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The Formal Model

Quantum system S

® Finite dimensional system, driven by Hamiltonian Hs on $s, S.t.
J(HS> — {617 T 7€d} .
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The Formal Model

Quantum system S

® Finite dimensional system, driven by Hamiltonian Hs on $s, S.t.
J(HS> — {617 T 7€d} .

Chain C of identical quantum sub-systems &. =&, k=1,2,---:

C=&+E+E+E+--

® Each & is driven by the Hamiltonian Hey, = He on $g, = He,

dim He < o0
® The chain C isdrivenby He = Hey + Heg + - - -
on H¢ Ef)gl ®57)52 & - with [ng,Hgk] = O, \V/j,k.
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The Formal Model

Quantum system S

® Finite dimensional system, driven by Hamiltonian Hs on $s, S.t.
J(HS> — {617 T 7€d} .

Chain C of identical quantum sub-systems &. =&, k=1,2,---:

C=&+E+E+E+--

® FEach & is driven by the Hamiltonian Hgj,, = He on ¢, = He,

dim He < o0
® The chain C isdrivenby He = Hey + Heg + - - -
on H¢ Ef)gl ®57)52 & - with [ng,Hgk] = O, \V/j,k.

Fermionic reservoir ‘R :

® o -ly extended gas of indep. fermions at temperature 3, driven by ” Hzr”

79 79
on "Hr”.
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The Formal Model

Complete system S+ R +C

® Formal Hilbert space s @ "Hr” ® He
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The Formal Model

Complete system S+ R +C

® Formal Hilbert space s @ "Hr” ® He

Interaction S — C

® |Vse operatoron Hs @ Ne, , k=1,2,---

Interaction S — R

® Vs operatoron Hs R7HR".
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The Formal Model

Complete system S+ R +C

® Formal Hilbert space s @ "Hr” ® He

Interaction S — C

® |Vse operatoron Hs @ Ne, , k=1,2,---

Interaction S — R

® Vs operatoron Hs R 7HR".

Evolution Let 7 > 0 be a duration, A\ = (Ag, \¢) € R? be couplings
Fort=(m—-1)t+s, 0<s<rT,
® S, R and &, aredrivenby Hs +"HRr” + Hg + ArWsr + AeWse
® £, evolve freely with He, Vk #m
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Leaky Repeated Interactions Quantum Systems

Pictorially
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Leaky Repeated Interactions Quantum Systems

Pictorially

k.

Wsr 7 7

t € |1, 27|
WsE {

OROROROROM
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Leaky Repeated Interactions Quantum Systems

Pictorially

k.

Wsr 7 7

t € 27,37

W Wse

OROROROROM
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Leaky Repeated Interactions Quantum Systems

Pictorially

t € 37, 47|

S W

OROROROROM
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Questions about Open Quantum Systems

Large times asymptotics

Let A =Asr®Ic € B(Hs R7HR” ® Hc) be an observable on actingon S + R
Let o*(A) be its Heisenberg evolution (yet to be defined), at time ¢t = mr
Let p: B(Hs ®"Hr” ® He) — C be a state (“density matrix”) on observables
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Questions about Open Quantum Systems

Large times asymptotics

Let A =Asr®Ic € B(Hs R7HR” ® Hc) be an observable on actingon S + R
Let o*(A) be its Heisenberg evolution (yet to be defined), at time ¢t = mr
Let p: B(Hs ®"Hr” ® He) — C be a state (“density matrix”) on observables

® Existence of asymptotic behavior of lim,, .o poa™ (A) ?
Dependence of an asympt. state on the initial state p ?
Dependence of an asympt. state on the coupling constants A = (Ag, \g) ?

® More general observables, like the energy variation ?
Exchanges between R and C through S ?

® Non-trivial examples ?

Remark :
If A\ =0, then S+ C = convergence to a NESS Bruneau-J.-Merkli 06
If Ae =0, then S+ R = return to equilibrium Jaksic-Pillet 96
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Motivations

One-atom maser Walther et al '85, Haroche et al '92

R
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Motivations

One-atom maser Walther et al '85, Haroche et al '92
R . S
~ L LN
L L

-

& &

S : one mode of E-M field in a cavity
Er . atom #k interacting with the mode

C : sequence of atoms passing through the cavity

R : environment responsible for losses
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Motivations

One-atom maser Walther et al '85, Haroche et al '92

S : one mode of E-M field in a cavity
Er . atom #k interacting with the mode

C : sequence of atoms passing through the cavity

R : environment responsible for losses

ldeal RIQS used as simple models Vogel et al 93, Wellens et al 00, BJM 06
Random RIQS to model fluctuations BJM 08

Leaky RIQS to account for losses
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Mathematical Framework

GNS representation
Let p € B1($) be a density matrix on

0<p=> X\lpj){ps| and Trp=1
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Mathematical Framework

GNS representation
Let p € B1($) be a density matrix on

0<p=> X\lpj){ps| and Trp=1

GNS:
p — pure state |¥,)(¥,| on enlarged Hilbert space

® H-H=HR9
@ peBi(H) =V, =3V Np;®p; €H
AcB(®) —TI(A) = Ax 1, € B(H)

=Tro (pA) = (V| A© Is U,p) 5 = Trag(|,) (F,|TI(A))
® I, ® B e B(H) don't play any role

® For gas of co-ly many particles, GNS is required and non-trivial, see below
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Liouvillean

Evolution of observables
Oét(A) _ eitHAe—itH c B(f))

Evolution of states
pE Bl(ﬁ) . e—thpe'LtH c Bl(ﬁ)
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Liouvillean

Evolution of observables
Oét(A) _ eitHAe—itH c B(f))
Evolution of states

0 c Bl(ﬁ) . e—itheitH c Bl(ﬁ)

Invariant states
Tr(e "™ pe™ A) = Tr(pA), YA € B(H)

Liouville operator

Given p invariant, 3 a unique self-adjoint L on H = ® $ S.t.
H(af(A) = e"TI(Ae e H
LY, = 0
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Liouvillean

Evolution of observables
Oét(A) _ eitHAe—itH c B(f))
Evolution of states

0 c Bl(ﬁ) . e—itheitH c Bl(ﬁ)

Invariant states
Tr(e "™ pe™ A) = Tr(pA), YA € B(H)

Liouville operator

Given p invariant, 3 a unique self-adjoint L on H = ® $ S.t.

{Iua%A» = (A e H

(&
LY, = 0
Simple setup

L=H®Ils -1y @ H
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GNS for Fermi Bath Araki-Wyss 64

Temperature 57!

~ ~

Originally ~ Hamiltonian dI'_ (k) on I'_(h) = @ ,I'™ (h) where

h = L?(R",®) one part. Hilbert sp., & auxil. Hilbert sp. and

one part. Hamiltonian % s.t.
(hf)(s) = sf(s), s € R*, Vf € h = L*(R", ®)
a(g), a*(§) annih. and creat. op'son I'_(h), € h

Equilibrium State wg characterized by

~

wa(a*(§a(f)) = (f1(1 + ")) and

wp(a”(gn)---a”

~ ~

~

gi)a(fr)---a(fn)) = det(ws(a™(g:)a(f;)))

VS
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GNS for Fermi Bath

Araki-Wyss 64 + Jaksic-Pillet Gluing 02:

Enlarged Hilbert space Hr =T _(h), h = L*(R, &)
Liouvillean Lz = dI'(h), with h s.t.

(hf)(s) =sf(s), s € R, Vf € h = L*(R, ®)

Creat., annih. op’s a*(g3), a(gs), where gs < g via

gs(s) = (e +1)7%g(s), g(s) = { U e

~

g(—s) if s<O.
Equilibrium State |Uz)(Ux|, Ux vacuum of T'_(h)

Note
“L*(RT, &)+ L*(RT,8) = L*(R, ®)”
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Formalization

After GNS (writing A for TI(A))

® Hilbert spaces Hs, Hr, He,, and He = He, @ Hey, @ Hey ® - - -
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® Algebras of observables M c B(Hx), #=S, R, &, C

® Stateson S, R, &, C are density matrices on Hs, Hr, He, Hc
®

Evolution of observables As — a%5(As), Ar — olx(ARr), Ag — ak(Ag)
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Formalization

After GNS (writing A for TI(A))

® Hilbert spaces Hs, Hr, He,, and He = He, @ Hey, @ Hey ® - - -
® Algebras of observables M c B(Hx), #=S, R, &, C

® Stateson S, R, &, C are density matrices on Hs, Hr, He, Hc
®

Evolution of observables As — a%5(As), Ar — olx(ARr), Ag — ak(Ag)

Assumption: 3 invariant states (cyclic and separating)

Vs € Hs, Yr € Hr and Vg € He S.t.

aly(Ay) = e # Aye ™ #  and LyVy =0, where # =S8, Rand¢&
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Formalization

After GNS (writing A for TI(A))

® Hilbert spaces Hs, Hr, He,, and He = He, @ Hey, @ Hey ® - - -
® Algebras of observables M c B(Hx), #=S, R, &, C

® Stateson S, R, &, C are density matrices on Hs, Hr, He, Hc
®

Evolution of observables As — a%5(As), Ar — olx(ARr), Ag — ak(Ag)

Assumption: 3 invariant states (cyclic and separating)
Vs € Hs, Yr € Hr and Vg € He S.t.
aly(Ay) = e # Aye ™ #  and LyVy =0, where # =S8, Rand¢&

System S +R +C
On 'H="Hs ® Hr ® Hc, driven by Lgoo = Ls + Lr + ), Le,
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Formalization

After GNS (writing A for TI(A))

® Hilbert spaces Hs, Hr, He,, and He = He, @ Hey, @ Hey ® - - -
® Algebras of observables M c B(Hx), #=S, R, &, C

® Stateson S, R, &, C are density matrices on Hs, Hr, He, Hc
®

Evolution of observables As — a%5(As), Ar — olx(ARr), Ag — ak(Ag)

Assumption: 3 invariant states (cyclic and separating)

Vs € Hs, Yr € Hr and Vg € He S.t.
aly(Ay) = e # Aye ™ #  and LyVy =0, where # =S8, Rand¢&
System S+ R +C

On 'H="Hs ® Hr ® Hc, driven by Lgoo = Ls + Lr + ), Le,

Interactions

Vsz € Ms @My, the GNS repres. of Ws, # =R, £+ tech. hyp.
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Dynamics

Repeated interaction Schrddinger dynamics

Forany m € N, if t =m7r and ¢ € 'H,
U(m)y = g thmegTthm—1 -e_iilw
where the generator for the duration 7 is

Loy = TLm + T Z Lg i

with k#m
)
L, = Ls+Lr+Le+Vny on Hs ® Hr ® He,,
§ Vin = ArVsr + AeVse
\ Lg,k = Le¢ on Hgk

coupled

free
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Dynamics

Repeated interaction Schrddinger dynamics

Forany m € N, if t =m7r and ¢ € 'H,
U(m)y = g thmegTthm—1 -e_iilw
where the generator for the duration 7 is

Loy = TLm + T Z Lg i

with k#m
)
L, = Ls+Lr+Lc+V, on Hs ® Hr ® He,, coupled
¢ Vin = ArVsr + AeVse
| Ler = Le on He, free

To be studied
Let o € B1(H) be a state on ‘H and Asz € 9t an observable on § +R

m— o(U"(m)AsrU(m)) = o(a™" (Asr)), as m — oo

CIRM, January 22" 2009 —p.12/20



Reduction to a Product of Operators

Special state

00 = (Up| - ¥y) where ¥y=TUsr @ ¥e with
Usr =VsR@®VYr € Hs ® Hr = Hsr and
\IIC:\IJ(€1®\IJ€2®"'EHC

P =1ner ®|¥c)(Vc| isthe projector on Hsr ® CV¢ ~ Hsr
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Reduction to a Product of Operators

Special state

00 = (Up| - ¥y) where ¥y=TUsr @ ¥e with
Usr =VsR@®VYr € Hs ® Hr = Hsr and
\IIC:\IJ(€1®\IJ€2®"'EHC

P =1ner ®|¥c)(Vc| isthe projector on Hsr ® CV¢ ~ Hsr
C'— Liouvillean Given Ls + Lr, Lg and V,,, € Ms  Mr @ Mg,

etLm fe—iLm — oilm fo—iKm VA € Msr @ Mc
1 K,, S.t
KnwWsr  Ue = 0.

K., is not self-adjoint, not even normal ! Jaksic, Pillet '02
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Reduction to a Product of Operators

Special state

00 = (Up| - ¥y) where ¥y=TUsr @ ¥e with
Usr =VsR@®VYr € Hs ® Hr = Hsr and
\IIC:\IJ(€1®\IJ€2®"'EHC

P =1ner ®|¥c)(Vc| isthe projector on Hsr ® CV¢ ~ Hsr
C'— Liouvillean Given Ls + Lr, Lg and V,,, € Ms  Mr @ Mg,

etLm fe—iLm — oilm fo—iKm VA € Msr @ Mc
1 K,, S.t
KnwWsr  Ue = 0.

K., is not self-adjoint, not even normal !  Jaksic, Pillet '02

1 _1
K =T(Ltrge + Vin = Via)y Vi = Jn A2 Vin A2 o

N Tomita-Takesaki '57
= T(Lfrge + Vim)
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Reduction to a Product of Matrices

Evolution of pg

oo(a@™ (Asr)) = (Vg eilt ... eilm Agpe=ilm ... e_iil\IJ()}
= (ol - et Agre e )
= (Wo|Pe 1 ... efm Agr PW,)
= (Up|(Pe*1P)(Pe2P) .- (Pe'™™ P)Asr W)
= (Usr|MiMs-- MnAsr¥sr)
= (Usr|M™AsrVYsr)

where M; ~ Pe'i P on Hgr are all identical.
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Reduction to a Product of Matrices

Evolution of pg

eiil o eiEmASRe—iLm o e—iil \I’0>
iK1 piEm ASRe—z'Km .. e 1K ‘I’0>
o|Pe'1 ... etfm Agr PW)

o|(Pe' 1 P)(Pe' 2 P) ... (Pe'"m P)Asr¥o)
Usr|MiMs - My AsrYsRr)
Usr|M™AsrVsr)

(™ (Asr)) =

OGS
o O

S

<
<
=
<
<
<

where M; ~ Pe'i P on Hgr are all identical.
Reduced Dynamical Operators

M & B(HSR) S.t.

MVsr = VYsr
| M"p|| < C(¢), VYneN, Ve inadense set

Note: Wgsr cyclic and evolution is unitary.
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Spectral Properties of RDO'’s

RDO

M = Mg ae)

Uncoupled case

/

\

M0y = €7FSTER) unitary,

eigenvalues of Mgy : {e (v,
1 is dim hs-fold degenerate
ess spec Mgy = S'

A Im 2

-~
N

Re 2
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Spectral Properties of RDO'’s

RDO
M = Mg ae)

Uncoupled case
M0y = €7FSTER) unitary,

b Im 2
([ eigenvalues of Moy : {emler=ey ///
q 1lis dim hs-fold degenerate 1
| ess spec M(q,0) = St \,\\ Re 2

(Ar,Ae) # (0,0) =- Perturbation of embedded eigenvalues
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Spectral Properties of RDO'’s

RDO
M = Mg ae)

Uncoupled case
M0y = €7FSTER) unitary,

b Im 2
( .
eigenvalues of M o) : {eimler—e, | /// |
q 1lis dim hs-fold degenerate
| ess spec M(q,0) = St \,\\ Re 2
(Ar,Ae) # (0,0) =- Perturbation of embedded eigenvalues
Lz = dI'(h) with h mult. by s on L*(R,G) is
suitable for translation analyticity Avron-Herbst 77

CIRM, January 22" 2009 - p.15/20



Translation Analyticity

Translation Group
R3> 60— T(O)=T( %) on I'_(L*(R,G))
st. (7% f)(s) = f(s—0), Vf e L*R,G)

Assumption (A)
R3S 60— Vsr(0) :=T(0)"'VsrT(0) admits an analytic
extensionto kg, = {z € C|0<Imz < b}
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Translation Analyticity

Translation Group

R>0— T =T(e ) on I'_(L*R,G))

st. (e %% f)(s) = f(s—0), Vf € L*(R,G)

Assumption (A)
R3S 60— Vsr(0) :=T(0)"'VsrT(0) admits an analytic
extensionto kg, = {z € C|0<Imz < b}

Recall
M = Pexp(tK)P, where
K =7(Lo+MVsr +AeVse) , Lo=Ls+Lr+ Le
Theorem The following op’s are analytic V6 € kg,
K@) = 7(Lo+60N+ MVsr(0)+ AeVse) on D(Lo)N D(N),
M@) = Pexp(iK(0))P € B(Hsr)
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Translation Analyticity

Consequences
Discrete e.v. of M, x.)(0) are 6 -independent

Spectrum of M 0)(0) = exp(¢7(Ls + Lr + ON))
b Im 2

O\ 1
yRez

( eigenvalues of M g,0(0) : {efmlern—e)y,

{ 1is dim hs-fold degenerate
| ess spec M(o,0)(0) = UpZi{|2| = e TIMoy

7D
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Translation Analyticity

Consequences
Discrete e.v. of M, x.)(0) are 6 -independent
Spectrum of M 0)(0) = exp(¢7(Ls + Lr + ON))
f Im 2

p

eigenvalues of M 0)(0) : {efmlern—e)y, /// 1
§ 1is dim hs-fold degenerate //C)\\
P JRe 2

| ess spec M(o,0)(0) = UpZi{|2] = e~ nTIMoy

Perturbative approach M(xr 2g)

Lemma

(AR, Ae)ll < Ao(0) = o(Mxg ae)(0)) -
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Asymptotic State

Analytic observables
Asr st. Asr(0) = T(0) ' AsrT(0) analyticin ke,

Note: For Asr analytic,

oo(a”" (Asr)) = (Vsr|M™AsrVUsr)
= (VUsr|M(0)" Asr(0)¥Ysr)
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Asymptotic State

Analytic observables
Asr st. Asr(0) = T(0) ' AsrT(0) analyticin ke,
Note: For Asr analytic,
00(a""(Asr)) = (Vsr|M " Asr¥Ysr)
= (Usr|M(0)" Asr(0)¥sr)

Assumption (FGR)
460, € /4390,>\0(91) > (0 S.t. ||()\R,)\g)|| < )\0(91) implies
0(Mxg2e)(01)) NS = {1} and 1 is simple

Consequences
llmnﬁoo M(A'RAAS)(Ql)n - Pl’M(ARJ\S)(Ql) — |\IJSR><?7DZ<>‘Ra>‘€)(91)|

exponentially fast, and

00(a™"(Asr)) "7 (Vi ae)(01)|Asr(01)¥sR)
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Main Result

Theorem

Assume (A) and (FRG). For any state (density matrix) ¢ on Hsr ® He , any
analytic observable Asr, we have

lim o(a(xg 2e)(AsRr)) = (Vg ae) (01)[Asr(01)Ysr)

n—oo
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Main Result

Theorem

Assume (A) and (FRG). For any state (density matrix) ¢ on Hsr ® He , any
analytic observable Asr, we have

lim o(a(xg 2e)(AsRr)) = (Vg ae) (01)[Asr(01)Ysr)

n—oo

Application

S and & spins with e.v. {0, Es}, resp. {0, F¢}
‘R Fermigas at g, eq. state wg,,

Wse =as ®ag +as®agp

Vs tracial, Vg ~wge = e Pefle /75,

Wsr = 0 @ (ak(f) +ar(f)), f € L*(R*,G) “regular”
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Application

Perturbation theory

1) If ||f(Es)|| >0 and sinc(r(Es — Ee)/2) # 0, then (FGR) holds
2) The asymptotic state w Is given by
wi = (NWpgr,s + 12ws, s) @wsr + Ooy o, ([[(Ar, A)]])

with
_ AR 27| f(Bs)lI?
= AL 27| f(Es)|I2+A272SINC(T(Es—E¢g)/2)2’

B A2 72SINC(T(Es—Eg)/2)>
72T N2l 7 (Bs) [PHAEr2SINC(7(Es — B ) /2)?

Bgzﬁgg—g and ’yl—l—’ygzl
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