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ABSTRACT. Prequantum dynamics was introduced in the 70s by Kostant, Sou-
riau and Kirillov as an intermediate between classical and quantum dynam-
ics. In common with the classical dynamics, prequantum dynamics transports
functions on phase space, but adds some phases which are important in quan-
tum interference effects. In the case of hyperbolic dynamical systems, it is
believed that the study of the prequantum dynamics will give a better under-
standing of the quantum interference effects for large time, and of their sta-
tistical properties. We consider a linear hyperbolic map M in SL(2,Z) which
generates a chaotic dynamical system on the torus. The dynamics is lifted to
a prequantum fiber bundle. This gives a unitary prequantum (partially hyper-
bolic) map. We calculate its resonances and show that they are related to the
quantum eigenvalues. A remarkable consequence is that quantum dynamics
emerges from long-term behavior of prequantum dynamics. We present trace
formulas, and discuss perspectives of this approach in the nonlinear case.
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1. INTRODUCTION

Quantum chaos is the study of wave dynamics (quantum dynamics) and its
spectral properties, in the limit of small wavelength, when in this limit, the cor-
responding classical dynamical system is chaotic [19]. This limit is also denoted
by ~ → 0, and called the semiclassical limit. The usual mathematical models
to study quantum chaos are models of hyperbolic dynamics, because there, the
classical chaotic features are important and quite well understood (mixing, ex-
ponential decay of correlations, central limit theorem for observables, etc.) [7,
21]. On the quantum side, semiclassical formulas like the Gutzwiller trace for-
mula (resp. the Van-Vleck formula) give descriptions of the quantum spectrum
(resp. the description of the wave evolution) in the semiclassical limit, in terms of
sum of complex amplitudes along different classical trajectories. One important
problem in quantum chaos is that these semiclassical formulas are mathemat-
ically proved only for moderate time (versus ~→ 0), whereas some numerical
experiments suggest that they could be valid for much larger time, like t ' 1/~α,
α > 0 [31, 10]1, and a lot of work in the physics literature of quantum chaos is
based on this last hypothesis ([11] for example). The main difficulty to prove this
hypothesis is related to the fact that the number of classical trajectories which
enter in the semiclassical formulas increases exponentially fast with time, like
eλt , where λ is the Lyapunov exponent, and this makes it difficult to control the
error terms.

For large time the structure described by the classical orbits in phase space
is much finer than the Planck cells.2 The validity of the semiclassical formulas
could be due to some average effects in the sum of the huge number of complex
amplitudes, at the scale of the Planck cells. One goal is to justify and understand
this averaging process.

It is known that classical hyperbolic dynamical systems have trace formulas
which are exact, even in nonlinear cases, [4, page 97], [15]. These trace formulas
give the trace of the so-called regularized transfer operator, in terms of periodic
orbits. The eigenvalues of the regularized transfer operator are called Ruelle–
Pollicott resonances and are useful to describe convergence towards equilibrium
and the decay of time-correlation functions in hyperbolic dynamical systems. A

1In [13], we show the validity of semiclassical formulas for time large as t 'C log(1/~), for any
C > 0, for a quantized hyperbolic nonlinear map on the torus.

2Planck cells are the “best resolution” of phase space made by quantum mechanics at the scale
~. The limitation is due to the uncertainty principle.
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remarkable result in this theory, and which could be useful to exploit in quan-
tum chaos, is the exactness of these trace formulas. As these formulas involve a
sum over classical orbits, they can be interpreted as an averaging process over
these orbits. We hope to be able to extend this formalism of classical dynami-
cal systems to the semiclassical setting, in order to better control the averaging
process between complex amplitudes for large time, and possibly to suggest an
appropriate statistical approach for quantum chaos.

To follow this program we have to find a classical transfer operator whose
trace formula is the semiclassical trace formula, and then be able to compare (in
the operator norm) this transfer operator with the quantum evolution operator,
in order to prove the validity of the semiclassical trace formulas for the quantum
dynamics. This paper is a first step towards this objective. We propose here such
an operator, and perform its study for a particular hyperbolic dynamical system,
namely a linear hyperbolic map on the torus. However the objective is not yet
reached because linear hyperbolic maps are very particular and the semiclassi-
cal trace formulas are already exact. The aforementioned problem is therefore
not fully present in this paper, but it is the main motivation for this work, and
we think that this analysis can be extended to the nonlinear case and will then
reveal its interest.

The transfer operator we propose is the prequantum evolution operator. The
prequantum dynamics is a natural dynamics at the border between classical and
quantum dynamics. Similarly to the classical dynamics, prequantum dynamics
transports functions on phase space (more precisely sections of a bundle), but
introduces some complex phases which are determined by the actions of the
classical trajectories. These phases are known to govern interference phenom-
ena which are characteristic of wave dynamics and quantum dynamics. How-
ever, the difference from quantum dynamics is that there is no uncertainty prin-
ciple in prequantum dynamics, and this simplifies its study in an essential way.
The uncertainty principle (which is mathematically introduced by the choice
of a complex polarization, or a complex structure on phase space, see Section
3.6), introduces a cutoff in phase space at the scale of the Planck constant ~.
One consequence of the absence of this cutoff in the prequantum setting is that
the prequantum formulas are exact. Another consequence is that the prequan-
tum Hilbert space is much larger than the quantum one, and the hyperbolic-
ity hypothesis on the dynamics implies that the prequantum wave functions es-
cape towards finer and finer scales. This escape of the prequantum wave func-
tion from macroscopic scales towards microscopic scales for large time is de-
scribed by a discrete set of “prequantum resonances”. Another way to say this
is that the prequantum resonances describe the time decay of correlations be-
tween smooth prequantum functions. The biggest prequantum resonance(s)
(i.e., those with greatest modulus) dominate for long time and describe the part
of the prequantum wave functions which remain at the macroscopic scale (i.e.,
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at a scale larger than the Planck cells ~). We therefore expect a general rela-
tion between these outer prequantum resonances and the quantum eigenvalues
which describe the quantum wave evolution.

The role of the prequantum dynamics and the corresponding trace formulas
for quantum dynamics has already been suggested by many authors [27, 10, 30],
in particular V. Guillemin in [18, page 504].

In this paper, starting from a linear hyperbolic map on the torus, we show
how to define the hyperbolic prequantum map on the torus and establish a rela-
tion between the discrete resonance spectrum of the prequantum map and the
discrete spectrum of the quantum map, see Theorem 1 on page 259. In the con-
clusion, we discuss some perspectives.

2. STATEMENT OF THE RESULTS

In this section we state the main result of this paper, and discuss some con-
sequences. In the next sections, we will give precise definitions and recall the
basics of the prequantum dynamics.

2.1. Prequantum resonances and quantum eigenvalues. Let M : T2 →T2 be a
hyperbolic linear map on T2 = R2/Z2, i.e., M ∈ SL(2,Z), TrM > 2. This map is
Anosov (uniformly hyperbolic), with strong chaotic properties, such as ergodic-
ity and mixing, see [21, p. 154].

The prequantum line bundle L is a Hermitian complex line bundle over T2,
with constant curvature Θ = i 2πNω, where ω = d q ∧d p is the symplectic two-
form on T2 and N ∈ N∗ is the Chern index of the line bundle. N is related to
~ by N = 1/(2π~). The prequantum Hilbert space is the space H̃N := L2 (L) of
L2 sections of L. Note that H̃N is infinite-dimensional. The prequantum dy-
namics is a lift of the map M to the bundle L that preserves the connection. This
prequantum dynamics induces a transport of sections, and defines a unitary op-
erator acting on H̃N called prequantum map M̃ . (In the following sections, this
operator will be denoted by M̃N ).

The quantum Hilbert space HN is the space of antiholomorphic sections of L
(after the introduction of a complex structure on T2). Contrary to the prequan-
tum case, HN is finite-dimensional, and dimHN = N from the Riemann–Roch
Theorem. The quantum map M̂ is obtained by Weyl quantization of M . It is a
unitary operator acting on HN [20, 22, 9]. The quantum spectrum is the set of
the eigenvalues of M̂ denoted by exp

(
iϕk

)
, k = 1, . . . , N .

Classical resonances. We first review the concept of time correlation functions
and Ruelle–Pollicott resonances for the classical map M . These concepts give a
fruitful approach to the study of chaotic properties of classical dynamics, such as
mixing or central limit theorem for observables, etc., see [4]. Let ϕ,φ ∈ L2

(
T2

)∩
C∞ (

T2
)
, and define the transfer operator Mclass. acting on such functions by(

Mcl assϕ
)

(x) := ϕ
(
M−1x

)
, x ∈ T2. For t ∈ N, the classical time correlation func-

tion is defined by:
Cφ,ϕ (t ) := 〈φ|M t

cl assϕ〉,
JOURNAL OF MODERN DYNAMICS VOLUME 1, NO. 2 (2007), 255–285
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where the scalar product takes place in L2
(
T2

)
. Using the Fourier decomposition

ofφ,ϕ, it is easy to show that Cφ,ϕ (t ) decreases with t faster than any exponential
(see [4, p. 226]). That is, for any κ> 0:

(1) Cφ,ϕ (t ) = 〈φ|1〉〈1|ϕ〉+o
(
e−κt ) ,

where |1〉 stands for the constant function 1, and 〈1|ϕ〉 = ∫
T2 ϕ (x)d x. Eq.(1) re-

veals the mixing property of the classical map M . In order to study quantitatively
the decay of Cφ,ϕ (t ), we introduce its Fourier transform:

C̃φ,ϕ (ω) :=
∑
t∈N

e i tωCφ,ϕ (t ) .

The classical resonances of Ruelle–Pollicott are e iω such that ω is a pole of the
meromorphic extension of C̃φ,ϕ (ω), ω ∈C. They control the decay of Cφ,ϕ (t ). In
our case, there is a simple pole e iω = 1, corresponding to the mixing property,
see Figure 1 (a). The superexponential decay implies that there are no other res-
onances. For a nonlinear hyperbolic map we expect to observe other resonances
e iω, with

∣∣e iω
∣∣< 1, see e.g., [15].

Prequantum resonances. We proceed similarly for prequantum dynamics. Given
two smooth sections ϕ̃, φ̃ ∈ L2 (L) ∩ L∞ (L), we define their prequantum time-
correlation function by

Cφ̃,ϕ̃ (t ) := 〈φ̃|M̃ t |ϕ̃〉, t ∈N
We wish to study the decay of Cφ̃,ϕ̃ (t ). The prequantum resonances of Ruelle–

Pollicott are defined as e iω such thatω is a pole of the meromorphic extension of
the Fourier transform of Cφ̃,ϕ̃ (t ). These resonances govern the decay of Cφ̃,ϕ̃ (t ).
The main result of this paper is the following theorem, illustrated by Figure 1.

THEOREM 1. Let M̃ be the prequantum map. There exists an operator B̃ , such
that

R̃ = B̃ M̃B̃−1

is defined on a dense domain of L2 (L), and such that R̃ extends uniquely to a trace
class operator in L2 (L). The eigenvalues of R̃ are the prequantum resonances and
are given by

(2) rn,k = exp
(
iϕk −λn

)
, k = 1. . . N , n ∈N

with exp
(
iϕk

)
being the eigenvalues of the quantum map M̂ (quantum eigenval-

ues), and λn = λ
(
n + 1

2

)
, with λ being the Lyapunov exponent (i.e., exp(±λ) are

the eigenvalues of M).

Figure 1 shows

(a) Ruelle–Pollicott resonances of the classical map M . The isolated value 1
traduces mixing property of the map. The absence of resonances traduces
superexponential decay of time correlation functions (See [4, page 225], or
[15] for a simple description of the classical resonances as eigenvalues of a
trace class operator).
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(a) classical resonances

0 1

(b) prequantum resonances (c) quantum spectrum

FIGURE 1. Spectra for the linear cat map with N = 1/(2π~) = 14.

(b) Resonances rn,k of the prequantum map M̃ , calculated in this paper. rn,k =
exp

(
iϕk −λ (n +1/2)

)
, k = 1. . . N , n ∈ N. There are N resonances on each

circle of radius e−λ/2e−λn , n ∈N.
(c) Eigenvalues of the quantum map M̂ : exp

(
iϕk

)
, k = 1. . . N .

REMARK. • It is easy to see that the prequantum resonances are the eigen-
values of R̃. Indeed, if ϕ̃, φ̃ ∈ H̃N = L2 (L) are sections which belong to the
domains of B̃ , B̃−1 respectively, then the time-correlation function Cφ̃,ϕ̃ (t ) :=
〈φ̃|M̃ t |ϕ̃〉, t ∈N, can be expressed using the trace class operator R̃ as

Cφ̃,ϕ̃ (t ) := 〈φ̃|M̃ t |ϕ̃〉 = (〈φ̃|B̃−1) R̃ t (
B̃ |ϕ̃〉) .

Using a spectral decomposition of R̃, we deduce that the discrete spectrum
of R̃ gives the explicit exponential decay of Cφ̃,ϕ̃ (t ), and more precisely that

the eigenvalues of R̃ are the prequantum resonances as defined above.
• The way we obtain the resonances of M̃ by conjugation with a nonunitary

operator B̃ is well-known in quantum mechanics and is called the “com-
plex scaling method” [8]. It is usually used in order to obtain the “quantum
resonances of open quantum systems”. Remind that M̃ is a unitary oper-
ator. It will appear in the paper, that it has a continuous spectrum on the
unit circle.

Sketch of the proof. The proof of Theorem 1 will be obtained in Section 4.2 page
280. The main steps in the proof is to show that the prequantum Hilbert space is
unitarily equivalent to a tensor product H̃N ≡ HN ⊗L2 (R) involving the quan-
tum Hilbert space HN and an L2 (R) space (this is Eq. (51) page 276), and then
that the prequantum operator writes M̃ ≡ M̂⊗exp

(−i N̂ /~
)
, where M̂ is the quan-

tum map acting on HN and N̂ = OpWeyl

(
λqp

)
acting on L2 (R) is the Weyl quan-

tization of a hyperbolic fixed point dynamics. It is well-known that exp
(−i N̂ /~

)

has a continuous spectrum but a discrete set of resonances exp (−λ (n +1/2)),
n ∈N. So Eq.(2) follows.

2.2. Dynamical appearance of the quantum space. For large time t , the N ex-
ternal prequantum resonances on the circle of radius exp (−λ/2) will dominate,
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and with a suitable rescaling, Cφ̃,ϕ̃ (t ) behaves for large time like quantum cor-
relation functions, i.e., matrix elements of the quantum propagator. More pre-
cisely:

PROPOSITION 2. if φ̃,ϕ̃ ∈ H̃N are prequantum wave functions, let us define φ =
Π̂B̃−1φ̃, ϕ = Π̂B̃ϕ̃, where Π̂ = H̃N → HN is the orthogonal projector called the
Toeplitz projector (this requires φ̃,ϕ̃ to have suitable regularity so that they belong
to the corresponding domains). Then for large time t

〈φ̃|M̃ t |ϕ̃〉 = 〈φ|M̂ t |ϕ〉e−λt/2
(
1+O

(
e−λt

))

This means that quantum dynamics emerges as the long-term behavior of pre-
quantum dynamics.

The proof is given in Section 4.3 on page 281.
Let us comment on Theorem 1 and Proposition 2. It is remarkable that the ex-

terior circle of prequantum resonances is identified with the quantum eigenval-
ues. So the (generalized) eigenspace associated with these resonances is equiv-
alent to the quantum space. This unitary isomorphism appears explicitly in
the proof of the theorem. In some sense, and this is what Proposition 2 shows,
the quantum space appears dynamically under the prequantum dynamics, and
corresponds to “long lived” states. In this way the quantum dynamics appears
here without any quantization procedure, but by the prequantum dynamics it-
self (which is itself a natural extension of the classical dynamics as a lift to a line
bundle).

2.3. Trace formulas. As usual with transfer operators, trace formulas express
the trace of a regularized transfer operator in terms of periodic orbits. The pre-
quantum unitary operator M̃ is not trace class, so the trace formula expresses
the trace of R̃ t which is trace class. What is particular to prequantum dynamics
(compared to classical dynamics), is the appearance of complex phases, related
to the classical actions of the periodic orbits.

PROPOSITION 3. For t ∈N∗, the trace formula for the prequantum dynamics ex-
presses the trace of R̃ t in terms of periodic points of M on T2 of period t :

(3) Tr
(
R̃ t )=

∑
x≡M t x [Z2]

1∣∣det
(
1−M t

)∣∣e i Ax,t /~

where Ax,t = ∮ 1
2

(
qd p −pd q

)+ Hd t is the classical action of the periodic orbit

starting from x = (
q, p

)
, and

∣∣det
(
1−M t

)∣∣−1 = (
eλt/2 −e−λt/2

)−2
is related to its

instability. More explicitly, for a periodic point characterized by x = (
q, p

) ∈ R2

and M t x = x +n, n ∈Z2, we have Ax,t = 1
2 n ∧x.

The proof of Proposition 3 is given in Section 4.4, and follows the usual pro-
cedure to obtain a trace formula for transfer operators ([4, page 103] or [15]).
The idea is to use the fact that the prequantum dynamics is a lift of the classical
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transport with additional phases, and therefore use the Schwartz kernel of M̃ .
Formally we write:
(4)

Tr[
(
M̃ t )=

∫

T2
d x〈x|M̃ t |x〉 =

∫

T2
d xδ

(
M t x −x

)
e i

Ax,t
~ =

∑
x=M t x

1∣∣det
(
1−M t

)∣∣e i
Ax,t
~

This short calculation is made rigorous in the proof of Proposition 3 page 281,
using a suitable regularization.

Relation with the quantum trace formula.

COROLLARY 4. From Eq.(2), we deduce a relation between traces of operators. For
t ∈Z,

(5) Tr
(
M̂ t )=

√∣∣det
(
1−M t

)∣∣Tr
(
R̃ t ) ,

and from Eq.(3),

(6) Tr
(
M̂ t )=

∑
x=M t x

1√∣∣det
(
1−M t

)∣∣
e i Ax,t /~.

Proof. We have Tr
(
M̂ t

)=∑N
k=1 e iϕk , Tr

(
R̃ t

)=∑N
k=1

∑
n≥0 e iϕk−λn and

∑
n≥0 e−λn t =

∑
n≥0 e−λ

(
n+ 1

2

)
t = (

eλt/2 −e−λt/2
)−1

, and finally
√∣∣det

(
1−M t

)∣∣= (
eλt/2 −e−λt/2

)
.

REMARK. • Formula Eq.(6) can be proved directly, see e.g., [22].
• It is important to realize that the trace formula for the quantum operator

Eq.(6) is exact in our case, because we consider a linear hyperbolic map
M . For a nonlinear map we expect that the trace formula for the prequan-
tum map would still be exact, whereas there is no longer an exact trace
formula for the quantum operator. What is known are semiclassical trace
formulas that give Tr

(
M̂ t

)
in the limit N →∞, but for relatively short time:

t = O
(
log N

)
, see [13]. We give more comments on these trace formulas in

the conclusion of this paper.

3. PREQUANTUM DYNAMICS ON R2

In this section we recall the basics of prequantization on the euclidean phase
space R2. We will need this material in the next section. This is well-known, see
[35], or [5] for an introduction to geometric quantization on more general phase
spaces, i.e., Kähler manifolds.

3.1. Hamiltonian dynamics. We first start with a classical Hamiltonian flow. We
consider the phase space R2 and write x = (

q, p
) ∈ R2. The symplectic two-form

isω= d q∧d p. A real-valued Hamiltonian function H ∈C∞ (
R2

)
defines a Hamil-

tonian vector field XH by ω (XH , ·) = d H and given explicitly by

(7) XH =
(
∂H

∂p

)
∂

∂q
−

(
∂H

∂q

)
∂

∂p
.
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The Poisson bracket of f , g ∈ C∞ (
R2

)
is

{
f , g

} = ω
(
X f , Xg

) = Xg
(

f
) = −X f

(
g
)
.

The vector field XH generates a Hamiltonian flow φt : R2 → R2, t ∈ R. Explicitly,(
q (t ) , p (t )

) = φt
(
q (0) , p (0)

)
, if d q

d t = ∂H
∂p , d p

d t = −∂H
∂q . The flow transports func-

tions: the action of φt on f ∈C∞ (
R2

)
is defined by ft := (

f ◦φ−t
) ∈C∞ (

R2
)
. The

corresponding evolution equation is d ft

d t = {
H , ft

}=−XH
(

ft
)
. In order to explain

the introduction of the prequantum operator below, we rewrite this last equation
as

(8)
d ft

d t
=− i

~
(−i~XH ) ft

where ~> 0. A complex-valued function f ∈C∞ (
R2

)
can be seen as a section of

the trivial bundle R2 ×C over R2. Prequantum dynamics, which we will define
now, is a generalization of the transport of ft but for sections of a nonflat bundle
over R2.

3.2. The prequantum line bundle. We introduce ~> 0, called the “Planck con-
stant” and consider a Hermitian complex line bundle L overR2, with a Hermitian
connection3 D . Each fiber Lx over x ∈R2 is isomorphic to C. A C∞ section s of L
is a C∞ map R2 3 x 7→ s (x) ∈ Lx . We write s ∈ A0 (L). The covariant derivative D is
an operator D : A0 (L) → A1 (L) that acts on C∞ sections of L and gives a L-valued
1-form, see Figure 2. We require

1. Leibniz’s rule: if s ∈ A0 (L) is a section of L, and f ∈C∞ (
R2

)
a function, then

D
(

f .s
)= d f ⊗ s + f .D (s).

2. If hx (·, ·) denotes the Hermitian metric in the fiber Lx , the connection D
should be compatible with h: d (h (s1, s2)) = h (Ds1, s2)+h (s1,Ds2). In other
words, if the section s follows the connection in direction X , i.e., DX s = 0,
then h (s, s) is constant in this direction, i.e., X (h(s, s)) = 0.

3. The curvature two-form of the connection is

Θ= i

~
ω

where ω = d q ∧d p is the symplectic two-form. This means that the ho-
lonomy of a closed loop surrounding a surface S ⊂ R2 is exp

(
i
∫
S ω/~

) =
exp(i 2π (A /h)), where A /h is interpreted as the number of quanta h =
2π~ contained in the area A = ∫

S ω, see Figure 3.

A section of reference. As the base space R2 is contractible, we can choose a uni-
tary global section r of L, i.e., such that |r (x)| =

√
hx (r (x) ,r (x)) = 1, for every

x ∈ R2. The section r is called the reference section and gives a trivialization of
the bundle L. We write its covariant derivative Dr = θr , where θ is a 1-form on
R2. The requirements on D above4 impose that θ = i

~η with a real one-form η

3For a general introduction to Hermitian line bundles, see [17, p. 71–77] or [34, p. 67, 77]
4The fact that θ is purely imaginary reflects the fact that the connection is compatible with

the Hermitian metric. Indeed, h (r,r ) = 1, which gives 0 = h (Dr,r )+h (r,Dr ) ⇔ 0 = Re(h (r,θr )) =
Re(θh (r,r )) = Re(θ). One requires that Θ= dθ = iω/~⇔ dη=ω.
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X : tangent vectorx

L
section s

Parallel transport
DX s

Base space R2

Fiber Lx

FIGURE 2. The covariant derivative of a section s with respect to
a tangent vector X , is DX s ∈ Lx and characterizes the infinitesi-
mal departure of the section s from the parallel transport in the
direction of X .

q

p
Phase space R2

γ

A

follows parallel transport

exp(i 2π(A /h))
holonomy

Fiber Lx(0)

γ̃ : Lift of γ

x(0)

FIGURE 3. A closed path γ is lifted in the line bundle following
the parallel transport. The holonomy of the lifted path γ̃ is equal
to the phase exp(i 2πA /h) where A is the area of the closed path
also called the classical action of γ. A /h is called the number of
quanta enclosed in γ. These phases are responsible for interfer-
ence effects in quantum dynamics (wave dynamics).

such that dη = ω. In order to simplify some expressions below, the section r is
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chosen such that5

(9) η := 1

2

(
qd p −pd q

)
,

With respect to the reference section r , any section s ∈ A0 (L) is represented
by a complex-valued function ψ on R2 defined by:

s (x) =ψ (x)r (x) , ψ (x) ∈C, x ∈R2

and |s (x)| =
√

hx (s (x) , s (x)) =
∣∣ψ (x)

∣∣√hx (r (x) ,r (x)) =
∣∣ψ (x)

∣∣.
The space of interest for us, called the prequantum Hilbert space, denoted by

L2 (L), is the space of sections of L with finite L2 norm:

(10) L2 (L) :=
{

s, ‖s‖2 =
∫

R2
d x |s (x)|2 <∞

}

∼= L2 (
R2)=

{
ψ,

∫

R2
d x

∣∣ψ (x)
∣∣2 <∞

}
, with s =ψr,

where the last unitary isomorphism is obtained by the identification s ≡ψ given
by Eq.(10). We will use this unitary isomorphism all along the paper and work
most of time with the space L2

(
R2

)
.

REMARK. If ‖s‖ = 1, the function Huss (x) = |s (x)|2 =
∣∣ψ (x)

∣∣2 is a probability
measure on phase space R2 (i.e.,

∫
R2 Huss (x)d x = ‖s‖2 = 1), and is called Husimi

distribution of the section s in the physics literature [6, 16].

3.3. The prequantum operator. The prequantum operator of Kostant–Souriau–
Kirillov acts on the Hilbert space L2 (L), Eq. (10), and is defined by

(11) PH :=−i~DXH +H ,

where D is the covariant derivative, XH is the Hamiltonian vector field in Eq.(7),
and H denotes multiplication of a section by the function H . If H is a real func-
tion and XH is complete, then PH is a self-adjoint operator (see [35, page 162]).

Writing s =ψr as in Eq.(10), we use Leibniz’s rule to write

(12) DXH (s) = DXH

(
ψr

)= dψ (XH )r +D XH (r ) =
(

XH
(
ψ

)+ i

~
η (XH )ψ

)
r

and obtain that

PH (s) =
(−i~XHψ+η (XH )ψ+Hψ

)
r = (

PHψ
)

r

so PH is isomorphic to the differential operator

(13) PH =−i~XH + (
η (XH )+H

)
,

which acts on L2
(
R2

)
. The last two terms in Eq.(11) are the multiplication oper-

ator by the function η (XH )+ H = −1
2

(
q

(
∂H
∂q

)
+p

(
∂H
∂p

))
+ H . The role of the dif-

ferential operator PH (respect. PH ) is to generate the “prequantum dynamics”,

5The geometric meaning of η, also called the symmetric gauge, is that the reference sec-
tion r follows the parallel transport along radial lines issued from the origin x = 0. Indeed
η= 1

2

(
qd p −pd q

)≡ 1
2 x ∧d x, so if X ∈ TxR

2 ≡R2 is such that x ∧X = 0, then DX r = i
~η (X )r = 0.
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i.e., the evolution of ψ (t ) ∈ L2
(
R2

)
(respect. s (t ) ∈ L2 (L)) by the “prequantum

Schrödinger equation”

(14)
dψ (t )

d t
=− i

~
PHψ (t ) ,

d s (t )

d t
=− i

~
PH s (t )

whose solution is ψ (t ) = Ũtψ (0) (respect. s (t ) = Ũt s (0)), with the unitary oper-
ator in L2

(
R2

)
:

(15) Ũt := exp

(
− i

~
PH t

)
, Ũt := exp

(
− i

~
PH t

)

It can be shown that the term H in Eq.(11) is necessary so that Ũt preserves the
connection (see [35, page 163]).

The Geometric and Dynamical phases. In this paragraph we interpret the terms
which enter in the expression of PH , Eq.(13). The reader can skip it and go di-
rectly to Section 3.4. According to Eq.(8), the first term (−i~XH ) is just respon-
sible for the transport of the function ψ along the Hamiltonian flow. The sec-
ond term η (XH ) comes from the covariant derivative in Eq.(12), and without the
third term H , it would mean that the transported section s (t ) follows parallel
transport over each trajectory x (t ). The third term H gives a departure from the
parallel transport. The last two terms together change the value of the function
ψ (t ) at point x = (

q, p
)

by the amount:

(
dψ

d t

)

(2)
≡

(
− i

~

)(
η (XH )+H

)
ψ≡

(
− i

~

)(
1

2

(
q

d p

d t
−p

d q

d t

)
+H

)
ψ.

We recognize the infinitesimal action of the trajectory, see [2]. As it is purely
imaginary, it changes the phase of the functionψ (t ). The first term related to the
parallel transport over the trajectory is called the “geometric phase” in physics
literature, whereas the second term which depends explicitly on H is called the
“dynamical phase”[29].

In order to be more precise, let x (t ) = φt (x (0)), t ∈ R, be a trajectory on base
space R2, and p (0) ∈ Lx(0) a point in the fiber over the point x (0). Let us denote
p∥ (t ) the lifted path over x (t ) which starts from p (0) and follows parallel trans-
port. Then the prequantum dynamics is the unique lifted path over x (t ) given

by p (t ) = e
−i
~

∫ t
0 H(x(s))d s p∥ (t ), i.e., with a departure from the parallel transport

given by the dynamical phase. From that point of view, prequantum dynamics is
a flow in the fiber bundle L, which will be denoted by p (t ) = φ̃t p (0). The unitary
operator Ũt defined in Eq.(15), can be expressed by

(
Ũt s

)
(x (t )) = φ̃t (s (x (0))).

If p (0) = rx(0), then p (t ) is explicitly given with respect to the reference section
rx(t ) ∈ Lx(t ) by:

(16) p (t ) = e−
i
~

∫
γdF rx(t )
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where γ : x (0) → x (t ) is the classical trajectory on the phase space R2 and dF is
the one-form on the extended phase space (x, t ) ∈R2 ×R:

(17) dF = (
η (XH )+H

)
d t = 1

2

(
qd p −pd q

)+Hd t

which is the sum of the geometrical phase plus the dynamical phase. See Figure
4. In other words, the solution ψ (t ) of Eq.(14), is given in terms of the classical
flow by:

(18)
(
Ũtψ

)
(x (t )) = e−

i
~

∫
γdFψ (x (0)) .

x(0)

p(0) = r (x(0))

q

p

Fiber Lx(t )

x(t ): classical trajectory

Phase space R2

p(t ) : prequantum trajectory

p∥(t ): parallel transport

r (x(t )): reference section

exp(iφd yn.): dynamical phase

exp(iφg eom.): geometrical phase

FIGURE 4. The prequantum dynamics is a lift of the classical
dynamics x (t ) in phase space, where the lifted path p (t ) fol-
lows the parallel transport p∥ (t ) with an additional phaseφd yn =
1
~

∫ t
0 H (x (s))d s called the dynamical phase. With respect to

the reference section r (x (t )), the parallel transport is given by
p∥ (x (t )) = e iφg eom r (x (t )), where φg eom = − 1

2~
∫ (

qd p −pd q
)

is
called the geometrical phase.

Correspondence principle. An important interest in the prequantum operators
comes from the following proposition (see [35, page 157]).

PROPOSITION 5. If f , g ∈C∞ (
R2

)
then

(19) [P f ,Pg ] = i~P{ f ,g }.

In other words, f ∈ (
C∞ (

R2
)

, {·, ·}
) 7→ P f ∈ (

L
(
Hp

)
, [·, ·]

)
is a Lie algebra ho-

momorphism. In particular, it gives the following basic commutation relation of
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quantum mechanics between position and momentum, called the “correspon-
dence principle” 6:

[
Pq ,Pp

]= i~P{q,p} = i~P1 = i~Îd.

Proof. If f , g ∈C∞ (M) then
[

X f , Xg
]=−X{ f ,g}. If β is a one-form, and X ,Y two

vector fields then X
(
β (Y )

)− Y
(
β (X )

) = dβ (X ,Y ) +β ([X ,Y ]) (see e.g., [36, p.
207]). With these two relations we deduce:

[
P f ,Pg

] = (−i~)2 [
X f , Xg

]− i~
[

X f ,η
(
Xg

)+ g
]− i~

[
η

(
X f

)+ f , Xg
]

= ~2X{ f ,g} − i~X f
(
η

(
Xg

))+ i~
{

f , g
}+ i~Xg

(
η

(
X f

))− i~
{

g , f
}

= ~2X{ f ,g} +2i~
{

f , g
}− i~

(
dη

(
X f , Xg

)+η([
X f , Xg

]))

= ~2X{ f ,g} +2i~
{

f , g
}− i~ω

(
X f , Xg

)− i~η
([

X f , Xg
])

= i~
(
−i~X{ f ,g} +2

{
f , g

}−{
f , g

}+η
(

X{ f ,g}

))
= i~P{ f ,g}

3.4. Canonical basis of operators in L2
(
R2

)
. In this section we show that the

Hilbert space L2
(
R2

)
(of prequantum sections, Eq.(10)) is an irreducible space

for a convenient Weyl–Heisenberg algebra of operators constructed with the co-
variant derivative. This will give a decomposition of the space L2

(
R2

)
useful for

later use.
We have chosen coordinates

(
q, p

) ∈ R2 on phase space. Consider the covari-
ant derivative operators respectively in the directions ∂/∂p and ∂/∂q . We denote
them by:

Q̂2 :=−i~D ∂
∂p

, P̂2 :=−i~D ∂
∂q

With the unitary isomorphism Eq.(10), we identify these operators with oper-

ators in L2
(
R2

)
. Using Eq.(12), and Eq.(9), this gives Q̂2 ≡

(
−i~ ∂

∂p +η
(
∂
∂p

))
=(

−i~ ∂
∂p + 1

2 q
)
. Similarly for P̂2. We obtain:

(20) Q̂2 ≡
(
−i~

∂

∂p

)
+ 1

2
q, P̂2 ≡

(
−i~

∂

∂q

)
− 1

2
p.

Using the well-known commutation relation
[

q,
(
−i~ ∂

∂q

)]
= i~Îd (similarly

with p), we deduce that
(
Q̂2, P̂2, Îd

)
form a Weyl–Heisenberg algebra:

[
Q̂2, P̂2

]= Îd.

In order to complete this algebra, define

(21) Q̂1 := Pq , P̂1 := Pp

6Note that P f =1 = Îd is obtained thanks to the third term in (13). f →
(
−X f

)
is also a Lie algebra

homomorphism (a more simple one), but X f =1 = 0 6= Îd.
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to be the prequantum operator for functions q and p respectively. As before,
the corresponding self-adjoint operators in L2

(
R2

)
are explicitly obtained from

Eq.(13):

(22) Q̂1 ≡−
(
−i~

∂

∂p

)
+ 1

2
q, P̂1 ≡

(
−i~

∂

∂q

)
+ 1

2
p.

We directly check (or use Eq.(19)) that
[
Q̂1, P̂1

]= i~Îd. But also
[
Q̂i , P̂ j

]= i~Îdδi j ,
[
Q̂i ,Q̂ j

]= 0,
[
P̂i , P̂ j

]= 0.

So
(
Q̂1, P̂1,Q̂2, P̂2, Îd

)
form a basis of the Weyl–Heisenberg algebra with “two de-

grees of freedom” in L2
(
R2

)
. In fact, we have obtained a new basis, from the

original basis (q,
(
−i~ ∂

∂q

)
, p,

(
−i~ ∂

∂p

)
, Îd) by a metaplectic transformation [16].

We summarize:

PROPOSITION 6. The space L2
(
R2

)
is an irreducible representation space for the

Weyl–Heisenberg algebra of operators
(
Q̂1, P̂1,Q̂2, P̂2, Îd

)
. As a consequence we

have a unitary isomorphism:

(23) L2 (
R2)∼= L2 (

R(1)
)⊗L2 (

R(2)
)

where L2
(
R(1)

)
(resp. L2

(
R(2)

)
) denotes the Hilbert space of L2 functions of one

variable f (Q1) ,Q1 ∈ R (resp. f (Q2) ,Q2 ∈ R), in which Q̂1 acts as
(
Q̂1 f

)
(Q1) =

Q1 f (Q1) and
(
P̂1 f

)
(Q1) = −i~ d f

dQ1
(Q1) (resp. for f (Q2)) . In other words, the de-

composition Eq.(23), means that ψ
(
q, p

) ∈ L2
(
R2

)
is transformed into a function

Ψ (Q1,Q2) ∈ L2
(
R(1)

)⊗L2
(
R(2)

)
, see Eq.(37) below for an explicit formula.

We will see that the decomposition of the prequantum Hilbert space Eq.(23)
plays a major role for our understanding of the prequantum dynamics.

3.5. Case of a linear Hamiltonian function. Consider the special case where H
is a linear function on R2, with v = (

vq , vp
) ∈R2:

(24) H
(
q, p

)= vq p − vp q

then XH = vq
∂
∂q +vp

∂
∂p . The Hamiltonian flow after time 1 is a translation on R2

by the vector v , and we denote it by Tv :

(25) Tv (x) := x + v.

From definition Eq.(21) and linearity of Eq.(11), we deduce that

(26) PH = vq P̂1 − vpQ̂1.

The unitary operator generated by PH after time 1 will be written:

(27) T̃v := exp

(
− i

~
PH

)
= exp

(
− i

~
(
vq P̂1 − vpQ̂1

))
.

It is the prequantum lift of the classical translation Eq.(25).
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REMARK. The prequantum operator PH , depends only on the operators Q̂1, P̂1

and not on Q̂2, P̂2. Therefore with respect to the decomposition Eq.(23), opera-
tors PH and T̃v act trivially7 in the space L2

(
R(2)

)
, i.e., can be written as

(28) T̃v = T̃ (1)
v ⊗ Îd

(2)

The operator PH restricted to the space L2
(
R(1)

)
is identical to the Weyl-quantized

operator OpWeyl (H (Q1,P1)) = vq P̂1 − vpQ̂1, see [16].

PROPOSITION 7. The prequantum translation operators satisfy the algebraic re-
lation of the Weyl–Heisenberg group: for any v, v ′ ∈R2,

(29) T̃v T̃v ′ = e−i S/~ T̃v+v ′ ,

with S = 1
2 v ∧ v ′ = 1

2

(
v1v ′

2 − v2v ′
1

)
.

Proof. There are two ways to see that. The first one (more algebraic) is to use
the explicit expression Eq.(26) of PH in terms of the operators Q̂1, P̂1 and use[
Q̂1, P̂1

]= i~ ˆI d (Weyl–Heisenberg algebra) as well as the Baker–Campbell–Haus-

dorff relation e AeB = e A+B e
1
2 [A,B ] for any operators which satisfy [A,B ] = C .Îd,

C ∈C.
The second (more geometrical) one is to consider the initial point p = rx ∈ Lx

in the fiber over x ∈R2. We want to compute the phase F obtained after a lift over
the closed triangular path x → (

x + v ′)→ ((
x + v ′)+ v

)→ x in the plane R2:

T̃ −1
v+v ′ T̃v T̃v ′

(
p

)= e−
i
~F p.

For a unique translation of v , starting at x, Eq.(24) and Eq.(17) give the phase

(30) Ftrans. =
1

2
v ∧x.

So for the closed triangular path:

F = 1

2

(
v ′∧ x

)+ 1

2

(
v ∧ (

x + v ′))+ 1

2

(−(
v + v ′)∧ (

x + v + v ′))= 1

2
v ∧ v ′.

3.6. The quantum Hilbert space. The usual Hilbert space of quantum mechan-
ics which corresponds to the phase space

(
q, p

) ∈ R2, is the space of functions
ψ

(
q
) ∈ L2 (R) [26]. The prequantum Hilbert space L2

(
R2

)
, Eq.(10), is obviously

too large. The usual procedure to construct the quantum Hilbert space from the
prequantum one in geometric quantization is to add a complex structure on the
phase space R2, called a complex polarization, which induces a holomorphic
structure on the line bundle L, and then to consider the subspace of antiholo-
morphic sections of L, (see [35, 5]). We will show below that this indeed gives the
“standard” Hilbert space of quantum wave functions ψ

(
q
)
.

7We will see in Section 3.6, that this is related to the fact that translations on R2 preserve the
complex structure of C≡R2.
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We consider the canonical complex structure J on phase space
(
q, p

) ∈R2 de-

fined by J
(
∂
∂q

)
= ∂

∂p . Then x = (
q, p

) ∈R2 is identified with z ∈C by8:

(31) z = 1p
2~

(
q + i p

)
.

The quantum Hilbert space is defined to be the space of antiholomorphic sec-
tions:

(32) H := {
section s ∈ L2 (L) /DX + s = 0, for all X + ∈ T 1,0 (C)

}
,

where the space of tangent vectors of type (1,0) (holomorphic tangent vectors)

at point x ∈R2 is spanned by X + = ∂
∂q − i ∂

∂p =
√

2
~
∂
∂z .

Characterization of the quantum Hilbert space H . Let us define the usual “an-
nihilation” and “creation” operators a2, a†

2 by:

a2 := 1p
2~

(
Q̂2 + i P̂2

)
, a†

2 := 1p
2~

(
Q̂2 − i P̂2

)

The three operators
(
a2, a†

2, ˆI d
)
, with the relation

[
a2, a†

2

]
= ˆI d , form a Cartan

basis for the Weyl–Heisenberg algebra of operators acting in the space L2
(
R(2)

)
,

which enters in the decomposition Eq.(23). Note also that the introduction of
this basis of operators is natural after the choice of the complex structure Eq.(31).

Similarly the operators
(
a1, a†

1

)
can be constructed with respect to the space

L2
(
R(1)

)
, but we will not need them. We recall that there is an orthonormal

basis9 of L2
(
R(2)

)
related to the “Harmonic Oscillator”, with vectors denoted by

|n2〉 ∈ L2
(
R(2)

)
, n2 ∈N and defined by

|02〉 ∈ Ker(a2) (one-dimensional space)

(33) a2|n2〉 =
p

n2|n2 −1〉, a†
2|n2〉 =

√
n2 +1|n2 +1〉, n2 ∈N

(
a†

2a2

)
|n2〉 = n2|n2〉

PROPOSITION 8. With the unitary isomorphism Eq.(10), a section s ∈ H (Eq.
(32)) is identified with a function ψ ∈ L2

(
R2

)
such that a2ψ = 0, but also with

the Bargmann space of antiholomorphic functions with weight e−zz/2 [6, 16]:

(34) H ∼=
{
ψ ∈ L2 (

R2) , ψ ∈ Ker (a2)
}

∼=
{
ψ ∈ L2 (

R2) /ψ
(
q, p

)= e−zz/2ϕ
(
z
)

, ϕ
(
z
)

antiholomorphic
}

: Bargmann space

8The factor 1/
p

2~ is just a matter of choice.
9This orthonormal basis has a nice physical meaning: for a free particle in configuration space

R2, with a constant magnetic field B = (2π~)−1ω, the Hamiltonian is Ĥ = 1
2

(
−i~∂/∂q − 1

2 p
)2 +

1
2

(
−i~∂/∂p + 1

2 q
)2 = 1

2 P̂ 2
2 + 1

2 Q̂2
2 = a†

2a2 + 1
2 , whose eigenspaces are L2 (

R(1)
)⊗ (C|n2〉) and eigen-

values n2 + 1
2 called Landau levels.
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With Eq.(33) and the unitary isomorphism Eq.(23), we get unitary isomorphisms10:

(36) H ∼= L2 (
R(1)

)⊗ (C|02〉) ∼= L2 (
R(1)

)

where (C|02〉) denotes the one-dimensional space Span (|02〉), and the second
isomorphism is related to the choice of a vector11 |02〉 ∈ Ker (a2).

Proof. If s =ψr , and X + = ∂
∂q − i ∂

∂p =
√

2
~
∂
∂z , then

−i~DX + s =−i~D ∂
∂q

s − i (−i~)D ∂
∂p

s = ((
P̂2 − iQ̂2

)
ψ

)
r =−i

p
2~

(
a2ψ

)
r

so DX + s = 0 ⇔ a2ψ= 0 ⇔ψ ∈ Ker(a2). We also write D X + s =−i
p

2~
(
∂ψ
∂z + 1

2 zψ
)

r ,

and DX + s = 0 ⇔ ∂ψ
∂z = −1

2 zψ⇔ ψ = e−zz/2ϕ
(
z
)
, with an antiholomorphic func-

tion ϕ
(
z
)
.

Correspondence with the usual Quantum Hilbert space L2 (R). We can make the
connection between the space H and the usual space of quantum wave func-
tions more explicit. In “standard quantum mechanics” also called “position rep-
resentation”, the quantum Hilbert space associated with the phase space

(
q, p

) ∈
R2 ≡ T ∗R consists of wave functions ϕ

(
q
) ∈ L2 (R). In this section, we show that

this space L2 (R) coincides with the space L2
(
R(1)

)
used in Eq.(36). For that pur-

pose we have to show that the map ϕ ∈ L2
(
R(1)

) → ψ ∈ H ⊂ L2
(
R2

)
coincides

with the Bargmann Transform [6] of ϕ.

PROPOSITION 9. Ifϕ ∈ L2
(
R(1)

)
, the isomorphism H ∼= L2

(
R(1)

)
in Eq.(36) is given

by ϕ ∈ L2
(
R(1)

) 7→ψ ∈H ⊂ L2
(
R2

)
, with

ψ
(
q, p

)= 1

(π~)1/4
e i qp/(2~)

∫

R
dQ1ϕ (Q1)e−iQ1p/~e−(Q1−q)2/(2~).

We recognize the Bargmann transform [6] of ϕ.

Proof. From Eq.(22),Eq.(20), we have an explicit relation between the represen-
tation of a function ψ in

(
q, p

)
variables or (Q1,Q2) variables:

(37) ψ
(
q, p

)=
∫

dQ1dQ2〈qp|Q1Q2〉Ψ (Q1,Q2)

10We can introduce an orthogonal projector in the prequantum space onto the quantum
space, called the Toeplitz projector:

Π̂ : L2 (L) →H .

With the identifications given by the unitary isomorphisms Eq.(23) and Eq.(36), Π̂ is the projector
in the space L2 (

R(1)
)⊗L2 (

R(2)
)

onto the linear subspace L2 (
R(1)

)⊗ (C|02〉), and can be written

(35) Π̂≡ Îd(1) ⊗ (|02〉〈02|)
This projector is used in geometric quantization to defined Toeplitz quantization rules, see [5].

11In geometrical terms, the complex structure J is associated to the one-dimensional space
C|02〉. More generally, the space of all possible homogeneous complex structures on R2 (which is
the hyperbolic half plane H) is identified with the so called squeezed coherent states, which are
the orbit of the space (C|02〉) under the action of the metaplectic group Mp(2,R) (generated by
quadratic functions of Q̂2, P̂2).
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with
〈qp|Q1Q2〉 := δ(

Q1 +Q2 −q
)

e i 1
2 (Q2−Q1)p/~

(which comes from 〈p0|ξp〉 = e iξp p0/~, 〈q0|q〉 = δ
(
q0 −q

)
and q = Q1 +Q2, ξp =

1
2 (Q2 −Q1)). Now if ψ ∈H , then from Eq.(36), Ψ (Q1,Q2) =ϕ (Q1)ϕ0 (Q2), where

ϕ0 (Q2) = 〈Q2|02〉 = (π~)−1/4 exp
(−Q2

2/(2~)
)
. This gives

ψ
(
q, p

) =
∫

dQ1dQ2δ
(
Q1 +Q2 −q

)
e i 1

2 (Q2−Q1)p/~ϕ (Q1)
1

(π~)1/4
exp

(
−Q2

2

2~

)

= 1

(π~)1/4
e i qp/(2~)

∫
dQ1e−iQ1p/~ϕ (Q1)exp

(
−

(
q −Q1

)2

2~

)

3.7. The case of a quadratic Hamiltonian function. We consider now the spe-
cial case where the Hamiltonian H

(
q, p

)
is a quadratic function:

(38) H
(
q, p

)= 1

2
αq2 + 1

2
βp2 +γqp, α,β,γ ∈R.

Let us denote by M ∈ SL(2,R) the flow on R2 generated by the quadratic Hamil-
tonian H after time 1 (M is a linear symplectic map).

PROPOSITION 10. With respect to the decomposition Eq.(23), the prequantum op-
erator is

(39) PH = P (1)
H ⊗ I d(2) + I d(1) ⊗P (2)

H

with

(40) P (1)
H := 1

2
αQ̂2

1 +
1

2
βP̂ 2

1 +γ
(

1

2
Q̂1P̂1 +

1

2
P̂1Q̂1

)
= Op(1)

Weyl (H) ,

which acts on L2
(
R(1)

)
, and

P (2)
H :=−1

2
αQ̂2

2 −
1

2
βP̂ 2

2 +γ
(

1

2
Q̂2P̂2 +

1

2
P̂2Q̂2

)
= Op(2)

Weyl

(
H(2)

)
,

which acts on L2
(
R(2)

)
. Here, Op(i )

Weyl, i = 1,2, means usual Weyl (symmetric)

quantization of quadratic symbols, with, respectively, (Q1,P1) or (Q2,P2). The
function

(41) H(2)
(
q, p

)
:=−1

2
αq2 − 1

2
βp2 +γqp

can be written as H(2) = −H ◦T where T
(
q, p

) = (
q,−p

)
is the “time reversal”

operation.

Proof. The Hamiltonian vector field is XH = (
γq +βp

)
∂
∂q − (

αq +γp
)
∂
∂p . We

compute then

(42) η (XH )+H = 0

so PH = −i~XH = (
γq +βp

)(−i~ ∂
∂q

)
− (
αq +γp

)(−i~ ∂
∂p

)
. Note that this means

that the prequantum transport by PH is equivalent to the Hamiltonian transport
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Eq.(8). Using Eq.(20) and Eq.(22), we deduce the expression of PH in terms of the
operators

(
Q̂i , P̂i

)
.

REMARK. • The separation of terms in Eq.(39), has the following direct con-
sequence on the prequantum dynamics. Let

M̃(1),t := exp

(
− i

~
P (1)

H t

)
, M̃(2),t := exp

(
− i

~
P (2)

H t

)

be the unitary operators acting on L2
(
R(1)

)
and L2

(
R(2)

)
respectively, and

generated by P (1)
H and P (2)

H respectively. Then the total unitary operator in
L2

(
R2

)
(the prequantum propagator) decomposes as a tensor product:

(43) M̃t := exp

(
− i

~
PH t

)
= M̃(1),t ⊗ M̃(2),t .

We will see that this tensor product is the main phenomenon which ex-
plains that the spectrum of prequantum resonances is a product of two
spectra in Eq.(2).

• Note that the prequantum evolution does not preserve the quantum Hilbert
space H ∼= L2

(
R(1)

)⊗ (C|02〉), except if |02〉 is an eigenvector of P (2)
H , i.e., if

H = 1
2α

(
q2 +p2

)
is the Harmonic oscillator. The geometrical meaning is

that the linear symplectic map M ∈ SL(2,R) does not preserve the complex
structure J except if M ∈ U(1) is a rotation.

• Spectrum of the prequantum Harmonic oscillator: With α=β= 1 and γ= 0
in Eq.(38), we obtain H = 1

2

(
q2 +p2

)
. From Eq.(39), we observe that PH

is the sum of two “quantum Harmonic oscillators in 1:(-1) resonances”, i.e.,
PH = 1

2

(
Q̂2

1 + P̂ 2
1

)− 1
2

(
Q̂2

2 + P̂ 2
2

)
. We deduce that its spectrumσ (PH ) is the set

of eigenvalues λn1,n2 = ~
(
n1 + 1

2

)−~(
n2 + 1

2

) = ~ (n1 −n2), with n1,n2 ∈ N.
So σ (PH ) = ~Z, with infinite multiplicity12.

LEMMA 11. For any v ∈ R2 one trivially has M Tv = TM v M. This conjugation
relation persists at the prequantum level:

(44) M̃ T̃v = T̃M v M̃ ,

where T̃v is defined by Eq.(26), and M̃ = exp
(− i
~PH

)
.

Proof. For any point x ∈ R2 and v ∈ R2, the linear relation M (x + v) = M (x)+
M (v) gives MTv = TM v M . Consider the initial point p = rx ∈ Lx in the fiber over
x ∈ R2. We want to compute the phase F obtained on the lifted path over the
piecewise closed path x = T −1

v M−1TM v M (x), defined by

(45) T̃ −1
v M̃−1T̃M v M̃

(
p

)= e−
i
~F p.

For a path generated by the quadratic Hamiltonian H , Eq.(17), Eq.(42) gives that
the phase is F = 0. So only the translations contribute to the phase. From Eq.(30)

12More generally it could be interesting to compute the spectrum of a prequantum operator if
the classical Hamiltonian flow is integrable.
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and Eq.(45), we obtain:

(46) F = 1

2
(M v ∧M x)− 1

2
v ∧ (x + v) = 0

using also the fact that M preserves area.

4. LINEAR CAT MAP ON THE TORUS T2

After the necessary presentation of prequantization on phase space R2, we
can now pass to the quotient T2 = R2/Z2. In this section we recall the definition
of the hyperbolic cat map on the torus T2 = R2/Z2 and present its prequantiza-
tion in the same way its quantization is usually obtained (see e.g., [20, 1, 14]).

We start from a hyperbolic map

(47) M =
(

A B
C D

)
∈ SL (2,Z)

on R2, i.e., with integer coefficients such that AD −BC = 1 and Tr(M) = A +D >
2. A simple example is the “cat map” M =

(
2 1
1 1

)
[3]. For any x ∈ R2,n ∈ Z2,

M (x +n) = M (x)+M (n) ≡ M (x) (mod 1) so M induces a map on the torusT2 =
R2/Z2 also denoted by M , which is fully chaotic.

4.1. Prequantum Hilbert space of the torus. In this paragraph, we explicitly
construct the prequantum Hilbert space H̃N associated to the torus phase space
T2, and the prequantum map M̃ ∈ End

(
H̃N

)
acting on it (respectively the quan-

tum map M̂ ∈ End(HN ) acting on the quantum Hilbert space HN ).

Prequantum and Quantum Hilbert space for the torus T2 phase space. The inte-
ger lattice Z2 ⊂ R2 is generated by the two vectors (1,0) and (0,1). We consider
the corresponding prequantum translation operators T̃1 := T̃(1,0) and T̃2 := T̃(0,1),
defined by Eq.(27), which satisfy T̃1T̃2 = e−i /~T̃2T̃1 as a result of Eq.(29). So for
special values of ~ given by:

N = 1

2π~
∈N?,

one has the property
[
T̃1, T̃2

]= 0. We assume this relation from now on.
We have seen in Eq.(28) that each operator has a trivial action in the space

L2
(
R(2)

)
entering the decomposition Eq.(23). So we will first consider their action
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in the space L2
(
R(1)

)
. Let us define the space of “periodic distributions”13:

(48) H(1),N := {
ψ ∈S ′ (R(1)

)
such that T̃1ψ=ψ, T̃2ψ=ψ}

.

Characterization of the space H(1),N .

LEMMA 12. dimH(1),N = N . An explicit orthonormal basis of H(1),N is given by
distributions

(
ϕn

)
n=0...N−1 made of a Dirac comb:

(49) ϕn (Q1) = 1p
N

∑
k∈Z

δ
(
Q1 −

( n

N
+k

))
, n = 0, . . . , N −1

Proof. First observe that the operator T̃1 = T̃(1,0) = exp
(− i
~ P̂1

) = exp
(
− ∂
∂Q1

)
on

L2
(
R(1)

)
translates functions by one unit:

(
T̃1ψ

)
(Q1) = ψ (Q1 −1), and similarly

the operator T̃2 = T̃(0,1) = exp
(− i
~

(−Q̂1
))

translates the ~−Fourier Transform by
one unit:

(
T̃2ψ̂

)
(P1) = ψ̂ (P1 −1), with ψ̂ (P1) := 1p

2π~
∫
Rψ (Q1)e−i P1Q1/~. So the

space H(1),N consists of distributionsψ (Q1) which are periodic with period one,
and such that the Fourier transform is also periodic with period one. As a re-
sult ψ (Q1) = 1p

N

∑
n∈Zψn δ (Q1 −nh) with h = 1

N = 2π~, and with components

ψn ∈ C which satisfy the periodicity relation ψn+N = ψn . So there are only N
independent components, and ψ=∑N−1

n=0 ψnϕn .

Similarly to Eq.(48), let us define the prequantum Hilbert space of the torus by:

(50) H̃N :=
{

sections s ∈ Γ∞ (L) such that T̃1s = s, T̃2s = s,
∫

[0,1]2
|s (x)|2 <∞

}

With the unitary isomorphism Eq.(23), and with Eq.(48), we can write14 15:

(51) H̃N ≡H(1),N ⊗L2 (
R(2)

)
.

13We could have given a more general presentation with a decomposition of L2 (
R(1)

)
into com-

mon eigenspaces of the operators T̃1,T̃2:

L2 (
R(1)

) =
∫ ⊕

[0,2π]2
H(1),N ,θ

d2θ

(2π)2
,

H(1),N ,θ :=
{
ψ(1) ∈S ′ (R(1)

)
such that T̃1ψ(1) = eiθ1ψ(1), T̃2ψ(1) = eiθ2ψ(1)

}

with θ = (θ1,θ2) ∈ [0,2π]2. In this paper, we only consider the space H(1),N = H(1),N ,θ=0 which
is sufficient for our purpose, and avoids more complicated notations. See [14, Section 3.2], where
this more general presentation is done.

14Note that this isomorphism gives an explicit orthonormal basis of the prequantum Hilbert
space H̃N of L2 sections of the Hermitian line bundle L over T2, which is not obvious a priori.
Namely φn,m =ϕn ⊗ψm whereϕn ,n = 1 → N , Eq.(49), is an o.n. basis of H(1),N andψm ,m ∈N is
an orthonormal basis of L2 (

R(2)
)

(for example the eigenstates of the Harmonic oscillator given in
Eq.(33)). This basis has in fact a well-known physical meaning: each space H(1),N ⊗ (

Cψm
)

is the
eigenspace for the Hamiltonian of a free particle moving on the torusT2 with a constant magnetic
field B = Nω. The corresponding eigenvalues are called the Landau levels.

15The tensor product decomposition Eq.(51) which is an important step in order to obtain
Theorem 1 can be considered as a simple (and surely well-known) result of pure representation
theory of the Heisenberg group. More precisely, let HR be the Heisenberg group and HZ be the
integral Heisenberg group. Then Eq.(51) concerns the decomposition of L2 (HR \ HZ) under the
action of HR (whose Lie algebra is represented in this paper by the operators Q̂2, P̂2, I d).
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The definition Eq.(50) is a space of sections of L → R2 that are periodic with
respect to some action of Z2. The space H̃N can be identified with the space of
L2 sections of a nontrivial line bundle L → T2 over the torus, with Chern index
N . With respect to the trivialization r the space H̃N consists of quasiperiodic
functions:

(52) H̃N ≡
{
ψ s.t. ψ (x +n) =ψ (x)e−i 2π N

2 n∧x e−i 2π N
2 n1n2 ,∀x ∈R2,∀n ∈Z2

and
∫

[0,1]2

∣∣ψ (x)
∣∣2 d x <∞

}
.

Proof. T̃n = T̃(n1,0)+(0,n2) = e i 2π N
2 n1n2 T̃(n1,0)T̃(0,n2) = e i 2π N

2 n1n2 T̃ n1
1 T̃ n2

2 by Eq.(29).

Then with Eq.(50), Eq.(30) and Eq.(18) s =ψr ∈ H̃N ⇔ {T̃n s = e i 2π N
2 n1n2 s for any

n ∈Z2} ⇔ψ (x)e−i 2π N
2 n∧x = e i 2π N

2 n1n2ψ (x +n).

In the same manner, let us define the quantum Hilbert space of the torus by:

(53) HN := {
s ∈ H̃N such that s is antiholomorphic

}
.

From Eq.(36) we have:

HN ≡H(1),N ⊗ (C|02〉) ≡H(1),N .

Note that there is a “perfect decoupling” between the antiholomorphic condi-
tion which concerns the L2

(
R(2)

)
part of the decomposition Eq.(23), and the

torus-periodicity which concerns the L2
(
R(1)

)
part.

The prequantum cat map and the quantum cat map. In order to obtain the pre-
quantum map or quantum map corresponding to M : T2 → T2 given in Eq.(47),
we have first to describe M as a Hamiltonian flow16. The hyperbolic linear map
M : R2 →R2, M ∈ SL(2,Z), can be realized as a time-1 map of a flow on R2 phase
space generated by a hyperbolic quadratic Hamiltonian function:

(54) H
(
q, p

)= 1

2
αq2 + 1

2
βp2 +γqp.

From Hamiltonian equations d q(t )/d t = ∂p H = γq +βp, d p(t )/d t = −∂q H =
−αq −γp, we deduce that the constants α,β,γ ∈ R are obtained by solving M =(

A B
C D

)
= exp

(
γ β

−α −γ
)
. The Lyapunov exponent is given byλ=

√
γ2 −αβ=

log
(

T+
p

T 2−4
2

)
, with T = Tr(M) = A+D , and gives the two eigenvalues e±λ of M .

In Section 3.7, Eq.(43), we have considered such quadratic Hamiltonian func-
tions and obtained that the prequantum map M̃ = exp

(− i
~PH

)
which is a unitary

operator acting on L2
(
R2

)≡ L2
(
R(1)

)⊗L2
(
R(2)

)
, decomposes as M̃ = M̃(1) ⊗ M̃(2).

16The reason is essentially that a map itself has not all the information necessary to define the
prequantum or quantum map in a unique way. In particular the “classical action” of the trajec-
tories are not defined a priori. If the map is obtained from a Poincaré section or a stroboscopic
section of a Hamiltonian flow, then there is less arbitrariness to (pre)quantizing it.
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LEMMA 13. If N is even, the prequantum map M̃ in L2
(
R2

)
defines in a natural

way unitary endomorphisms associated with the torus phase space:

M̃(1),N : H(1),N →H(1),N : the quantum catmap

M̃N ≡ M̃(1),N ⊗ M̃(2) : H̃N → H̃N : the prequantum catmap

Proof. Recall that the passage from the prequantum space L2
(
R2

) ≡ L2
(
R(1)

)⊗
L2

(
R(2)

)
to the torus prequantum space concerns only the L2

(
R(1)

)
part. Let us

define a projector from the space L2
(
R(1)

)
onto the space H̃(1),N by:

(55) P̃ (1) :=
∑

(n1,n2)∈Z2

T̃ n1
1 T̃ n2

2 =
∑

(n1,n2)∈Z2

T̃n ,

(we have used T̃n = T̃ n1
1 T̃ n2

2 , from Eq.(29), and the hypothesis that N is even).
The domain of P̃ (1) consists of fast decreasing sections. We extend P̃ (1) on the
whole prequantum space L2

(
R2

)≡ L2
(
R(1)

)⊗L2
(
R(2)

)
by P̃ = P̃ (1) ⊗ ˆI d (2). Using

Eq.(55) and Eq.(44), we have

M̃P̃ =
∑

n∈Z2

M̃T̃n =
∑

n∈Z2

T̃Mn M̃ =
∑

n∈Z2

T̃n M̃ = P̃ M̃

using that M is one-to-one on Z2. In particular M̃(1)P̃ (1) = P̃ (1)M̃(1). This gives a
commutative diagram:

L2 (
R(1)

)
M̃(1)−−−→ L2 (

R(1)
)

↓ P̃ (1) ↓ P̃ (1)

H(1),N M̃(1)−−−→ H(1),N ,

which means that M̃(1) induces a map denoted M̃(1),N : H(1),N → H(1),N (the
quantum map), and similarly that M̃ induces a map denoted by M̃N : H̃N → H̃N

(the prequantum map). The fact that M̃(1),N is the “usual” quantum map is be-
cause its generator is obtained by Weyl quantization in Eq.(40).

4.2. Prequantum resonances.

Spectrum of the quantum map. The spectrum of the quantum cat map, i.e., the
unitary operator M̃N ,(1) in the N -dimensional space H(1),N , is well-studied in
the literature [22, 23, 24, 25]. Let

(56) M̃N ,(1)|ψ(1),k〉 = e iϕk |ψ(1),k〉, k = 1 → N

be the eigenvectors and eigenvalues of M̃N ,(1). (See Figure 1 on page 260). The
prequantum map is the unitary map M̃N = M̃N ,(1) ⊗ M̃(2) acting on the infinite-

dimensional space H(1),N ⊗L2
(
R(2)

)
. The unitary operator M̃(2) = exp

(
− i
~P (2)

H

)

is generated by P (2)
H = OpWeyl

(
H(2)

)
, with the hyperbolic quadratic Hamiltonian

H(2) given by Eq.(41). P (2)
H has a continuous spectrum with multiplicity two,

therefore M̃(2) has a continuous spectrum on the unit circle. The spectrum of
M̃N is then obtained by a product from the spectra of M̃N ,(1) and M̃(2). The aim
of this section is to show that M̃(2) and therefore M̃N , have nevertheless a well-
defined discrete spectrum of resonances.

JOURNAL OF MODERN DYNAMICS VOLUME 1, NO. 2 (2007), 255–285



PREQUANTUM CHAOS: RESONANCES OF THE PREQUANTUM CAT MAP 279

Normal form of the operator M̃(2). We consider the operator M̃(2) = exp
(
− i
~P (2)

H

)

with P (2)
H = OpWeyl

(
H(2)

)=−1
2αQ̂2

2 − 1
2βP̂ 2

2 +
γ
2

(
Q̂2P̂2 + P̂2Q̂2

)
acting on the space

L2
(
R(2)

)
. The classical symbol H(2)

(
q, p

) = −1
2αq2 − 1

2βp2 +γqp is a hyperbolic
quadratic function on R2. Therefore, there exists a linear symplectic transforma-
tion D ∈ SL (2,R) which transforms H(2) into the hyperbolic normal form:

N = H(2) ◦D, N
(
q, p

)=λqp

with the Lyapunov exponent λ=
√
γ2 −αβ (this last quantity is the unique sym-

plectic invariant of the function H(2)).
At the operator level, there is a similar result: there is exists a metaplectic

operator (unitary operator in L2
(
R(2)

)
), given by D̂ = exp

(
−i OpWeyl (d)/~

)
(with

d
(
q, p

)
a quadratic form which generates D) such that:

(57) N̂ = D̂P (2)
H D̂−1 = OpWeyl (N ) = λ

2

(
Q̂2P̂2 + P̂2Q̂2

)
.

As a result, M̃(2) = exp
(
− i
~P (2)

H

)
= D̂−1 exp

(− i
~ N̂

)
D̂ is conjugate to the normal

form, so we can consider the operator exp
(− i
~ N̂

)
or N̂ itself, which is simpler to

handle.

Quantum resonances of the quantum hyperbolic fixed point. “Quantum reso-
nances” of N̂ = OpWeyl

(
λqp

)
are well-known. Note that with a canonical trans-

form, N
(
q, p

) = λqp is transformed to the inverted potential barrier: H (x,ξ) =
1
2ξ

2 − 1
2λ

2x2. We recall here how to define and obtain these resonances by the
complex scaling method [8]. Consider first the classical flow on

(
R2,d q ∧d p

)

generated by the hyperbolic Hamiltonian function N
(
q, p

) = λqp. The point
(0,0) is a hyperbolic fixed point, with an unstable direction

{
p = 0

}
, and a stable

direction
{

q = 0
}
. Let us introduce the quadratic “escape function”:

fα
(
q, p

)= α

2

(
p2 −q2) , α> 0

and define

f̂α := OpWeyl

(
fα

)
, Âα := exp

(
f̂α

)
.

For |α| < π/2, the domains D A := dom
(

Âα

)
and C A := dom

(
Â−1
α

)
are dense in

L2
(
R(2)

)
. One can explicitly check that they contain Gaussian wave functions.

The choice of the escape function fα is related to the property that it decreases

along the flow of N : let XN = λ
(
q ∂
∂q −p ∂

∂p

)
be the Hamiltonian vector field as-

sociated to N , then XN
(

fα
)=−αλ(

q2 +p2
)< 0 if q, p 6= 0.

LEMMA 14. For |α| < π/2, let K̂α := i
~ ÂαN̂ Â−1

α . Then K̂α is defined on a dense
domain in L2

(
R(2)

)
, and

K̂α = 1

~
λsin(2α)OpWeyl

(
1

2

(
q2 +p2)

)
+ i

~
λcos(2α)OpWeyl

(
qp

)
.
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In particular for α= π
4 ,

(58) K̂π/4 =λ
1

2~
(
q̂2 + p̂2)

is the quantum Harmonic oscillator with discrete spectrum λn =λ(
n + 1

2

)
, n ∈N.

We keep now the simple choice α=π/4, and write K̂ := K̂π/4, Â := Âπ/4.

Proof. The proof requires some standard calculation with the complexified meta-
plectic group, whose Lie algebra sp (2,R)C = sl (2,C) is generated by the three
operators OpWeyl

(
qp

)
, OpWeyl

(1
2

(
p2 −q2

))
, OpWeyl

(1
2

(
p2 +q2

))
, see [16, Chapter

4], or [33, p. 896].

COROLLARY 15. Let B̂ := ÂD̂. By a (nonunitary) conjugation, M̃(2) = exp
(
− i
~P (2)

H

)

is transformed on a dense domain into a trace class operator:

(59) R̂ := B̂ M̃(2)B̂
−1 = exp

(−K̂
)

with eigenvalues

exp(−λn) , λn :=λ
(
n + 1

2

)
, n ∈N

REMARK. • We would obtain the same result with any choice of 0 <α<π/2.
• Because R̂ is defined on a dense domain, and is a bounded operator, it

extends in a unique way to L2
(
R(2)

)
. The eigenvalues exp(−λn) are called

the “quantum resonances” of the unitary operator M̃(2). The meaning of
the operator R̂ and its eigenvalues, appears in the study of the decay of
time-correlation functions. If ϕ ∈ DC = dom

(
B̂

)
, and φ ∈ CC = dom

(
B̂−1

)

are suitable functions, then Cφ,ϕ (t ) := 〈φ|M̃ t
(2)|ϕ〉, t ∈ N, can be expressed

using R̂ as
Cφ,ϕ (t ) =

(〈φ|B̂−1) R̂ t (
B̂ |ϕ〉)

Then, the spectrum of R̂ gives the explicit exponential decay of the time-
correlation function Cφ,ϕ (t ). The decay comes from the simple fact that
there is an unstable fixed point at the origin, and therefore the wave func-
tion ϕt = M̃ t

(2)ϕ spreads along the unstable direction. This is general in
physics and mathematics [37].

Resonances of the prequantum operator. The conjugation operator B̂ = ÂD̂ has
been defined on L2

(
R(2)

)
and can be extended to the prequantum space H̃N ≡

H(1),N ⊗L2
(
R(2)

)
by B̃ := Îd(1) ⊗ B̂ . We use it to conjugate the prequantum map

M̃N = M̃(1),N ⊗ M̃(2) and deduce from Eq.(56) and Eq.(59):

THEOREM 16. The conjugated operator

(60) R̃ := B̃ M̃N B̃−1 = M̃N ,(1) ⊗ R̂

is a trace class operator in the prequantum space H̃N ≡ H(1),N ⊗L2
(
R(2)

)
, with

eigenvalues:

rn,k := exp
(
iϕk −λn

)
, λn :=λ

(
n + 1

2

)
, n ∈N, ϕk ∈ [0,2π] , k ∈ [1, N ] .
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The eigenvalues rn,k are called the resonances of the prequantum map. This
gives Theorem 1 on page 259, the main result of this paper.

4.3. Relation between prequantum time-correlation functions and quantum
evolution of wave functions. Let ϕ,φ ∈ H̃N be prequantum wave functions,
that belong respectively to the domains of B̃ and B̃−1. Let us define φ̃= Π̂B̃−1φ,
ϕ̃= Π̂B̃ϕ , where Π̂= Î1 ⊗|02〉〈02| : H̃N →H(1),N is the orthogonal Toeplitz pro-
jector. Then we have 〈φ|M̃ t

N |ϕ〉 = 〈φ|M̃ t
(1),N ⊗ M̃ t

(2)|ϕ〉, but M̃ t
(2) = B̃−1R̃ t B̃ and

R̃ t =∑
n2∈N |n2〉〈n2|exp

(−λ(
n2 + 1

2

)
t
)
.

We deduce that 〈φ|M̃ t
N |ϕ〉 = 〈φ|M̃ t

(1),N ⊗(
B̃−1|02〉〈02|B̃

) |ϕ〉e−λt/2
(
1+O

(
e−λt

))
,

hence
〈φ|M̃ t

N |ϕ〉 = 〈φ̃|M̃ t
(1),N |ϕ̃〉e−λt/2

(
1+O

(
e−λt

))

This gives Proposition 2 on page 261. Let us remark that |02〉 does not belong
to the domains of B̃ or B̃−1, but B̃ |02〉 can be interpreted as a distribution, so
〈02|B̃ |ϕ〉 makes sense even if ϕ does not belong to the domain of B̃ .

4.4. Proof of the trace formula. We prove here Proposition 3 on page 261. We
just follow the calculation of Eq.(4), but with a suitable regularization, and show
that it gives Tr

(
R̃ t

)
. We follow a calculation similar to one in [15]. This proof

does not use crucially the hypothesis that M is a linear map, so it would work for
nonlinear prequantum hyperbolic map as well.

Let us introduce a cutoff operator in the space L2
(
R(2)

)
defined in Eq. (23):

Pν := exp

(
−ν1

2

(
P̂ 2

2 +Q̂2
2

))
, ν> 0.

This operator is diagonal in the basis |n2〉 of the Harmonic oscillator, and trun-
cates high values of n2. We choose here a metaplectic operator for future con-
venience. The operator Pν is trace class, and converges strongly to the identity
for ν→ 0. Consequently, 〈Q ′

2|Pν|Q2〉→ δ
(
Q ′

2 −Q2
)

for ν→ 0 and uniformly with
respect to Q2 ∈ K ⊂ R(2) in a compact set. We extend this operator in H̃N =
H(1),N ⊗L2

(
R(2)

)
by I d(1) ⊗Pν and denote it again by Pν. Using Eq.(37) it is pos-

sible to show that 〈x ′|Pν|x〉 −→
ν→0

δ
(
x −x ′) uniformly with respect to x ∈ K ⊂ R2 in

a compact set.

LEMMA 17.
(
M̃ t

N Pν
)

is a trace class operator in H̃N for any t > 0, ν> 0, and

Tr
(
M̃ t

N Pν
) −→
ν→0

∑
x≡M t x [1]

1∣∣det
(
1−M t

)∣∣e i Ax,t /~,

where the sum is over points x ∈ [0,1[2 such that M t x = x +n, with n ∈ Z2, i.e.,
periodic points on T2. Ax,t = 1

2 n ∧ x is the “classical action” of the periodic point
x.

Proof. First M̃ t
N Pν is trace class because it is a product of a unitary and trace

class operator. Using Eq.(18) for the prequantum evolution and Dirac notations,
we write

(
M̃ tψ

)
(x) = 〈x|M̃ t |ψ〉 =ψ(

M−t x
)

e−i FM−t x,t /~ =ψ(
M−t x

)
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because since M is linear, we have shown in Eq.(42) that the phase is Fx,t = 0.
Then with |ψx,ν〉 := Pν|x〉, the operator P̃ defined in Eq.(55), and using T̃n |x〉 =
e−i 1

2~n∧x |x +n〉,

Tr
(
M̃ t

N Pν
)=

∫

]0,1[2
〈x|P̃ M̃ t Pν|x〉d x =

∫

]0,1[2
〈x|P̃ M̃ t |ψx,ν〉d x

=
∑

n∈Z2

∫

]0,1[2
e i 1

2~n∧x〈x +n|M̃ t |ψx,ν〉d x

=
∑

n∈Z2

∫

]0,1[2
e i 1

2~n∧xψx,ν
(
M−t (x +n)

)
d x

We have seen that ψx,ν
(
x ′) = 〈x ′|Pν|x〉 −→

ν→0
δ

(
x −x ′) uniformly with respect to x

in a compact set, so

Tr
(
M̃ t

N Pν
) −→
ν→0

∑
n∈Z2

∫

]0,1[2
δ

(
x −M−t (x +n)

)
e i 1

2~n∧x d x

=
∑

x≡M t x [1]

1∣∣det
(
1−M t

)∣∣e i 1
2~n∧x .

We have used a change of variable x → y = x −M−t x −M−t n, where a periodic
point x ∈]0,1[2 is specified by M t x = x +n, n ∈Z2.

LEMMA 18. Tr
(
M̃ t Pν

) −→
ν→0

Tr
(
R̃ t

)
.

Proof. We have M̃ t Pν = B̃−1R̃ t B̃Pν, so Tr
(
M̃ t Pν

)= Tr
(
R̃ t B̃PνB̃−1

)
. This involves

a product of metaplectic operators, and using a representation of SL (2,C), we
explicitly check that R̃ t B̃PνB̃−1 converges to R̃ t as ν→ 0. (Notice that for nonlin-
ear maps, this last argument would have failed, and the proof would have been
longer).

With Lemma 17 and Lemma 18 taken together, we conclude the proof of Propo-
sition 3.

5. CONCLUSION

In this paper we defined the prequantum map associated to a linear hyper-
bolic map on the torusT2, and showed that it has well-defined resonances. These
resonances form a discrete spectrum and can be explicitly expressed in terms of
the eigenvalues of the unitary quantum map. In Section 2, we discussed the in-
terpretation of this spectrum of resonances in terms of decay of time correlation
functions, and compared them with the matrix elements of the quantum map
after time t . We have also compared the trace formula for the quantum prop-
agator and for the prequantum one (the sum over its resonances) after a large
time.

We would like first to make a general remark about prequantum dynamics.
Prequantization has been well-known for many years, and it is known to be a
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beautiful theory from a geometrical point of view. Many works have studied the
geometrical aspects and shown how to define prequantization in general cases,
for example Hodge manifolds. From a mathematical perspective in dynamical
systems, prequantization is directly defined from the Hamiltonian flow, so that
it is natural to investigate its properties, for example, its spectrum. Nevertheless,
it seems that few works have yet investigated its dynamical properties and its
spectrum. This paper goes in this direction, and we would like to emphasize
that the prequantum spectrum is not only interesting by itself, but may rather be
a useful approach for semiclassical analysis, especially for quantum hyperbolic
dynamics, i.e., “quantum chaos”.

It is natural to ask if such results have been investigated for the geodesic flow
on negatively curved manifolds. In fact, in the case of cotangent phase spaces,
the prequantum bundle is trivial, and the prequantum operator can be expressed
as a classical transfer operator with a suitable weighted function. Such an oper-
ator is well-studied and it is known that the spectrum of classical resonances for
the geodesic flow on constant negative curvature is related to the spectrum of
the Laplacian which plays the role of the quantum operator (the relation can be
obtained using the Selberg zeta function [32], or by a group theory approach in
[28]).

Some interesting questions arise naturally in the framework of prequantum
chaos, similar to questions which exist in quantum chaos, namely concerning
the “semiclassical limit” N = 1/(2π~) →∞, where the curvature of the prequan-
tum bundle goes to infinity. If properly defined, one could investigate the prob-
lem of “prequantum ergodicity” or “unique prequantum ergodicity”. For exam-
ple, in [14], the existence of scarred quantum eigenfunctions has been obtained,
i.e., non-equidistributed eigenfunctions over the torus in the limit N →∞. Be-
cause of the explicit relation between quantum eigenfunctions and prequantum
resonances we have obtained, this could lead to “prequantum scarred distribu-
tions” (but this needs some correct definition). Let us remark that the Ehren-
fest time tE := 1

λ log N is known to play an important role as a characteristic time
scale in quantum chaos [12]. Its usual interpretation is the time after which a de-
tail of the size of ~, i.e., the minimum size in phase space allowed by the quantum
uncertainty principle, called the Planck cell, is exponentially amplified towards
finite size: ~eλtE ' 1. In prequantum dynamics, there is no uncertainty principle
any more because the dynamics evolves smooth sections over phase space. But
the prequantum bundle has a curvature Θ = i

~ω, and there is still the notion of
Planck cell on the torus as the elementary surface over which the curvature in-
tegral is one. Therefore the Ehrenfest time may still play an important role for
prequantum dynamics, at least in the semiclassical limit N →∞.

Perspectives in the nonlinear case. For a linear map M , we have shown that there
is an exact correspondence between the spectrum of prequantum resonances
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and the quantum spectrum. In a future work we plan to study nonlinear pre-
quantum hyperbolic map on the torus, and expect to obtain similar results17

(with possibly introducing some weight function ϕ = λ/2 in the transfer opera-
tor, where λ is the local expanding rate). We expect then that there still exists an

exact prequantum trace formula for Tr
(
R̃ t
ϕ

)
in terms of periodic orbits, similar

to Eq.(3). We hope to be able to compare the prequantum operator R̃ϕ with the
quantum operator M̂ , and possibly their spectra as we did in Eq.(2), at least in
the limit N →∞, and then deduce validity of the semiclassical Gutzwiller trace
formula and other semiclassical formula for long times. Some interesting ques-
tions would appear then, such as: does the random matrix theory apply to the
outlying prequantum spectra?
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