x)f(y)]

and its (2, 2)-jet on the diagonal.

I The covariance of P ∈ Chomd [Z] or s ∈ H0(X,Ld) is the
Bergman kernel which is known to converge to a universal
covariance, after rescaling by

√
d.
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Covariance and Bergman kernel

Define the Bergman kernel

∀x, y ∈ X, kd(x, y) :=

n∑
i=1

Si(x)⊗ Si(y)∗ ∈ Ldx ⊗ Ld∗y

where for any s ∈ Ly,

∀t ∈ L, s∗(t) = hd(s, t).
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Fact. kd is the kernel of the projection :

πd : L2(X,L)→ H0(X,Ld).

Proof : For any s ∈ L2(X,Ld),

πds(x) =
∑
i

〈Si, s〉L2Si(x)

=

∫
X
kd(x, y)s(y)dvol (y). �
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Now the covariance of the random section s ∈ H0(X,Ld) is
defined by

cov (s(x), s(y)) := E[s(x)⊗ s∗(y)].

Fact :
cov(s(x), s(y)) = kd(x, y).

Proof :

E[s(x)⊗ s∗(y)] =
∑
i,j

E [aiāj ]Si(x)⊗ Sj(y)∗.

Since ai and aj are independent,

E [aiāj ] = δij ,

hence the result. �
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Propreties of the covariance :

I If x = y,

var(s(x)) = cov (s(x), s(x)) =
∑
i

‖Si(x)‖2hd .

I If s(x) is independent of s(y), the we would have

cov(s(x), s(y)) = 0.
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I Hence, the covariance measures the dependency between
s(x) and s(y).

I The intuition is that cov→ 0 when dist(x, y) becomes
large.

I The distance where cov ≈ 0 should be the natural scale of
Z(s).

Is there a simplification of the Bergman kernel when d→∞ ?
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Theorem (Tian 1988) For any x ∈ X, for any d� 1, there
exists

Sxd ∈ SH0(X,Ld),

such that
‖Sxd (y)‖hd ∼

d→∞
d

n
2 e−d‖y−x‖

2

and {s ∈ SH0(X,Ld), s(x) = 0} is asymptotically orthogonal to
Sxd .
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Corollary : The Bergman kernel has a universal limit shape
at scale 1√

d
..

Proof. Fix x ∈ X. Choose as an ONB of H0(X,Ld)

S1 = Sxd and (Si)2≤Nd
∈ (Sxd )⊥.

Then, ∑
i

‖Si(x)‖2hd ∼ d
n

and

‖kd(x, x+
y√
d

)‖hd = ‖
n∑
i=1

Si(x)⊗ Si(x+
y√
d

)∗‖hd

∼
d→∞

dn exp(−‖y‖2). �
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Standard example : X = CPn, L = O(1), h = hFS . Then,
Let x = [1 : 0... : 0]. Then

Sxd =

√
(d+ n)!

d!
Zd0 .

Indeed,
‖Sdx‖L2(FS) = 1

and pointwise

‖Sdx‖FS ∼ dn/2
1√

1 + ‖z‖2d
∼d dn/2e−

1
2
d‖z‖2 .
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Moreover (
Zi00 · · ·Zinn√
i0! · · · in!

)
i0+···+in=d

is an ONB of O(d). Hence

kd([Z], [W ]) =
1

‖W‖d
∑

i0+···+in=d

(Z0W0)i0 · · · (ZnWn)in

i0! · · · in!

=
(〈Z,W 〉)d

‖W‖d
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Hence,

‖kd‖hFS
=

(〈Z,W 〉)d

(‖Z‖‖W‖)d
.

In coordinates near [1 : 0 · · · : 0], with Z = (1, 0) and
W = (1, w1, · · · , wn), we have

‖kd(0,
w√
d

)‖hFS
=

1√
1 + ‖w‖2

d

d
∼

d→∞
exp(−‖w‖2). �
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Why dn in complex versus
√
d
n

in real ?

Since the natural scale is 1√
d
,

I Z(s) ∩Bx, 1√
d

, after rescaling ×
√
d, should look like a

uniform random Z in B(0, 1).

I So the topology should be uniform in such a ball. In
particular, the Betti numbers of Z(s) ∩Bx, 1√

d

should be

bounded.
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At least � dn disjoint small balls in X

I Since vol Bx, 1√
d

� ( 1√
d
)2n, there are around dn such balls.

I The total topology should be of order dn.
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In the real world

At least �
√
d
n

disjoint small balls in RX

I In RX, there are around
√
d
n

balls.

I The total topology should be
√
d
n
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Part 3 - Topology

Image : Lorenzo Sirigatti, 1596
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Theorem (G. 2021) Let L ⊂ Rn odd be any compact
hypersurface with χ(L) 6= 0, and U ⊂ X an open subset with
smooth bounary. Then

∃c > 0, ∀d� 1, c ≤ P
[
∃ L1, · · · ,Lcdn pairwise disjoint,

Lagrangian, ∀i,Li ∼diff L,

and [L1], · · · , [Lcdn ] are independent in Hn−1

(
Z(s) ∩ U,Z

)]
.
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At microscopical scale

Proposition. Let x ∈ X and L ⊂ Rn any compact smooth
hypersurface. Then,

∃cL > 0,∀d� 1, P [∃L′ ∼diff L,L′ and totally real |

L′ ⊂ Z(s) ∩Bx, 1√
d

,

]
≥ cL.
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Proposition implies Theorem :
By Proposition :

cvol (U)dn ≤
∑

x∈ 2√
d
Zn∩U

P
[
Z(s) ∩Bx, 1√

d

⊃ L
]

=

vol (U)dn∑
1

kP[# small balls containing L = k]

≤ c
1

2
vol (U)dnP[# balls with L ≤ c1

2
vol (U)dn]

+vol (U)dnP[# balls with L ≥ c1

2
vol (U)dn],

so that
c

2
≤ P

[
# balls with L ≥ c1

2
vol (U)dn

]
.
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Proof of the proposition in the standard case

(Based on the real proof done with J.-Y. Welschinger)

Theorem (Seifert 1936). Every compact smooth real
hypersurface L in Rn can be C1-perturbed into a component L′
of an algebraic regular hypersurface.
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By symmetry one can assume that x = [1 : 0 · · · : 0]. Recall that

Sdx := dn/2Zd0

has

1. L2 norm ' 1

2. is exponentially concentrated near x at scale 1√
d
.

3. On B(x, 1√
d
),

Sdx �d d
n
2 .
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By Seifert Theorem, let p ∈ R[x1, · · · , xn] be such that

1. p vanishes transversally onto Σ := Z(p) ∩ B ⊂ Cn.

2. Σ ∩ Rn contains a diffeomorphic copy of L ;

3. L is Lagrangian, hence totally real.
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Z(p) and Z(P )

For i ≥ 1, let zi = Zi
Z0

, and define :

P := p(z
√
d)Sdx.

Then

1. ‖P‖L2 � 1 since Sdx has an exponential decay against a
polynome.

2. P vanishes along Σ′ ∼ Σ, containing L′ ∼diff L (and other
things) in Bx, 1√

d

, and L′ is totally real.
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Now a random Q ∈ Chomd [Z] can be written as

Q = aP +R,

with
a ∼ NC(0, 1) and R ∈ P⊥ ⊂ Chomd [Z]

taken at random for the restriction of the Gaussian law on the
hyperplane R⊥. Then a and R are independent.
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Intuitive fact : If R is C1-small compared to aP , then

1. Z(Q) ∩Bx, 1√
d

∼diff Σ ⊃ L′ ∼diff L ;

2. L′ remains totally real.
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Making the intuition quantitative :
Second, we saw in the introduction that

E [‖R(x)‖FS ] ∼d d
n
2 .

Since the scale is 1√
d
,

E

max
B

x, 1√
d

‖R‖FS

 �d dn
2 .

Again because of 1√
d

scale,

E

max
B

x, 1√
d

1√
d
‖∇R‖FS

 �d dn
2 .

76/95



Since p vanishes transversally, there exists ε > 0, tel que

∀z ∈ B, |p(z)| < ε⇒ |dp(z)| > ε.

This implies that on Bx,1
√
d,

|P | < εdn/2 ⇒ |∇P | > ε
√
ddn/2.

Ehresmann Theorem : For any M > 0,{
|a| ≥ M

(‖R‖+ 1√
d
‖∇R‖)L∞(B

x, 1√
d

) < M
2 εd

n
2

implies that
Z(f) ∩Bx, 1√

d

∼diff Σ

with Σ ⊃ L′ ∼diff L and L′ totally real.
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Hence, P[Z(Q) ∩Bx, 1√
d

∼ Σ] is larger than

P[|a| > M ] P
[
‖R‖L∞ and

1√
d
‖∇R‖L∞ <

M

4
εd

n
2

]
.

Markov inequality : P[X > m] < EX
m .

Hence,

P
[
‖R‖L∞ >

M

4
εd

n
2

]
≤ 4

E‖R‖L∞
Mεdn/2

�
d→∞

4

Mε
.

Same for 1√
d
‖∇R‖L∞ .
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Hence,

P[Z(Q) ∩Bx, 1√
d

∼ Σ] ≥ e−M2
(1− 8

Mε
).

Hence, for M = 16
ε , we obtain a uniform positive probability. �

For the Theorem, it remains to prove that totally real implies
non trivial homology
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Totally reality and homology

Facts : If L ⊂ (Z, J) is totally real, then

I JTL ∩ TL = {0}, so that

NL ∼ TL.

I If moreover χ(L) 6= 0 then

0 6= [L] ∈ Hn−1(Z).

Proof : for L orientable,

χ(L) = #{ zeros of a tangent vector field with signs}.
= #{ zeros of a normal vector field with signs}
= [L] · [L]. �
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I If L1, · · · ,Lk are disjoint totally real submanifolds with
χ(Li) 6= 0, then they form an independent family.

Proof : Assume that

k∑
i=1

λi[Li] = 0.

Intersecting with Lj gives

λj [Lj ]2 = 0

so that ∀j, λj = 0 �.
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See the annex for the general proof (for X,L, h, ω).
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Annexes

1. An open question : holomorphic percolation

2. A proof in the general setting

3. Peak sections
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Bonus : holomorphic percolation

Let P as before, U ⊂ CP 2 a ball, V ⊂ ∂U and W ⊂ ∂U two
open subsets of the sphere, whose adherence are disjoint.
Conjecture. There exists c > 0, such that for d large enough,

P(∃ a c. c. of Z(P ) ∩ U intersecting V and W ) > c.

I Prove in real in R2 by G.-Beffara

I and in RP 2 by Belyaev-Muirhead-Wigman.
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Proof of the Proposition

I Let p ∈ R[x1, · · · , xn] such that Z(p) ⊂ Rn contains a
diffeomorphic copy of L and vanishing transversally.

I Fix x ∈ X and let Sdx be a peak section at x for Ld.

I Let
χ : X → R

be a cut-off function, that is χ = 1 in the ball B(x, δ) and
χ = 0 oustide B(x, 2δ), where δ > 0 is small enough.

I Then,
sx := χp(z

√
d)Sdx(z) ∈ C∞(X,Ld)

is holomorphic over B(x, δ) and vanishes along L′ ∼diff L
(and other things).

I Since L′ ⊂ Rn in complex coordinates, it is totally real.
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Hörmander theorem : There exist C > 0 depending only on
(X,L, h), and u ∈ C∞(X,Ld), such that

σx := sx + u ∈ H0(X,Ld)

and
‖u‖L2(hd) ≤ C‖∂̄sx‖L2(hd).

However

‖∂̄sx‖hd = |∂̄χ|‖Sxd1{|z|>δ}‖hd
≤ C exp(−dδ2).

Since u is holomorphic in Bx, 1√
d

, u
Sx
d

is a holomorphic function,

and by the mean inequality,

‖ u
Sxd
‖L∞(B

x, 1√
d

) ≤ dnC exp(−dδ2).
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Now a random s ∈ H0(X,Ld) can be written as

s = a
σx

‖σx‖L2(hd)
+ τ,

with
a ∼ NC(0, 1) and τ ∈ σ⊥x ⊂ H0(X,Ld)

taken at random for the restriction of the Gaussian law. Then a
and τ are independent.

Intuitive fact : If τ is C1-small compared to a σx
‖σx‖L2(hd)

, then

Z(s) ∩Bx, 1√
d

⊃ L′ ∼diff L,

and L′ is totally real.
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Making the intuition quantitative : First,

‖σx‖2L2 �
d→∞

∫
B(0, log d√

d
)
|p(z
√
d)|2e−d‖z‖2dz

∼d d−n
∫
Cn

|p|2e−|z|2dz.
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Second, writing over Bx, 1√
d

s = fSdx and τ = gSdx,

we have
f � ap(z

√
d)d

n
2 + g.

Since p vanishes transversally, there exists ε > 0, tel que

∀z ∈ Bx, 1√
d

, |p(z
√
d)| < ε⇒ |d(p(z

√
d))| > ε

√
d.
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Ehresmann Theorem : For any M > 0,

{
|a| ≥ M

(‖g‖+ 1√
d
‖dg‖)B

x, 1√
d

< Mε
2 d

n
2 ⇒ Z(f) ∩Bx, 1√

d

∼ Σ.

Now, since g is holomorphic, |g|2 is plurisubharmonic so that

|g(z)|2 ≤ 1

volBx, 2√
d

∫
B

x, 2√
d

|g|2dvol

≤ e4

volBx, 2√
d

∫
B

x, 2√
d

‖τ‖2hddvol
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This implies that

E|g(z)|2 ≤ C maxE‖τ‖2hd

Let (Si)i=1,··· ,Nd
be an orthonormal basis of H0(X,Ld). Then,

E‖τ‖2hd =
∑
i

‖Si‖2hd .

Theorem (Tian 1988) : For any x ∈ X,∑
i

‖Si(x)‖2hd = dn +O(dn−1).
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Markov inequality : P[X > m] < EX
m .

Hence,

P[|g| > M

4
εd

n
2 ] ≤ 4C

E‖τ‖2hd
M2ε2dn

∼
d→∞

4C

M2ε2
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Hence,

P[Z(s) ∩Bx, 1√
d

∼ Σ] ≥ P[|a| > M ]

P[|g| < M

4
εd

n
2 and

|dg| < M

4
εd

n
2

√
d]

≥ e−M
2
(1− 8C

M2ε2
).

Hence, for M2 = 8C
ε2
, we obtain a uniform positive probability.

Lastly, L ⊂ Σ ∩ Rn is totally real, that is TL ∩ iTL = {0} (it is
even Lagrangian). Hence, after C1 perturbation, its copy
L′ ⊂ Z(s) remains totally real.
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Existence of a peak section

Proposition (Existence of a local peak section) For any
x ∈ X, there exists a local holomorophic trivizalization Sx of L
such that

‖Sx(z)‖h = exp
(
−‖z‖2 +O(‖z‖3)

)
Let x ∈ X and ex be a local trivialization.
Proof. Let ex any local trivialization and write

‖ex‖h = exp(−ϕ),

where ϕ is a plurisubharmonic function satisfying

i∂∂̄ϕ = ω.

94/95



The Taylor expansion of ϕ at x writes

ϕ(x+ z) = <Q(z) +
∑
i,j

∂2
zizjϕ(x)zizj +O(‖z‖3),

where
Q(z) = ϕ(x) +

∑
j

∂zjϕzj +
∑
i,j

∂2
zizjϕzizj ,

so that
‖exeϕ(x)+Q(z)‖ ≤ exp(−‖z‖2gω),

where gω is the metric associated to ω(x). �

Proof of the first part of Tian’s theorem.
Hörmander estimate for Sdx, as above. �
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