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Two complementary viewpoints:
from ‘inside’ from ‘outside’

field S matrix ~ outgoing wave

local Green’s function ~ : :
current Imcoming wave

eigenmodes & eigenfunctions reflection & scattering phase

Unified description: scattering theory + non-Hermitian RMT

Main object: resonances = poles of S-matrix

e Universalities in open chaotic systems
e Mean resonance density, decay law & width fluctuations
e Spectral correlations

e Quasi-resonances

Application: uniform vs non-uniform absorption
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Open wave-chaotic systems Brunel

e microwave cavities / billiards
(non-integrable shape)

e ultrasonics on elastodynamic billiards

e light propagation in random media
(disorder / impurities)

e mMesoscopic guantum dots

Fluctuations in scattering observables

reflect statistics of resonance states.

delay time

e compound nuclel (interactions)
Aim Is to study their statistical properties

|
MJLU“ M U via distribution / correlation functions.

energy
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Resonance scattering Brunel

open system «~ resonances

= S poles of the scattering matrix
Scattering matrix = El‘fogrflll?é ﬁglflgffe : (dim S = M : #-channels)
1 : : :
Sres(E) =1 — VT v, with coupling amplitudes V¢
E — Heﬁ

Separation of energy scales: potential vs resonance scattering

Effective non-Hermitian Hamiltonian: (dim Heg = N : #resonances)

Hes = H — LVVT, with H' = H ~ complex eigenvalues E,, — 1T,
Mahaux, Weidenmiiller (1969); LivSic (1973)

Flux conservation (at zero absorption)
 1-iK(E)
 1+3iK(E)’

S matrix is unitary (at real £):

Sres(E) with K (E) = 3VT—1-V —reaction matrix
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Closed chaotic cavities Brunel

Statistical approach: replace H with a random operator
Wigner, Dyson (~’60); Bohigas, Giannoni, Schmidt (1984)

H taken from appropriate ensemble of random matrices «~ RMT
+ symmetry constraints on H (e.g. H' = H for time-reversal systems)

ot =g =mH" ot =H ot = H = HR
(GOE, 3=1) (GUE, 3=2) (GSE, 3=4)

Universality of spectral correlations:

In the RMT Ilimit N — oo, local fluctuations at the scale of mean level
spacing A are universal and described by those in Gaussian ensembles:

((--+)) = Const/dH(- ) exp{—NTﬁTrHQ}, dH = HdHnm

Examples: mean density (global, non-universal) and 2-point correlator (local, universal)
(p(E)) = (X, 0(E — Ep)) = =+ ImTr(g2g) = (N/7)y/1 — (E/2)?

1 — A?(p(E1)p(E2)) = Yag(w) Withw = (E2 — E1)/A  ~» enough considering E = #1122 =
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Open chaotic cavities Brunel

Heg = H — %'VVJr requires statistical assumptions on coupling amplitudes

Fixed (‘f-case’) Random (‘r-case’)
with ‘orthogonality’ condition gaussian, uncorrelated
ome ViEVE = 29,8 (VaVh) = 2(Ya/N)66m,
Verbaarschot, Weidenmudiller, Zirnbauer (1984) Sokolov, Zelevinsky (1988)
: ' . __ sabl=7a.9(F) _
Direct reaction absent: (S.;,(E)) = ¢ TegE): o=L... .M

Global E-dependence of ¢(E) not essential for local fluctuations at £ = 0
Dependence of scattering observables via transmission coefficients:

To =1~ [(Saa)® = sy With Yot = Yag(0)

Universality (model-independence): Lehmann, Saher, Sokolov, Sommers (1995)
> ‘quantum’ case of finite M (Veft = Va)
> ‘semiclassical’ case of M, N — oo with fixed m = M/N <1 (Vet = Va)

Qualitatively similar results for moderate m < 1
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Isolated resonances Brunel
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Porter-Thomas distribution appears at both v < 1 and ~ > 1 limits
Case v < 1. He = enbpm — %(VVT)nm and treat V1 as a perturbation

— B, ~ e, (GBE) and Ty ~ (VV 1), = 1P 2

Distribution of widths P(I") is a X?\M distribution

)MB/Q 1

PT) (% exp(— 22 L) with (I) = 2yM/N

— noting 4~ ~ T' gives Weisskopf width I'y,y = MTA /27

Case v > 1. ‘doorway’ representation in the eigenbasis of V' V1
Dynamical reorganization of resonance states: Sokolov, Zelevinsky (1989)

> M collective states T'.,; ~ (1 — %)27 > A
> N — M trapped states ', ~ -2y g7 &~ (2/7)M/N < A

‘Overlapping’ is weaker than ‘interference’!
Example: Absorption limit 7" — 0 and M — oo with fixed MT = 271,15/ A
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Mean resonance density Brunel
|Idea: electrostatic analogy Sommers, Crisanty, Somplinsky, Stein (1988)
— average Green’s function as a 2D field Sokolov, Zelevinsky (1988)
(2) = - (Tr——) = Rg(a.y) +iS glz.y)
2l = r — x, 15 glx,
g N T 9(,y 9(,y

e Maxwell eqs = Cauchy-Riemann for p(z, y)

=0
e ‘charge’ density: p(E,T") = —4=(92 4+ 07)®(2,Y)|s—py——1/2

‘Electrostatic’ potential ®(z, y) = (InDet[(z — Heg)T (2 — Heg) + 62])

— relation to a 2-point correlator problem

perturbative non-perturbative
‘strong’ non-Hermiticity ‘weak’ non-Hermiticity
mean-field approach SUSY calculation

det|...
(In....)) = In{(. ..)) Z = (Tt
no ‘soft’ mode saddle-point manifold appears
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Strongly overlapping resonances Brunel
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Formation of the gap I';, in the spectrum Haake et al. (1992)
Nonzero density p(x,y) = pr ¢(y) (Universal at m < 1):
- 1! Lehmann, Saher, Sokolov, Sommers (1995) -
(a) y=02 . . . (a) v=02
Redistribution of states at v ~ 1

Yer1 =1 — %ml/S’ m < 1

Yerz =14 3m1B3, m<1

density inside upper cloud

: _ 1 -
-10° | () 7=5 p(y) = Ey—n;
o I', = L' CcOrrelation length of fluctuations in scattering (# 'y 1)
- ; 2
> S-matrix correlator = \Egﬁ)e) T{éef)f) P = % ate < 1

. 2 2
> time-delay correlator = (61;:?}32 = E Lehmann, Savin, Sokolov, Sommers (1995)
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Exact GUE resultvalid atany 7,,,a =1,.... M Fyodorov, Sommers (1997)

Equivalent channels, g =2/7 — 1 > 1:

(_1)MyM—1 dM (6_gysinhy
(M) dy™ J

Ply) = ) y=nl/A

Limiting cases of isolated and many strongly overlapping resonances:

e Tx1l: theny~T < 1s0 Si“yhy ~ 1 «~ x5, (Porter-Thomas)

o M>1: P(I)=M/(2y) onlyfor sMT <y < 555
cloud 7 with upper bound — ccat7' =1
e Moldauer-Simonius relation as a consequence of y 2 tail

)= —£5,n(1-T,)

GOE result is also known Sommers, Fyodorov, Titov (1999)
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Decay law Brunel

... I1s directly related to fluctuations of the widths!

Gap in spectrum shows up as classical (exponential) decay
When (and how) does quantum (power law) decay appear?

The ‘norm-leakage’ decay function: Savin, Sokolov (1997)
P(t) = @)[${)) = F(TreMeate=iHert)

Puosed(t) =1 ~~ time-dependence is due to the openness only

Consider the eigenbasis of H.g
Her|n) = Enln)  and  (n|Heg = £, (7
(Rlm) = 8pm  but (7] # |n)T (bi-orthogonal)

— Upm = (n|/m) non-orthogonality matrix Bell, Steinberger (1959)

Express P(t¢) in terms of resonances:
P(t) = %(X UZ,e7T) + F(¥ U2, Bn=Emlte=CntTum)t/2)
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Qualitative: diagonal approximation

Py(t) = (> e tnty = [ dle 'P(T) (exact at ¢ — oo)
_ L [T/ (1;{55)2 exp[—M In(1 + LT yt))]
P(T) Semiclassical regime of M/ > 1 P(t)
strongly overlapping resonances:
formation of exponential
the gap k=MT>1 decay

Sub-gap resonances slow down decay att, = vV Mty = \/Fta = —jﬁ—T

Exact: SUSY calculation suggests

Ty t -MpO/2
tq <tp ‘Popelrn(t):e " Pclosed(t)l . lPopen(t)N t g/
(kT >1) tyy tq:tI;/ (nT)l/ ? =t {i/ T
|
classical ! quantum asymptotic
|
-MO/2 -MO/2
ty >ty R . Popen(t):(l_i_zrwt/Mﬁ) 5/ Pl)closed<t) 1 lPopen(t)N t é/
—+ , , | , -
(kT <1)  ty=1/Ty ty tq t=ty/KT tp/ T
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Consider {z,,} (GBE) and {~,,} (Porter-Thomas). Then N complex
eigenvalues depend on (M — 1)(N — %) extra parameters (angles)

M = 1 case Is special: Sokolov, Zelevinsky (1989)

P({Eny,In}) = J(..)p(
(Em—En)?+4(
> e V (Em+En)2+1(DntTm)? Lm

{ent, {1n}) Stéckmann, Seba (1998)

Tn—Cm)? . 2 — T Ei 43 X Tnlm+2 3 )
™m

€

M > 1: Arbitrary correlators derived for GUE Fyodorov, Khoruzhenko (1999)
> Determinantal structure: R, (z + %, ...,2 + 3¢) = det|K(2;, 27)]

> Example: mean density p(z,y) = | K (z, 2*)|

Universal regimes of ‘weak’ and ‘strong’ non-Hermiticity identified
> M > 1and MT > 1. Ginibre-like statistics

K(Z17 22) — p(z)e_(ﬁ/Q)P(Z”Zl—ZQP with p( ) %
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Quasi-resonances Brunel
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e Stroboscopic dynamics: map V(n + 1) = UW(n) with unitary U

Decay via sub-unitary contraction: U(n + 1) = A¥(n), A =UvV1 — 771
where 7., = 0V I, 1<n<N,1<m<M (M < N)

e Input-output signals at frequency w related by

S(w)=+vV1—7I1 — ol —7 AUT transmission coefficients 7,, < 1

Universal statistics of sub-unitary matrices Fyodorov, Sommers (2000/3)
e Physical realisation: ‘Bloch particle’ in
a constant force with periodic driving Gliick, Kolovsky, Korsch (1999)
T" = 1: Truncation of random unitary matrices Zyczkowski, Sommers (2000)
. —_»YM-1 4sM 1 _,..N
mean density p(r) = 2 12— d' la T =712 =z

N-M (M—-1) dzM 1-z
> N — oo and fixed % = m. gap and Ginibre-like correlations

> N — oo and fixed M: universal resonance-width statistics
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Finite absorption Brunel
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Modelling absorption: dissipation, exponential in time

N >>1 levels

A uniform absorption = imaginary shift £ — E + %F

absorption width

Justified here by E-dependence via Green’s function (E—Heﬂ:)—lonly:
E-H+LVVit> WWv¥h) sE—(H-LVVi)4 4L

wall

S matrix with absorption: S = S(F + ZF) — 1+2§

~ local Green’s function

R matrix (‘impedance’); K = HVHQ(
coupling strength

E—I—ZF H)ll

e Obvious effect on correlations (acquire additional e~'? in time domain)

e Nontrivial distributions of K = u — iv and S = \/re"’ derived at arbitrary
absorption and coupling (generally in GOE-GUE crossover)

Fyodorov, Savin, Sommers (2005)
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Reflection distribution: exact GOE result Brunel

UNIVERSITY

Explicit expression for the integrated probability of » = -

W(z) =~ L F(z) = [ °da’ Po(a')
- CCH [fl( )ga(w) + fo(w)gr(w) 4+ hy(w)jo(w) + hZ(w)jl(w)}w:x__l

e~ Vt/2 _
f dt\/t|t—w| (1—|—t)3/2 —e '+ %]

oo e~ Yt/2
g1(w) = f m (14¢)3/2
00 t—w| e Vt/2 _
hi(w) = [t TR [y + (1) (71-2)]

. oo 1 e~ Yt/2
n(w) = fw o Vitlt—w| VI+t

and fo(w) = [, dt(...) etc.

0 0.2 04 r 0.6 0.8 1

Perfect agreement with impedance and reflection experiments found
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Experiment: Barthelemy, Legrand, Mortessagne (2005)

e Microwave cavity at room temperature in tunneling regimes

e homogenous and inhomogeneous contribution to I'yps > escape

e complexness of modes ¢* = gﬁﬁ i T

Model: Savin, Legrand, Mortessagne (2006)

e coupling V = {A% B’ C¢} to antennas, ‘bulk’ and ‘contour’ channels
Mb ~ (X) > (X) ~/ MC ARy Heﬂ‘ = H — %(AAT a CCT) — %Fhom
e limit of weak coupling to antenna

— 1 _ AT 1 ! 1 T
S=1-idl gl A, Mg =H-3CC

o pole representation ~~» complex (biorthogonal) modes ¢% = A%|n)
1 th — V&T(Finh) (Mc > 1)

D V Savin: Statistics of qguantum resonances and fluctuations in chaotic scattering 17/18



12:42:25

Open guestions Brunel

e Within RMT:

> distribution of transmission amplitudes S,

> 4-point (and higher order) correlation functions (cross-sections)
> statistics of bi-orthogonal resonance states

> other symmetry classes (internal symmetries of H)

e Beyond RMT:

> Disordered systems in d-D

> Effects of Anderson localisation and absortion

e Semiclassics: access to the above

> resonance density? wave functions? etc...
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