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Stroboscopic scattering theory:

round-trip operator F, dim F=M= 1/h; opening operator P=(MxN),
internal space: projector Q=1-PP"

'l inject a particle:

exit: PTFP
PTF(QF)P
PTF(QF)2P
PTF(QF)3P
PTF(QF)*P...
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S(¢)=P" (e ~FQJ FP
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Resonances: QFQy =e™y; e“=4; ¢=E-il'/2
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Stroboscopic scattering theory:

Qm-cl correspondence

Goal: exploit this for resonance states

Resonances:

inject a particle:
exit: PTFP
PTF(QF)P
PTF(QF)?P
PTF(QF)3P
PTF(QF)*P...

FT = S matrix

S(¢)=P" (e —FQJ FP

e“=1, g=E-il'/2




Challenge: quasi-deterministic decay
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» Nominally diverging decay rates: | 4 |=exp(Img) =0

« Resonance wave functions quasi-degenerate
(defective eigensystem)



illustration: standard map/kicked rotator

K=2 K=7.5

(classical)

Xn+1 - Xn + pn (mOd l)

pn+1 = pn +£Sin(27zxn+l) (mOdl)
T

(qm)

F o= exp[iz (m—n)? — K (cos 27 )]

nm m

K=7.5, M=1280, N=256

(b) ©

Resonances wave functions Escape zones



Classically chaotic systems (with J Tworzydto):

fractal Weyl law (see M Zworski)
— Goal: reinstate phase space rules

Mixed phase space (with M Kopp): ¥

... fractal Weyl law ...
— Goal: test character of chaotic component

Refractive escape (with J Wiersig; J Keating and M Novaes):
dielectric resonators
— Goal: generalization and

comparison to realistic systems I I




Classically chaotic systems

Resonance distribution
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Classically chaotic systems

Resonance distribution
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Try to count short-living states

A. identify short-lived deterministic dynamics in phase space

QFQy,=0 (4,=0, I} =x)

pefine 4P P=1-Q | '
trivially: Q=0 - N states on opening (P,=®P)

g 1w

semicl.: preimage: projector ?,=P,P,T

naive Weyl: dim = area/Planck= M e area
1 1

(b) ()
problem: underestimates no. of states
. . p p
reason: operator not self-adjoint,
states nonorthog., highly degenerate . - . -




B. Cure degeneracy
QFQy,’ =0 (4, =0) : consider QFQy/\"™ = A,y +y ) =y

= 2nd preimage, projector P,=P,P,T |

= 3 preimage, projector F,=P,P,"

= t%h preimage, projector B=PP, 2
e semiclassical propagation:
(QFQ)'®, =0, AP, =0 (t#5) A a |

1
C. Requires: areas A~ exp(—At) >1/M =t< Xln(M) =Ty,

Weyl: Y rank®, = M (1 g tar /)
t<tg,

—ten, [t 1-1/ At
D. Remaining states (long living): | M@ B el oc M dwell




What have we done? A semiclassical partial Schur decomposition!

®, : part of orthogonal basis U in QFQ=UTU"

where T is triangular with evals on diagonal.




Mixed phase space
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Position of leads is important; coupled islands: fast decay
Uncoupled islands: slow tunneling escape



Two accumulation regions:

M=1024(

|4|=01

e uncoupled islands
(long-living states):
just the ordinary Weyl law...

e idea: fix both upper and
lower cut-off of lifetimes

M=1280 _oermmn
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Slightly unexpected...

Time domain studies: classical part of mixed phase space
is quite unlike a fully chaotic phase space:

Power law decay oct™ vs 27
exponential decay o«cexp(—t/t,,,) - .
Origin: sticking to islands

(see eg Cristadoro/Ketzmerick PRL 08) ol /O i

Possible explanations:

a)The fractal Weyl law actually breaks down for much larger M
b)Sticking just contributes to the long-living states

c)Areas also power-law distributed?



Generalization: nonballistic escape

Applications: g-dots w/tunnel barriers, dielectric resonators

Stroboscopic scattering operator

S(¢) =R4+T'(e™ —FR)"FT

For dielectric resonators:

S(w)=-R+T(e™ —FRJ'FT

with frequency w, traversal timet=nmnA /v C(Sabine’s law),
and R, T determined by Fresnel reflection coefficients.
(n: refractive index; A: area, C: perimeter, v: velocity)

Also, M=N=dim S= w C/v t (Weyl’s law applied to the boundary)



Compare realistic resonator to random matrix theory (RMT)
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Bands of short-living states (origin: bouncing ball motion)
Requires to renormalize M and t! Here done independent from fluctuations
by using mean level spacing and decay rate of long-living states.



Summary

 Phase space rules can be resurrected by semiclassical Schur
decomposition; links fractal Weyl law to Ehrenfest time

1 vl
i/

1 ......... 1

P(IA, | > 101
7
1l
-
/ i
i
(".’
-~
P(A,1>0.7,0.4,0.1)

” ” /7 Vet
" 0 a ! 100 o0 10000
* Fractal Weyl law also exists in '[7=77 : ~
generic dynamical systems . | _,* arf T .
(mixed phase space) 0

100 1000 10000

e Stroboscopic scattering theory

succeeds to describe realistic
(autonomous) systems
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