
LECTURES ON THE SHAFAREVICH CONJECTURE ON
UNIFORMIZATION

PHILIPPE EYSSIDIEUX

1. Introduction

This is a set of lecture notes for a course given at the Summer School “ Uni-
formisation de familles de variétés complexes” organised by L. Meersseman in
Dijon (France) August, 31-September 11, 2009 and funded by the ANR project
“Complexe” (ANR-08-JCJC-0130-01), the École doctorale Carnot and the Institut
Mathématique de Bourgogne.

These notes are meant to serve as an introduction to non abelian Hodge theory
with a focus on its use in the Shafarevich problem.

Definitions and notations. For background information on Kähler manifolds
and Hodge Theory, a useful reference is [Voi02]. We will not give any details on
the facts and definitions already contained there.

In the sequel, X denotes a compact connected Kähler manifold and ω a Kähler
form on X. Its universal covering space will be denoted by π : X̃un → X.

Uniformization in several complex variables. Basic examples. Uniformiza-
tion in complex geometry aims at understanding the universal covering space, the
fundamental group and hence the various covering spaces of complex manifolds. In
these notes, I will focus on the compact Kähler case.

The Riemann uniformization theorem, whose first complete proof was given inde-
pendantly by Koebe and Poincaré in 1907, states that a simply connected Riemann
surface is isomorphic to P1(C), C or ∆ = {z ∈ C| |z| < 1}. As a corollary, one can
describe the universal covering space of a compact Riemann surface according to
the following:

Theorem 1.0.1. Let C be a compact connected Riemann surface of genus g and
π : U → C be its universal covering space.

If g = 0: then C is simply connected, U = C and C ' P1(C).
If g = 1: then U ' C, C ' Λ\C where Λ ' Z2 is a rank 2 discrete subgroup

of C.
If g ≥ 2: then U ' ∆, C ' Γ\∆ where Γ ⊂ PU(1, 1) is a torsion-free co-

compact discrete subgroup isomorphic to

< a1, b1, . . . , ag, bg | a1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g = 1 >
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It was realized early that the situation is much more complicated in several
complex variables. For instance, the bidisk and the complex two ball are not iso-
morphic as complex manifolds but can be realized as the universal covering space
of a complex projective surface of general type.

Compact Kähler manifolds with infinite fundamental groups are not too abun-
dant. Nevertheless, a nice zoology of examples can be displayed.

Complex tori: Let Λ ∈ Cn be a rank 2n lattice. The complex torus Λ\Cn
is a compact Kähler manifold whose universal covering space is Cn. It is a
projective manifold (and hence an abelian variety) iff the weight -1 Z-Hodge
structure determined by Λ ∈ Cn can be polarized.

Hermitian locally symmetric spaces: Let Ω be a bounded symmetric do-
main (cf. [Sat80]). Familiar examples of irreducible bounded symmetric
domains are complex balls (aka complex hyperbolic spaces), Siegel upper
half planes, period domains for K3 surfaces.

Let Γ be a cocompact torsion free lattice1 in Aut(Ω), then Γ\Ω is a
canonically polarized projective manifold whose universal covering space is
Ω.

Kuga varieties: When the bounded symmetric domain Ω is classical, pro-
vided Γ ∈ Aut(Ω) is well chosen (see [Sat80] for details), then Γ\Ω appears
as a fine moduli space for a family of abelian varieties of genus g with non
trivial Q-endomorphism ring, polarization type and level structure. This
gives rise to an abelian scheme π : AΓ → Γ\Ω. The universal covering of
the smooth projective manifold A is then biholomorphic to Ω× Cg.

Kodaira surfaces: A Kodaira surface is a projective surface S endowed with
a smooth fibration p : S → C whose fibers have genus ≥ 2. Then the
universal covering space can be realized as a bounded pseudoconvex domain
in C2 ([Gri71], lemma 6.2, p.39).

Mostow-Siu surfaces and Deraux threefold: In [MoSiu80], exotic (i.e.
non complex hyperbolic) projective surfaces of negative curvature are con-
structed. Improving this construction, M. Deraux was able to produce an
example in dimension 3 in [Der05]. In this examples, the universal covering
space can be expressed as an infinite ramified covering space over a complex
ball.

In all these cases, the universal covering space is Stein and contractible and the
compact Kähler manifold is an Eilenberg- Mac Lane K(π, 1).

Shafarevich conjecture on holomorphic convexity. Further examples of com-
pact Kähler manifolds with Stein universal covering space can easily be constructed.
For instance, any smooth submanifold Y in a projective manifold X with Stein uni-
versal covering space has Stein universal covering space, too. On the other hand,
even in case the universal covering space of X is contractible, the universal covering
space of a sufficiently ample smooth complete intersection of dimension d ≥ 2 has
a non trivial πd. In particular, its universal covering space is not contractible.

In this example, the manifold has a 1-connected holomorphic embedding into
a compact Kähler K(π, 1). Toledo’s example of a compact Kähler manifold with
non residually finite Kähler group comes equiped with an embedding into a smooth

1This always exist by a theorem of A. Borel.
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quasiprojective K(π, 1) [Tol93]. However, the fundamental groups of some projec-
tive manifolds constructed in [DPS09] do not have a finite CW-complex as aK(π, 1).
In particular these manifolds cannot have a 1-connected holomorphic embedding
into a compactifiable complex manifold with contractible universal covering space.

On the other hand, the universal covering space of a compact Kähler manifold
may contain positive dimensional compact complex analytic subvarieties. The uni-
versal covering space of the blow-up at the origin of the complex torus T = Λ\Cn
is the blow up of Cn at all lattice points in Λ and contains an infinite collection of
copies of Pn−1(C).

The Shafarevich conjecture takes these examples into account and predicts that
the universal covering space of a complex projective manifold (compact and embed-
dable in PN (C)) should be holomorphically convex. 2 This problem is still open,
in spite of the recent positive results contained in [Eys04] [EKPR09].

Definition 1.0.2. A complex analytic space S is holomorphically convex if there
is a proper holomorphic morphism π : S → T with π∗OS = OT such that T is a
Stein space. T is then called the Cartan-Remmert reduction of S.

Remark 1.0.3. If S is a normal holomorphically convex complex analytic space (in
particular a complex manifold), then its Cartan-Remmert reduction T is a normal
Stein space.

If S is holomorphically convex and (xn)n∈N is a sequence of points in S escaping
to infinity there exists a holomorphic function f such that

lim
n→∞

|f(xn)| = +∞.

Let us give some evidence towards the Shafarevich conjecture.

• If S is a compact Kähler surface with κ(S) ≤ 1 then its universal covering
space is holomorphically convex [GurSha85].
• If X1 and X2 have holomorphically convex universal coverings so has X1×
X2.
• If X and Y are bimeromorphic compact Kähler manifolds, then X has a

holomorphically convex universal covering iff Y has too.
• If f : X → Y is a holomorphic map such that f∗ : π1(X) → π1(Y ) has

finite kernel and Y has a holomorphically convex universal covering then
X has too.

In the last statement, one cannot drop the restriction on f∗ since the universal
covering space of a holomorphically convex manifold needs not be holomorphically
convex3.

This defect can be used as an excuse to consider a slightly more general problem.
Let H ⊂ π1(X) be a normal subgroup. Say (X,H) satisfies (HC) iff H\X̃un is
holomorphically convex. Obviously, the Shafarevich conjecture states that (X, {e})
should satisfy (HC) if X is a complex projective manifold.

2This problem was actually not formulated as a conjecture in the last chapter in [Sha74].
3The minimal resolution of a small Stein neighborhood of an elliptic surface singularity is obvi-

ously holomorphically convex. The singularity can have a rational nodal curve as an exceptionnal
divisor. This rational curve then unfolds in the universal covering space as a connected infinite

chain of rational curves on which holomorphic functions are constant. Hence this covering space
cannot be holomorphically convex.
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Lemma 1.0.4. If (X,H) satisfies (HC) and f : Y → X is an holomorphic map
from a compact Kähler manifold then (Y, f−1

∗ H) satisfies (HC).

If (X,H) satisfies (HC), then there is a proper holomorphic mapping with con-
nected fibers

s̃H : H\X̃un → S̃H(X).

It contracts precisely the compact connected analytic subspaces of H\X̃un. The
mapping sH is equivariant under the Galois group G = H\π1(X) which acts prop-

erly and cocompactly on S̃H(X).

The quotient map sH : X → G\S̃H(X) is called the H-Shafarevich morphism.
In the influential article [Kol93], J. Kollár made it clear that constructing the H-
Shafarevich morphism is the first step to settle when trying to prove (HC). The

second step is to prove that the normal complex space S̃H(X) is Stein - the problem
can be reduced to constructing a strongly plurisubharmonic exhaustion function on
S̃H(X). In fact the best general result in the direction of this first step was given
in the independant and simultaneous works of J. Kollár and F. Campana:

Theorem 1.0.5. ([Cam94], [Kol93] in the projective case) One can construct a G-

equivariant meromorphic map s̃H : H\X̃un → S̃H(X) which is proper and holomor-

phic outside (s̃H)−1(Z) where Z ⊂ S̃H(X) is a proper complex analytic G-invariant
subvariety such that the general fiber of s̃H is a maximal compact connected analytic
subvariety of H\X̃un.

In this theorem, H needs not be a normal subgroup. Nevertheless, these cy-
cle theoretic methods are unlikely to help in producing non constant holomorphic
functions and thus will not help for the second step. Indeed (HC) depends on the
group H in view of the Cousin example:

Example 1.0.6. Let X be a simple abelian variety and ρ : π1(X) = H1(X)→ Z be
a surjective homomorphism. Then ker(ρ)\X̃un has no positive dimensional compact
complex subvariety but does not carry any non constant holomorphic function either.

Hence the Shafarevich problem is an instance of the problem of determining
which pairs (X,H) satisfy (HC). The articles [Eys04] [EKPR09] construct for every
complex projective manifold X natural invariant subgroups H / π1(X) such that
(X,H) satisfy (HC). As a corollary, this gives the Shafarevich conjecture provided
the fundamental group embeds in GLN (C) for some N ∈ N.

These notes are organized as follows. Section 2 and 3 survey the relevant aspects
of non abelian Hodge theory in the archimedian and the non archimedian setting.
Section 4 survey the construction of the Shafarevich morphism from [Eys04] and
section 5 the final section of that article. Section 6 surveys the main ideas of the
proof of the linear Shafarevich conjecture [EKPR09]. The last section describes
some open problems and directions for future research.

2. Non Abelian Hodge Theory in the archimedian case

Let G be an affine algebraic group over a field K. Let T be a connected topo-
logical space endowed with a base point t ∈ T . We assume T is homeomorphic
to a simplicial complex- this is the case if T is a complex analytic space. We can
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construct the sheaf G(K) of locally constant functions with values in G(K). Non
abelian cohomology is well defined in degree 1 and the cohomology set H1(T,G(K))
can be identified with the set

Hom(π1(T, t), G(K))/G(K)

where G(K) acts by conjugation on the set of representations of π1(T, t) in G(K).
Assume for a short while that G = Ga is the additive group. This boils down

to the well known isomorphism H1(T,KT ) ' Hom(π1(T, t),K). Assume also that
K = R and that T is homeomorphic to a compact Riemannian manifold (M, g).
The Hodge theorem then gives an isomorphism:

Hk(M,R) −→ Hk(M,R) ⊂ Zk(M,R)

where Hk(M,R) is the space of harmonic k-forms on M and Zk(M,R) is the
space of closed k-forms. This Hodge isomorphism is a right inverse for the natural
integration map Zk(M,R) → Hk(M,R) = Hom(Hk(M,R),R). Hence, for k =
1, we have canonical one-forms representing 1-cohomology classes with values in
Ga(R).

The theory of harmonic mappings is an analog of the Hodge theorem for 1-
cohomology classes with values in G(K) if G is reductive and K is either R or C
or a (locally compact) local field (i.e.: an algebraic extension of Qp or Fl((T )) - p, l
being prime numbers. ).

In the Kähler case, special phenomena occur. They are rich enough to deserve
the name of non abelian Hodge theory (in degree 1).

2.1. Harmonic mappings into Symmetric spaces.

2.1.1. The Riemannian symmetric space attached to a reductive real algebraic group.
Let G be a reductive algebraic group over R such that G(R) is connected. In
particular G(R) = Z(G).S where the identity component of the center Z(G) is
isomorphic to (S1)p × (R∗>0)q and S is a connected semisimple Lie group with
Z(G) ∩ S finite.

Note that given an algebraic group G′ over C, G′(C) may be wieved as the set
of R-points of G = ResC|R(G′) (Weil’s restriction of scalars). The main example
we have in mind is G = ResC|R(GLN ) so that G(R) = GLN (C).

Consider K a maximal compact subgroup G(R). The riemannian symmetric
space attached to G can be defined set theoretically as the space of left cosets
Riem(G) = G(R)/K.

Theorem 2.1.1. The space R = Riem(G) with its quotient topology is a con-
tractible manifold that can be endowed with a complete Riemannian metric ds2

R of
nonpositive sectional curvature. The natural left action of G(R) on R is a proper
isometric action. This metric is symmetric in the sense that its curvature tensor
is Levi-Civita parallel.

Actually R = Rq×
∏k
i=1Ri where S = S1....Sk is a decomposition of S in almost

simple factors and Ri = Riem(Si). The metric splits accordingly and gives an
euclidean metric on the flat factor Rq and a symmetric metric well defined up to
a scalar on Ri. In particular ds2

R is not unique: it can be rescaled on each simple
factor and be changed to another euclidean metric on the flat factor.

A standard reference for the theory of Riemannian symmetric spaces is [Hel78].
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In case G(R) = GLN (C), R = GLN (C)/U(N) = H>0
N the space of positive

definite N × N -hermitian symmetric matrices4. One has H>0
N = R × HN where

HN = SLN (C)/SU(N) is the space of positive definite hermitian matrices of de-
terminant 1.

The GLN (C) case is somehow universal since there always exist a complex faith-
ful representation σ : G(R) → GLN (C), for N � 0, 5 which determines a totally
geodesic embedding 6

σ̄ : Riem(G) � GLN (C)/U(N).

2.1.2. The energy integral. Now, let (M, g) be a compact connected Riemannian
manifold endowed with a base point m0 ∈ M and let π : (M̃un, m̃0) → (M,m0)
be the universal covering space . Consider furthermore ρ : π1(M,m0) → G(R) a
representation.

Proposition 2.1.2. Let k ∈ N. The space Ck(M̃un, Riem(G))ρ of Ck-mappings
φ from M̃un to Riem(G) such that

∀(γ, m̃) ∈ π1(M,m0)× M̃un, φ(γ.m̃) = ρ(γ).φ(m̃)

is a non empty contractible Banach manifold.

Proof: The space Ck(M̃un, Riem(G))ρ is the space of Ck sections of the fiber
bundle p : π1(M,m0)\R× M̃un →M where the fundamental group acts by

γ.(x, m̃) = (ρ(γ).x, γ.m̃).

If mk ∈ R≥0 with
∑
kmk = 1 and x1, . . . , xk ∈ R we can define

β = β((x1,m1), . . . , (xk,mk)) ∈ R

as the point where x 7→
∑k
i=1mid

2(x, xi) achieves its minimum. Since the curvature
of R is seminegative, this function is smooth, proper and strongly convex on R hence
β is uniquely determined and defines a smooth mapping.

Using local sections si of p on a covering of M by open sets Ui and a partition of
unity φi one can construct a section s of p by the formula s(m) = β((si(m), φi(m))i)
for m ∈M .

A retraction to s ∈ Ck(M̃un, Riem(G))ρ can be given by the explicit formula
H(t, s′) = β((s, 1− t), (s′, t)) for t′ ∈ [0, 1], s′ ∈ Ck(M̃un, Riem(G))ρ. �

In case G(R) = GLN (C) the space Ck(M̃un, Riem(G))ρ coincides with the space
of Ck-hermitian metrics on the vector bundle

Vρ = π1(M,m)\(CN × M̃un)→M

underlying the local system Vρ attached to ρ.
In case N = 1 and k ≥ 1 an element of Ck(M̃un, Riem(G))ρ is a Ck map

φ : M̃un → R such that:

φ(γ.m̃) = φ(m) + 2 log |ρ(γ)|

4In the degenerate case where N = 1, then R = R and z ∈ GL1(C) = C∗ acts by t 7→ t+2 log |z|.
5arising from a R-algebraic group morphism G→ ResC|RGLN
6An embbeding i : (N, ds2N ) � (N ′, ds2

N′ ) of Riemannian manifolds which is isometric

(i∗ds2
N′ = ds2

N′ ) is totally geodesic iff it is and sends any geodesic ray of N to a geodesic ray of

N ′. Equivalently the second fundamental form of N in N ′ vanishes. See [Hel78].



LECTURES ON THE SHAFAREVICH CONJECTURE ON UNIFORMIZATION 7

In particular dφ ∈ Z1(M̃un,R)π1(M,m) = Z1(M,R) and
∫
γ
dφ = 2 log |ρ(γ)|. Hence

dφ is a De Rham representative of the cohomology class 2 log |ρ(γ)|. Conversely
for any Ck−1 De Rham representative α and integration constant c ∈ R we can
produce an element of Ck(M̃un,R)2 log |ρ| setting

φ(m̃) =
∫ m̃

m̃0

α+ c.

Let φ ∈ C1(M̃un, Riem(G))ρ and m̃ ∈ M̃un. Then dφm̃ ∈ HomR(Tm̃M̃un, Tφ(m̃))
and both vector spaces have the norms p∗gm, resp. ds2

R,φ(m̃) and one can define
a real number e(φ, m̃) as the Hilbert-Schmid norm of dφm̃. Since φ is equivari-
ant m̃ 7→ e(φ, m̃) is π1(M,m0)-equivariant and descend to e(φ) ∈ C0(M,R). One
defines E(φ) =

∫
M
e(φ)dV ol(g).

Then E : C1(M̃un, Riem(G))ρ → R is a functional called the energy integral.

2.1.3. Basic existence theorems of Eells-Sampson and Corlette. The following propo-
sition, deduced once again from the fact that R has negative curvature, suggests
existence of global minimizers of the energy functional.

Proposition 2.1.3. [EeSa64] E is a convex functionnal.

In fact, it is not trivial to find a global minimizer. If the Zariski closure of
ρ(π1(M,m0)) is a reductive subgroup of G, we will say ρ is reductive. It is unfor-
tunate that this terminology competes in the litterature with “ semisimple”.

Theorem 2.1.4. [Cor88] E has a global minimizer if and only if the Zariski closure
of ρ(π1(M,m0)) is a reductive subgroup of G. Furthermore, these global minimizers
are smooth.

In case G(R) = C∗, for φ ∈ Ck(M̃un,R)2 log |ρ|, E(φ) =
∫
M
|dφ|2 hence the

differential of a global minimizer is precisely the harmonic representative of the
cohomology class 2 log |ρ|.

In case ρ(π1(M,m0)) ⊂ G(R) is discrete and cocompact, it is Zariski dense
and Corlette’s theorem applies. Note that this fact was already a consequence of
[EeSa64].

2.1.4. The Euler Lagrange equations for the energy integral. The definition of the
energy integral generalizes to the case of an arbitrary Riemannian manifold (N,h)
in place of (R, ds2

R). In the next two paragraphs, we consider this more general
case. Denote by Isom(N,h) the isometry group of (N,h) . Let ρ : π1(M,m0) →
Isom(N,h) be a representation of the fundamental group of M taking values in
this isometry group.

Introduce local coordinates (xa) on M and (yi) on N and write using Einstein’s
summation convention

g = gabdx
adxb, h = hijdy

idyj .

In local coordinates φ ∈ C1(M̃un, N)ρ can be written as φ = (φi) and

E(φ) =
∫
M

hij(φ)gabφiaφ
j
b|g|dx

1...dxm

where φia = ∂
∂xaφ

i = ∂aφ
i and |g| = det(gab)

1
2 .
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Consider Φ = (φt)t∈]−ε,+ε[ a one parameter smooth variation of φ = φ0. We
assume that φt = φ outside of the coordinate chart onM where the local coordinates
are defined. If φ is a critical point of E we have at t = 0:

(1)
∫
M

∂

∂t
(hij(φ)gabφiaφ

j
b)|g|dx

1...dxm = 0,

Now compute:

∂

∂t
(hij(φ)gabφiaφ

j
b) = hijg

ab ∂2

∂xa∂t
φi

∂

∂xb
φj

+hijgab
∂

∂xa
φi

∂2

∂xb∂t
φj + ∂khij∂tφ

kgabφiaφ
j
b

Integrating by parts in (1) gives:∫
M

(−|g|−1∂a(|g|hijgabφjb)− |g|
−1∂b(|g|hjigabφja)

+∂ihkjgabφkaφ
j
b)φ

i
t|g|dx = 0.

Further derivating, we get:∫
M

(+∂ihkjgabφkaφ
j
b − ∂khijg

abφkaφ
j
b − ∂khjig

abφkbφ
j
a

−2.hij |g|−1∂a(|g|gabφjb))φ
i
t|g|dx = 0.

Changing dummy indices k, j in third term, we get:∫
M

(+∂ihkjgabφkaφ
j
b − ∂khijg

abφkaφ
j
b − ∂jhkig

abφjbφ
k
a

−2.hij |g|−1∂a(|g|gabφjb))φ
i
t|g|dx = 0.

Now the Christoffel symbol Γkij of (N,h) satisfies:

∂ihkj − ∂khij − ∂jhki = −2Γlkjhli.

And the Laplace-Beltrami operator of (M, g) is:

∆ = |g|−1∂a(|g|gab∂b)

Hence the expression simplifies to:∫
M

(−2Γlkjhlig
abφkaφ

j
b − 2.hij∆φj)φit|g|dx = 0.

Which can be rewritten as:∫
M

(−2Γjklhjig
abφkaφ

l
b − 2.hij∆φj)φit|g|dx = 0,

Or as: ∫
M

(−2Γjklg
abφkaφ

l
b − 2.∆φj)hijφit|g|dx = 0.

Since (φit) is arbitrary, φ satisfies the semilinear partial differential equation:

(2) ∆φj + Γjkl(φ)gabφkaφ
l
b = 0
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Corollary 2.1.5. Let Riem(G) = Rq ×
∏
iRi be the decomposition of R into a

flat factor Rq and irreducible symmetric spaces Ri of non compact type (i.e.: such
that Aut(Ri) is almost simple). Every twisted harmonic map from M to Riem(G)
decomposes as a product of harmonic maps taking their values in each factor.

Hence the notion of a harmonic mapping with values inRiem(G) does not depend
of the choice of a symmetric metric ds2

R.

Remark 2.1.6. Schauder estimates reduce the proof of smoothness of φ to a C1-
estimate.

Remark 2.1.7. It is possible to carry out the calculation in a coordinate free man-
ner.

Let us indeed sketch this calculation. The differential of Φ is a section of
Hom(TM ,Φ∗TN ). Endow Φ∗TN with the connection Φ∗∇N induced by the Levi-
Civita connection of N and with the metric Φ∗h induced from h. In a simi-
lar way, endow TM with the Levi-Civita connection of g and with the metric g.
The usual construction produces a connection ∇ and a metric on the Hom-bundle
Hom(TM ,Φ∗TN ) . The restriction of Φ∗∇N to the slice {t = 0} gives an operator
D : φ∗TN → Hom(TM ,Φ∗TN ).

Observe that ∇ ∂
∂t
dΦ|t=0 = Dv where v = ∂Φ

∂t |t=0. Then

∂

∂t
E(φt)|t=0 =

∫
M

∂

∂t
(dΦ, dΦ)|t=0 = 2

∫
M

(∇ ∂
∂t
dΦ, dΦ)|t=0

= 2
∫
M

(Dv, dφ) = 2
∫
M

(v,D∗dφ),

where D∗ denotes the formal adjoint of D. Hence, the harmonic map equation
reads D∗dφ = 0. Also, one easily sees that D∗dφ is the trace with respect to g of
the symmetric φ∗TN -valued tensor ∇dφ.

2.2. Kähler case: Pluriharmonicity.

2.2.1. Sampson’s Bochner formula. In this paragraph, we follow closely the calcu-
lation in [Sam86].

Assume now that (M, g) is a Kähler manifold. Let φ : M̃un → N be a twisted
harmonic mapping, equivariant with respect to a representation ρ : π1(M,m0) →
Isom(N,h).

Introduce local complex coordinates (za) on M and lift them to M̃un (with a
slight abuse, we will not introduce another notation). In this coordinates the Kähler
form expresses as:

ω =
√
−1
2

gab̄dz
a ∧ dz̄b, dω = 0, gab̄ = (

∂

∂za
,
∂

∂zb
).

We endow the holomorphic vector bundles T 1,0
M ,Ω1

M = Ω1,0
M = (T 1,0

M )∗, ... and
their tensor products with the hermitian metric induced by g and with the connec-
tion induced by the Levi-Civita connection of g which extends to TC

M leaving T 1,0
M

invariant (since (M, g) is Kähler). This connection D is the Chern connection of
the holomorphic hermitian vector bundle (T 1,0

M , g): it preserves g and its (0, 1)-part
is Dolbeault’s ∂̄-operator.
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We endow φ∗TC
N with the pull back of the Levi-Civita connection of (N,h).

Tensoring with D, we get a connection ∇ on Ω1,0

M̃un
⊗ φ∗TC

N . For f = (f ia) ∈
C∞(M̃un,Ω1,0

M̃un
⊗φ∗TC

N ), the (1, 0)-part of ∇f will be denoted by ∇̄f = ((∇̄f)i
b̄a

) ∈
C∞(M̃un,Ω0,1

M̃un
⊗ Ω1,0

M̃un
⊗ φ∗TC

N ) and we will use the following notation:

(∇̄f)ib̄a
not.= f ia|b̄

in coord.= ∂b̄f
i
a + Γijk(N,h)f jaφ

k
b̄ .

The (complexified) differential of φ, denoted by dφ is a smooth section of T ∗C
M̃un
⊗

φ∗TC
N = Ω1,0

M̃un
⊗ φ∗TC

N ⊕ Ω0,1

M̃un
⊗ φ∗TC

N . Decompose accordingly

dφ = ∂φ+ ∂̄φ.

Then we have:

∂φ = φiadz
a ⊗ ∂xi

not= (φia) ∈ C∞(M̃un,Ω1,0

M̃un
⊗ φ∗TC

N ).

Lemma 2.2.1. With these notations the harmonic map equation (2) can be written
as:

gbc̄φib|c̄ = 0 (⇔ ωn−1 ∧ ∇̄∂φ = 0).

Remark 2.2.2. This should be seen as a curved analog of the classical formula for
the Laplace operator on a n-dimensional Kähler manifold, namely:

ωn−1 ∧ i∂̄∂f = cn∆(f)ωn

where cn < 0 is a constant depending only on n.

Let us now introduce two tensors q and ξ by the formula:

qab = hijφ
i
aφ

j
b qabdz

adzb = [φ∗ds2
(N,h)]

2,0 ∈ C∞(M̃un, S2Ω1,0

M̃un
),

ξa = gbc̄qab|c̄ ξadz
a = [idΩ1 ⊗ ωn−1

(n−1)!∧]ν(∂̄q) ∈ C∞(M̃un,Ω1,0

M̃un
).

where ν : S2Ω1,0 ⊗ Ω0,1 → Ω1,0 ⊗ Ω1,1 is the natural map.
The divergence of ξ is the scalar:

δξ = gad̄ξa|d̄ δξ
ωn

n!
= d(∗ξ) = ∂̄(∗ξ).

Lemma 2.2.3. Denoting by RN the curvature tensor of (N,h), we have:

δξ = (hijφia|c̄φ
j

b|d̄ −R
N
jklmφ

j
bφ
k
aφ

l
c̄φ
m
d̄ )gad̄gbc̄.

Proof: In order to clarify the computation, we simplify the expression of ξa.

ξa = gbc̄(hijφiaφ
j
b)|c̄

= gbc̄hij(φia|c̄φ
j
b + φiaφ

j
b|c̄)

since covariant derivatives leave g, h inert.

ξa = gbc̄hijφ
i
a|c̄φ

j
b + hijφ

i
ag
bc̄φjb|c̄

ξa = gbc̄hijφ
i
a|c̄φ

j
b

using lemma 2.2.1. Continuing this way,

ξa|d̄ = gbc̄hij(φia|c̄|d̄φ
j
b + φia|c̄φ

j

b|d̄).
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The curvature of ∇ is the sum of the pull back of the curvature tensor of N and
of the curvature of the Levi-Civita connection of (M, g). Coming back to the very
definition of curvature as the defect of commutation of mixed covariant partial
derivatives, we have:

φia|c̄|d̄ − φ
i
a|d̄|c̄ = (∇c̄∇d̄ −∇d̄∇c̄)φia = −Riklmφkaφlc̄φmd̄ .

since the curvature of the Levi-Civita connection of (M, g) has no (0, 2) component.
In particular,

ξa|d̄ = gbc̄hij(φia|d̄|c̄φ
j
b + φia|c̄φ

j

b|d̄ −R
i
klmφ

j
bφ
k
aφ

l
c̄φ
m
d̄ ).

gad̄ξa|d̄ = gbc̄hij(gad̄φia|d̄|c̄φ
j
b + gad̄φia|c̄φ

j

b|d̄ − g
ad̄Riklmφ

j
bφ
k
aφ

l
c̄φ
m
d̄ )

= gbc̄hij(gad̄φia|c̄φ
j

b|d̄ − g
ad̄Riklmφ

j
bφ
k
aφ

l
c̄φ
m
d̄ )

= gbc̄gad̄hijφ
i
a|c̄φ

j

b|d̄ − g
bc̄gad̄RNjklmφ

j
bφ
k
aφ

l
c̄φ
m
d̄ .

�
Working in normal coordinates at m̃ ∈ M̃un, φ(m̃) so that hij = δij , gab̄ = δab,

we obtain:

δξ(m̃) =
∑
i,a,b

φia|b̄φ
i
b|ā −R

N
jklmφ

j
bφ
k
aφ

l
b̄φ
m
ā

=
∑
i,a,b

|φia|b̄|
2 −

∑
a,b

RN (φb, φa, φb, φa)

Proposition 2.2.4. If (N,h) satisfies ∀x, y ∈ TC
N R(x, y, x̄, ȳ) ≤ 0 and (M, g) is

compact, then:
∇̄∂φ = 0 ∀a, b RN (φb, φa, φb, φa) = 0.

Proof: Indeed ξ descends to M and is a 1-form with non negative divergence.
Stokes theorem implies

∫
M
δξ = 0 hence δξ = 0. �

Remark 2.2.5. Under the hypotheses of Proposition 2.2.4, the tensor q introduced
above is holomorphic and defines a holomorphic symmetric quadratic differential
also denoted by q ∈ H0(M,S2Ω1

M ).

We say (N,h) has non positive curvature in the complexified sense if the curvature
condition of propostion 2.2.4 holds.

We say that a map φ from a Kähler manifold X to a Riemannian manifold
(N,h) is pluriharmonic if ∇̄∂φ = 0. This notion does only depend on the complex
structure of X and we have:

Lemma 2.2.6. A pluriharmonic map φ on a Kähler manifold X is harmonic for
every Kähler metric of X. For every holomorphic map f : X ′ → X, φ ◦ f is
pluriharmonic for every Kähler metric on X ′.

The fact that a pluriharmonic map is harmonic for every Kähler metric is a
consequence of Lemma 2.2.1.

Let us finish this section by the simplest example of this phenomenon. If N = R,
then it has non positive curvature in the complexified sense. Assume furthermore
that ρ acts in an orientation preserving way so that ρ is actually a homomorphism
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π1(X)→ R defining a cohomology class α ∈ H1(X,R) and π1(X) acts by transla-
tions on R. Then, if X is compact Kähler, Proposition 2.2.4 applied to the harmonic
map representing α (which actually is a harmonic function h : X̃un → R) shows that
h is pluriharmonic, i.e. locally the real part of a holomorphic function. Actually,
since H1(X̃un) = 0, it follows that h is globally the real part of a holomorphic func-
tion f . Lemma 2.2.6 thus generalzes the fact that holomorphic or pluriharmonic
functions are harmonic for every Kähler metric and are preserved by holomorphic
pull-back. Also the harmonic representative of α is the form dh = Re(df) where β
denotes the form on X obtained by descending to X an equivariant form β on X̃un.
From this, we recover the fact that a real harmonic 1-form on a compact Kähler
manifold is the real part of a (closed) holomorphic 1-form.

2.2.2. Curvature tensor of Riemannian symetric spaces of non compact type.

Proposition 2.2.7. The Riemannian symmetric space R = Riem(G) has non
positive curvature in the complexified sense.

Proof: With no loss of generality, we can reduce to the case where R = G(R)/K
is irreducible of the non compact type. Then G is semisimple. Denote by k ⊂ g the
differential at the origin of the embedding K ⊂ G(R). The left coset o = eK can
serve as an origin for Riem(G). The Cartan involution θ is an involution of the Lie
algebra g such that k = ker(θ − id).

If G = SLn and K = SO(n), θ is just A 7→ −At. If G = ResC|RSLn and
K = SU(n) ⊂ SLN (C) θ is A 7→ −Āt.

Then p = ker(θ + id) defines the Cartan decomposition g = k ⊕ p and the Lie
bracket satisfies the basic relations:

[k, k] ⊂ k [k, p] ⊂ p [p, p] ⊂ k.

The Killing form of g is a quadratic form defined by

(X,Y ) = Trg(ad(X)ad(Y ))

makes the Cartan decomposition orthogonal, is positive definite on p and negative
definite on k (the reader may check this in the above examples).

The derivative of the exponential map at origin identifies p with ToRiem(G) and,
after a convenient normalisation, the curvature tensor of Riem(G) identifies to Rp:

∀(X,Y, Z, T ) ∈ p Rp(X,Y, Z, T ) = ([X,Y ], [Z, T ]).

In particular if ξ, η ∈ pC we have:

Rp(ξ, η, ξ̄, η̄) = ([ξ, η], [ξ, η]) ≤ 0.

Note also that Rp(ξ, η, ξ̄, η̄) = ([ξ, η], [ξ, η]) = 0. iff [ξ, η] = 0.
�

2.2.3. Carlson-Toledo Theorem.

Corollary 2.2.8. The twisted harmonic map φ in theorem 2.1.4 is pluriharmonic
and verifies, if φ(m̃) = o:

a = ∂φ(T 1,0
m̃ M) ⊂ pC is an abelian subspace, i.e. : [a, a] = 0.
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In general this holds true with respect to the Cartan decomposition at φ(m̃).
Let us remark the following striking consequence - which does not hold for general

complex manifolds.

Corollary 2.2.9. Let X be a compact Kähler manifold. Let ρ : π1(X) → G(R)
be reductive. Let X ′ be a Kähler manifold and f : X ′ → X be holomorphic. Then
f∗ρ : π1(X ′)→ G(R) is reductive too.

It is easy to find a counterexample to the corresponding statement for com-
plex manifolds. Let indeed H ⊂ SL3 be the subgroup scheme over Z consist-
ing of all upper triangular matrices with coefficients equal to 1. Consider the
ring Z[

√
−1] of Gaussian integers. Then H(Z[

√
−1]) ⊂ H(C) is a cocompact

lattice and similarly SL3(Z[
√
−1]) ⊂ SL3(C) are cocompact discrete subgroups.

Hence M ′ = H(Z[
√
−1])\H(C) is a complex submanifold of the compact com-

plex parallelizable manifold M = SL3(Z[
√
−1])\SL3(C). Since SL3(C) is sim-

ply connected π1(M) = SL3(Z[
√
−1]). Consider the tautological representation

ρ : π1(M) = SL3(Z[
√
−1]) → SL3(C). Then ρ is reductive but its restriction to

π1(M ′) is not since the Zariski closure of its image is H a unipotent algebraic group.

2.2.4. Kähler superrigidity. We finish with a historical remark. The discovery of
the Bochner technique for harmonic mappings in Kähler geometry was the main
ingredient of the celebrated:

Theorem 2.2.10. [Siu80] Let XΓ = Γ\Ω be a compact quotient of an irreducible
bounded symmetric domain of dimension ≥ 2. A compact Kähler manifold homo-
topy equivalent to XΓ is either biholomorphic or conjugate biholomorphic to it.

A culmination of this beautiful line of thought is [MSY93].

2.3. Higgs bundles and Simpson’s ubiquity theorem. In a groundbreaking
work, [Sim88], C. Simpson proved a converse to Corlette’s Theorem 2.1.4.

2.3.1. Homogenous bundles on Riemannian symmetric spaces. Consider G as above
and Riem(G) = G(R)/K. Then the K-principal bundle p : G(R)→ Riem(G) has a
canonical G(R)-equivariant connection. Recall that a connection on a principal K-
bundle is a smooth right K-equivariant distribution of horizontal subspaces 7. This
connection can be easily described using a Cartan decomposition, choose p ⊂ g
as the value of the horizontal distribution at the origin e ∈ G(R) and move it
around using the left translation of G on itself. This defined a distribution which
is straightforwardly checked to be right K-equivariant and horizontal for p.

Consider α : K → GLR(V ) a real representation. The canonical connection on
the principal K-bundle p : G(R) → Riem(G) induces a Koszul connection ∇ on
the real vector bundle q : V := G×K V → Riem(G).

Lemma 2.3.1. The curvature of (V,∇) at o = eK is given by the following for-
mula, where we identify q−1(o) with V and ToR with p:

∀X,Y ∈ p Θ(X,Y ) = −α∗([X,Y ]),

where α∗ : k→ glR(V ) is the Lie algebra representation arising from α.

This lemma extends naturally to the complex representations.

7An horizontal subspace is a subspace supplementary to the relative tangent bundle.
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2.3.2. The notion of Higgs bundle. Simpson found a very useful reformulation of the
properties of the harmonic mapping in terms of Higgs bundles. As far as I know,
the first instance of this construction in the litterature is [Don87a], Donaldson’s
post-scriptum to [Hit87].

Definition 2.3.2. Let N be a complex manifold. A Higgs bundle on N is a pair
(E , θ) where E is a holomorphic vector bundle on N and θ : E → E ⊗ Ω1

N satisfies

θ ∧ θ = 0 ∈ End(E)⊗ Ω2
N .

If, in local coordinates, θ = θadz
a, the condition θ ∧ θ = 0 means [θa, θb] = 0 for

all indices a, b.

Proposition 2.3.3. Let X be a compact Kähler manifold, ρ : π1(X) → G(R) be
a reductive representation φ : X̃un → Riem(G) the twisted pluriharmonic map and
α : K → V a representation.

Then the pull back of (V,∇) is π1(X)-equivariant and descends to a real vector
bundle with a connection (E, d) → X. The complexified connection dC = ∂ + ∂̄
satisfies ∂̄2 = 0. Hence it defines a holomorphic vector bundle E on X.

If α is the restriction of a representation β : G(R) → V then one can construct
a holomorphic Higgs field on E by the formula θ = β(∂φ).

Proof: Left to the reader as an interesting exercise. �

2.3.3. Simpson’s Kobayashi-Hitchin correspondance. Let (X,ω) be a compact Kähler
manifold. A Higgs bundle (E , θ) is stable if for every proper Higgs subsheaf F of
the sheaf of its holomorphic sections:

rk(E)c1(F).ωn−1 < rk(F)c1(E).ωn−1.

A Higgs bundle (E , θ) is polystable if it is a direct sum of stable Higgs bundles
(Ei, θi) of the same slope µ(Ei) = c1(Ei).ωn−1

rk(Ei) .

Theorem 2.3.4. A Higgs bundle (E , θ) on (X,ω) arises from a reductive represen-
tation of π1(X,x) in GLN (C) iff:

(1)
∫
X
c1(E).ωn−1 = 0,

(2)
∫
X
c2(E).ωn−2 = 0,

(3) (E , θ) is polystable.

The proof [Sim88] uses methods of gauge theory. The dimension 1 case is due
to Hitchin [Hit87]. Let us give a brief account of the ideas involved. Consider a
Higgs bundle (E , θ) on X. Let h be a hermitian metric on E . Consider its Chern
connection, the unique connection Dh leaving h invariant such that D0,1

h = ∂̄.
Consider furthermore the connection:

D(h) = D1,0
h + θ∗h + ∂̄ + θ,

where θ∗h is the adjoint of θ with respect to h. The hardest part of the proof is to
show that there is a solution hYM to the anti-self-duality equations:

ωn−1iFD(h) = ωn−1(iΘh + [θ, θ∗h ]) = Cωn

where C is a topological constant and FD(h) is the curvature of D(h) whenever
(E , θ) is stable.
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Under (1), C = 0. In fact under (2) a Chern class argument gives FD(hYM ) = 0
hence D(hYM ) is a flat connection whose holonomy gives a representation of the
fundamental group.

As a corollary, we see that (poly)stability of a Higgs bundle with c1 = c2 = 0
does not depend on the Kähler class.

The vector bundle underlying a stable Higgs bundle may not be stable. Indeed
(E , 0) is stable iff E is stable. In fact the representation given by Theorem 2.3.4
is unitary iff θ = 0. This case of Simpson’s theorem is a celebrated result of
Uhlenbeck-Yau [UhlYau88], the dimension 1 case being due to [NS65] and the case
of projective algebraic manifolds to [Don85, Don87b] - see also [Kob87] for a nice
exposition and [LüTe06] for a nice recent exposition in the more general setting of
hermitian manifolds.

We finish this paragraph by a brief discussion of the rank one case. A rank
one Higgs bundle is a pair (L,α) where L is a holomorphic line bundle and α
a holomorphic one form. It is automatically stable. When c1(L) = 0 and X is
compact Kähler, Hodge theory implies the existence of unique flat hermitian metric
h on the line bundle L. Since GL1 is abelian, h = hYM .

2.3.4. Moduli spaces. The character scheme MB(X,GLN ) is defined as the GIT
quotient of the (affine) representation scheme Hom(π1(X), GLN ) by the conju-
gation action of GLN (we work over Q̄). Its points over an algebraically closed
field of characteristic zero k̄ are in bijection with conjugacy classes of reductive
representations of π1(X) over k̄.

Assume that X is projective. There is a coarse moduli space MDol(X,GLN )
for rank N semistable Higgs bundles with vanishing Chern classes (see [Sim94]).
Its complex points are in bijection with isomorphism classes of polystable Higgs
bundles.

The correspondance of theorem 2.3.4 underlies a real analytic homeomorphism
kh : MB(X,GLN )(C)→MDol(X,GLN )(C).

2.3.5. Simpson’s ubiquity theorem. For every Higgs bundle (E , θ), we may define its
characteristic polynomial χθ of θ. We have:

χθ(X) = XN +
N−1∑
k=0

χkT
k χk ∈ H0(X,SN−kΩ1

X).

Theorem 2.3.5. Assume that X is projective. Then, the Hitchin map(
MDol(X,GLN )→

N−1∏
k=0

H0(X,SN−kΩ1
X), [(E , θ)] 7→ (χk)k

)
is a proper morphism of quasiprojective varieties.

Corollary 2.3.6. Assume that X is projective. Let (E , θ) be a polystable Higgs
bundle with vanishing Chern classes. Then, for t ∈ C∗ (E , t.θ) is a polystable Higgs
bundle with vanishing Chern classes. Furthermore lim

t→0
[(E , tθ)] = [(E ′, θ′)] exists

and is a fixed point of the action of the multiplicative group GL1 on MDol(X,GLN )
given by t.[(E , θ)] = [(E , tθ)].

Proof: Indeed, [(E , tθ)] is an orbit of an algebraic GL1-action on MDol(X,GLN )
and its projection by the Hitchin map has a linit as t→ 0. �
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In fact, these results combine in a statement known as Ubiquity of Variations
of Hodge Structure. This statement will be one of the two main ingredients of our
approach.

Definition 2.3.7. A C-VHS (polarized complex variation of Hodge structures) on
X of weight w ∈ Z is a 5-tuple (X,V,F•,G•, S) where:

(1) V is a local system of finite dimensional C-vector spaces,
(2) S a non degenerate flat sesquilinear pairing on V,
(3) F• = (Fp)p∈Z a biregular decreasing filtration of the flat vector bundle (V, d)

underlying V by holomorphic subbundles such that d′Fp ⊂ Fp−1 ⊗ Ω1
X ,

(4) G• = (Gq)q∈Z a biregular decreasing filtration of the flat vector bundle un-
derlying V by antiholomorphic subbundles such that d′′Gp ⊂ Gp−1 ⊗ Ω1

X̄
,

(5) for every point x ∈ X the fiber at x (Vx,F•x ,G
•
x) is a C-Hodge Structure

polarized by Sx.

In other words V =
∑
p+q=wH

p,q with an S-orthogonal decomposition Hp,q =
Fp ∩ Gq with (−1)pS|Hpq > 0.

Observe that the axioms are slightly redundant since Gq is the S-orthogonal
of Fw−q+1. In particular condition (4) follows from condition (3) aka Griffiths’
transversality.

If, furthermore, A ⊂ C is a ring, we have V = VA⊗C where VA is a local system
of finite rank projective A-modules, we have a A-VHS or polarized variation of A-
Hodge structure. If A ⊂ R, we need to require that G• is the complex conjugate of
F•. In an influential series of articles culminating with [Gri73], Griffiths discovered
a structure of Z-VSH on the monodromy of a polarized smooth family of projective
varieties.

Since Hp,q ' Fp/Fp+1, we can endow the smooth vector bundle V with a
holomorphic structure which does not in general coincide with the holomorphic
structure underlying the flat connection. Let us call E the resulting holomorphic
vector bundle.

Then second fundamental form of the flat connexion d for Fp takes values in
Fp−1/Fp and vanishes on Fp+1, thanks to condition (3). This defines ∇′p : Hp,q →
Hp−1,q+1 ⊗Ω1

X . It is easy to see that (E ,⊕p∇′p) is a polystable Higgs bundle with
torsion Chern classes.

The pluriharmonic map attached to a C-VHS has very nice properties. By
definition the monodromy of a C-VSH is a representation σ : π1(X,x) → U(Sx)
and every framing of Vx defines an embedding i : U(Sx)→ GLN (C).

Let P =
∑
p≡0[2] dimC H

p,q
x andQ =

∑
p≡1[2] dimC H

p,q
x . Then U(Sx) ' U(P,Q).

The maximal compact subgroup of U(P,Q) is U(P )× U(Q) and we have a totally
geodesic embedding of Riemannian symmetric spaces

Riem(U(P,Q)) = U(P,Q)/U(P )× U(Q)
η→ Riem(GLN (C)) = GLN (C)/U(N).

Now define D = U(P,Q)/
∏
U(Hp,q

x ). The space D parametrizes polarized
Hodge filtrations on (Vx, Sx) . It is actually an open U(P,Q)-orbit of a complex
rational homogenous space D̂. D̂ is the subvariety of the flag variety parametrizing
flags (F p) with dimC F

p/F p+1 = dimC H
p,q defined by the condition S(F p, Fw−p+1) =

0.
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A C-VHS defines a holomorphic map(
q : X̃un → D ỹ 7→ (Parallel transport at x̃)((Fpỹ )p))

)
.

Now introduce the quotient map p : D → Riem(U(P,Q)) 8.

Proposition 2.3.8. The composed map η◦p◦q is the i◦σ-equivariant pluriharmonic
map.

In [GriSch69], the construction is put in the larger context of groups of Hodge
type and the geometry of the period mapping is extensively studied from a global
perspective. The important point is that Griffiths’ transversality means that the
period mapping is tangent to a holomorphic distribution Th(D)9, transverse to the
fibers of p.

Theorem 2.3.9. [Sim88, Sim92] Assume that X is projective. Fixed points of
the action of GL1 on MDol(X,GLN ) correspond to the isomorphism classes of
the holonomy representation of a complex polarized variation of Hodge structures
of weight zero. Hence, every reductive representation of a Kähler group can be
deformed to a C-VHS.

In fact, before Simpson’s ubiquity theorem, we had almost no way of constructing
C-VHS except using monodromy representations.

For a rank one Higgs bundle (L,α) with flat unitary metric h

lim
t→0

(L, t.α, h) = (L, 0, h)

and the limit harmonic bundle is just a flat U(1) bundle with a vanishing Higgs
field. These are the C-VHS of rank one and their period mappings are constant.

Let us give an example of the power of Simpson’s ubiquity theorem. Let C be a
compact Riemann surface of negative Euler characteristic. A spin structure on C
is given by a line bundle Θ together with an isomorphism c : Θ2 → KC . Tensoring
with Θ−1, we produce c′ : Θ → KC ⊗ Θ−1. We also get a rank 2 Higgs bundle,

setting E = Θ ⊕ Θ−1 and θ =
(

0 c′

0 0

)
. This Higgs bundle is stable since its

rank one proper Higgs subsheaves are contained in Θ−1 which has negative degree.
Furthermore it is C∗-stable. Hence, we get a C-VHS of weight 1 with H1,0 = Θ,
H0,1 = Θ−1 and the graded part of the Gauss-Manin connection is c′. Its period
mapping lands in U(1, 1)/U(1)×U(1) = ∆ and defines an equivariant holomorphic
mapping from the universal covering space of C to the unit disk. Since c′ computes
the derivative of the period mapping and never vanishes it follows that the period
mapping is unramified. Using this, we conclude that C has a hyperbolic metric,
hence that is universal covering space is ∆. It is easily seen that the period mapping
actually defines an uniformization.

The last part of Theorem 2.3.9 is likely to hold in the general Kähler case,
although Simpson’s construction of the moduli spaces is only valid in the projective
case. Actually, the factorisation theorem in [Zuo96] can be used to reduce the

8The knowledgeable reader will have noticed that U(P,Q)/U(P ) × U(Q) is a hermitian sym-
metric spaces, also known as the bounded symmetric domain DI

p,q , hence carries a canonical
complex structure. He should beware that the fibers of p are holomorphic submanifolds of D but

the map p itself is not holomorphic.
9For a recent survey of the EDS perspective on period mappings, see [CGG09].
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statement to the projective case. I believe that Zuo’s theorem is correct but it
seems to me that the proof has a weak point. I hope that this will be remedied by
a work in preparation in collaboration with B. Claudon.

3. Non-abelian Hodge Theory in the non archimedian case

3.1. Valued fields. Recall that a discrete valuation on a field K is a map v : K∗ →
Z such that:

• ∀x, y v(xy) = v(x) + v(y)
• ∀x, y v(x+ y) ≥ min(v(x), v(y)).

Denote by Ov = {x ∈ K| v(x) ≥ 0}, mv = {x ∈ K| v(x) ≥ 1}, k(v) = Ov/mv.
Then, k(v) is called the residual field.

Example 3.1.1. Let C/k be a smooth algebraic curve over a field k, and P ∈ C(k̄)
be a closed point. Then for f ∈ k(C)∗, we can define v(f) = ordP (f). This defines
a discrete valuation v on k(C).

For p a prime number and x ∈ Q∗, we define vp(x) to be the multiplicity of p in
a reduced prime decomposition of x. This defines a discrete valuation vp on Q.

A local fieldKv is a field equipped with a surjective discrete valuation v : K∗v → Z
which is a complete metric space with respect to the distance d(x, y) = e−v(x−y).
Local compacity of a complete valued field is equivalent to the residual field being
finite.

Example 3.1.2. A locally compact local field is either isomorphic to a finite ex-
tension of the field Qp of p-adic numbers or to Fq((t)) for some power q of a prime
number.

3.2. The affine building attached to a reductive algebraic group over a
valued field. Let G/Kv be a connected semisimple algebraic group defined over
the local field Kv. Then G(Kv) acts isometrically on its Bruhat-Tits building
∆BT (G(Kv)). Following the tradition of [GroSch92], we will use a slightly non-
standard notation here and will denote by ∆BT (G(Kv)) the geometric realization
endowed with its Tits distance of the usual Bruhat-Tits building, a polysimplicial
complex which will be denoted by s∆BT (G(Kv)) [BruTit72].

This action is the good analog of the action of a real semisimple algebraic group
on its Riemannian symmetric space. In fact the näıve analog G(Kv)/G(Ov) is
discrete and has a rather poor geometric structure. It is realized as a subset of the
set of simplices of s∆BT (G(Kv)).

3.2.1. The Bruhat-Tits building for G = SLN . The description of ∆BT (G(Kv)) is
rather involved. For simplicity, we will just give a brief description of ∆BT (SLN (Kv)).

First of all we describe a simplicial complex s∆BT (SLN (Kv)) whose geometric
realization will be homeomorphic to ∆BT (SLN (Kv)).

A lattice L ⊂ KN
v is a free Ov-submodule of rank N . Two lattices L,L′ are ho-

mothetic iff there exists a ∈ K∗v such that aL = L′. We denote by v∆BT (SLN (Kv))
the set of equivalence classes of homothetic lattices. Note that the equivalence class
of the lattice L is {πkL}k∈Z where π is any fixed element of K∗v such that v(π) = 1.
Given two lattices L,L′ the minimum of α ∈ Z such that παL′ ⊂ L will be denoted
by κ(L′, L).

Say that a couple of distinct lattice classes ([L], [L′]) is adjacent if there are
representatives L,L′ satisfying:
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πL ⊂ L′ ⊂ L.
Note that we have κ(L′, L) = 0 in the latter case. It should be noted that if

([L], [L′]) is adjacent ([L′], [L]) is adjacent too and we say that the lattices [L], [L′]
are adjacent.

Lemma 3.2.1. Assume [L′], [L′′], [L] are pairwise adjacent. Choose representatives
such that:

πL ⊂ L′ ⊂ L, πL ⊂ L′′ ⊂ L.
Then L′ ⊂ L′′ or L′′ ⊂ L′.

Proof: Assume L′ 6⊂ L′′. Then κ(L′, L′′) = 1. If L′ and L′′ are adjacent, then
πL′′ ⊂ πL′ ⊂ L′′. Hence L′′ ⊂ L′. �

Corollary 3.2.2. Let [L] be a lattice class and [L1], . . . , [Lp] be pairwise adjacent
lattice classes. Then there is σ ∈ Sp and representatives Lk of [Lσ(k)] such that:

πL $ L1 $ L2 $ . . . Lp $ L.

In particular (maximal) sets of pairwise adjacent classes of lattice classes adjacent
to a given [L] are in one-to-one correspondance with (complete) flags in the k(v)-
vector space L/πL.

Definition 3.2.3. We define s∆BT (SLN (Kv)) to be the N − 1-dimensional sim-
plicial complex whose vertex set is the set of lattice classes and p-simplices are
p+ 1-tuples of pairwise adjacent lattice classes. This simplicial complex carries an
action of GLN (Kv) given by (g, [L]) 7→ [g.L].

The N − 1-dimensional simplices are called the chambers of s∆BT (SLN (Kv)).

Fix a particular lattice L, for instance L = ONv . Given another lattice L′ there is
some g ∈ GLN (Kv) such that L′ = g.L. The congruence class c(g) = v(det(g))[N ] ∈
Z/NZ is independant of g and defines c(L′) ∈ Z/NZ the label of L′. The labelling
c : v∆BT (SLN (Kv)) → Z/NZ is not preserved by GLN (Kv) but is preserved by
SLN (Kv).

Lemma 3.2.4. Each chamber has precisely one vertex of given label.

Proof: Left to the reader. �
Let B = (e1, . . . , eN ) be a basis of KN

v . Then we can consider a full subcomplex
sAB of s∆BT (SLN (Kv)), called the apartment corresponding to B, whose vertices
are:

[Lr1,...,rN ] = [πr1Ove1 + · · ·+ πrNOveN ] ri ∈ Z.

Obviously the vertex set of sAB identifies to ΛN = ZN/Z.E where E = (1, . . . , 1).
Consider the natural embedding j of ΛN as a lattice in the real vector space V =
RN/RE. This extends linearily on each simplex to a continuous map j̄ : |sAB | → V
10.

Lemma 3.2.5. j̄ is a homeomorphism.

10If X is a simplicial complex, we denote by |X| its geometric realization.
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Proof: Although it is not that obvious, it will be left as an exercise. �
Obviously j̄ is equivariant under the action of SN by permutation of the coor-

dinates and by the translation action of ΛN . In fact it is equivariant by the action
of the semidirect product WN = ΛN n SN .

The action of SN on V being irreducible, there is a unique (up to multiplication
by a scalar constant) euclidian norm on V such that WN acts by isometries.

The length of the 1-simplices between adjacent lattices L,L′ ∈ sA0
B depends

only on c(L)− c(L′), hence we can normalise the euclidian norm requiring that the
length of a 1-simplex [L,L′] is 1 if c(L)− c(L′) = ±1.

This defines on A = |sAB | ⊂ |s∆BT (SLN (Kv))| a distance function dA. This
distance functions glues into a function d : |s∆BT (SLN (Kv))|2 → R≥0 thanks to
the fact that the following building axioms are fulfilled:

Proposition 3.2.6. Any two simplices of s∆BT (SLN (Kv)) are contained in an
apartment. Given two apartments A,A′ and σ, σ′ two simplices in their intersection
then there is a simplicial isometry A→ A′ keeping σ, σ′ fixed.

Proof: See the standard expositions [Bro89], [Ron89] or [Gar97]. �

Theorem 3.2.7. The function d is a distance function for which apartments are
isometrically embedded. The resulting metric space is complete. It is locally compact
iff Kv is locally compact.

Given two points P,Q in |s∆BT (SLN (Kv))| there is a unique geodesic γ : [0, 1]→
|s∆BT (SLN (Kv))|, i.e.: a continuous path such that γ(0) = P, γ(1) = Q and
d(P, γ(t)) = t.d(P,Q). This geodesic is just an arc length parametrized line segment
in any apartment containing P and Q.

Given three points P,Q,R in |s∆BT (SLN (Kv))| define Pt = γ(t) where γ is the
geodesic from Q to R. Then,

(3) ∀t ∈ [0, 1], d2(P, Pt) ≤ td2(P,R) + (1− t)d2(P,Q)− t(1− t)d2(Q,R).

Equality holds iff P,Q,R lie in a common apartment.

Proof: This is proved in [BruTit72]. See also the standard references. �

Definition 3.2.8. The Bruhat-Tits building ∆BT (SLN (Kv)) is |s∆BT (SLN (Kv))|
endowed with the distance function d. The group GLN (Kv) acts on ∆BT (SLN (Kv))
by simplicial isometries.

Proposition 3.2.9. A subgroup of SLN (Kv) fixes a point in ∆BT (SLN (Kv)) iff
it is bounded (i.e.: conjugate to a subgroup of GLN (Ov)).

Remark 3.2.10. ∆BT (SLN (Kv)) can also be identified with the Goldman-Iwahori
space of non archimedian norms of volume one on KN

v in perfect analogy with the
realisation of SLN (C)/SU(N) as the space of hermtian metrics of volume 1.

The simplest case of this construction is N = 2, see [Ser77] for a beautiful
exposition. In that case, T = ∆BT (SL2(Kv)) is a tree. Let q be the cardinal of the
residue field kv. Then, T is the unique tree such that all vertices are q + 1-valent
and all edges have length one. Its apartments are geodesic lines.

3.2.2. Remarks on the general case.

Definition 3.2.11. A complete geodesic metric space (X , d) is non positively curved
(NPC) if and only if inequality 3 in theorem 3.2.7 is satisfied.



LECTURES ON THE SHAFAREVICH CONJECTURE ON UNIFORMIZATION 21

For a general simply connected semisimple group G/Kv the Bruhat Tits building
∆BT (G(Kv) is a NPC metric space with an action of G(Kv) which is the realization
of a simplicial complex, is a union of affine euclidean apartments and satisfies
Proposition 3.2.6 and Theorem 3.2.7.

Although GLN is not semisimple, it is convenient to give the following definition:

Definition 3.2.12. The (extended) Bruhat-Tits building ∆BT (GLN (Kv)) is the
product metric space ∆BT (SLN (Kv))× R, with distance function

d = (d2
∆BT (SLN (Kv)) + d2

R)1/2

and an action of GLN (Kv) given by the product action of the action described
above on ∆BT (SLN (Kv)) with the translation action by the group morphism g 7→
v(det(g)).

Every apartment A ⊂ ∆BT (SLN (Kv)) gives rise to an isometrically embedded
apartment A′ = A× R ⊂ ∆BT (GLN (Kv)).

3.3. Harmonic mappings into affine buildings.

3.3.1. Korevaar-Schoen’s energy and harmonic mappings into NPC spaces. Given
Ω a compact Riemannian manifold with boundary and (X , d) a NPC metric space,
[KoSc93] carried out in detail the program outlined in [GroSch92] of constructing
a Sobolev space W 1

2 (Ω,X ) containing the space of Lipschitz maps from Ω to X
endowed with a lower semicontinuous Dirichlet integral E which is the integral of
a locally defined absolutely continuous energy density measure.

In case X is a ball of finite radius in ∆BT (SLN (Kv)), Kv locally compact, con-
sider j : X → RM an embedding such that each simplex is isometrically embedded.
We have:

E(u) =
∫

Ω

|∇(j ◦ u)|2.

This definition is the working definition adopted in [GroSch92] and suffices for most
purposes.

Given an apropriate11 boundary value w : ∂Ω → X , there is a unique energy
minimizer for E on the subclass of u ∈ W 1

2 (Ω,X ) such that u|∂Ω = w. This
minimizer is locally Lipschitz in the interior of Ω.

Definition 3.3.1. Let (M∗, g) be a Riemannian manifold and f : M∗ → X is a
locally Lipschitz mapping. We say f is harmonic iff for every Ω ⊂M∗ a sufficiently
small ball f |Ω is the energy minimizer relative to f |∂Ω.

Proposition 3.3.2. Assume Φ : X → R is a continuous function which is convex
when restricted to geodesics. If f : M∗ → X is harmonic then Φ◦f is subharmonic.

Again, let (M, g) be a compact connected Riemannian manifold endowed with
a base point m0 ∈ M and let π : (M̃un, m̃0) → (M,m0) be the universal covering
space . Consider furthermore ρ : π1(M,m0)→ Isom(X ) a representation.

The space Lip(M̃un,X )ρ of Lipschitz continuous mappings φ from M̃un to X
such that

∀(γ, m̃) ∈ π1(M,m0)× M̃un, φ(γ.m̃) = ρ(γ).φ(m̃)
carries a convex energy functional too and its global minimizers, if any, are equi-
variant harmonic mappings. The fact that this space is non empty and contractible

11Lipschitz continuous for instance.
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and that the energy is convex is a consequence of the NPC property of X , just like
in section 2.

The minimizing sequences for this problem are studied in general in [KoSc97].
For our purposes, it will be enough to state the following consequence of [GroSch92]:

Theorem 3.3.3. Assume ρ : π1(M,m0)→ GLN (Kv) is a reductive representation.
Then there exists a Lipschitz continuous equivariant harmonic mapping

hρ : M̃un → ∆(GLN (Kv)).

This sufficient condition for existence of twisted harmonic mappings is not a
necessary condition.

3.3.2. Gromov-Schoen’s regularity theorem for harmonic mappings into locally com-
pact Bruhat-Tits buildings.

Definition 3.3.4. Let h : M∗ → ∆(GLN (Kv)) be a harmonic mapping.
The regular locus of h is the set of all points x ∈M∗ such that there exists r > 0

and an apartment A ⊂ ∆(GLN (Kv)) such that h(B(x, r)) ⊂ A where B(x, r) is the
open Riemannian ball of radius r centered at x.

In this case h|B(x,r) = iA ◦ hAx where iA is the isometric embedding of A and hAx
is a harmonic function defined on B(x, r) with values in A - hence is smooth.

Say h is regular if M∗ − (M∗)reg is of Hausdorff codimension ≥ 2.

Theorem 3.3.5. The harmonic mapping constructed in Theorem 3.3.3 is regular
provided Kv is locally compact.

Proof: See [GroSch92]. The general non locally compact case seems to be true,
see p.564 in the introduction to [KoSc93]. To the best of our knowledge, the only
published reference treats the case of R-trees and applies here only in case N = 2
[Sun03]. �

As pointed out by the referee, a local example of a regular harmonic mapping
with values in a tree is given by R2 → G4, (x, y) 7→ (x|y|, y|x|) where G4 is the
graph embedded in R2 as the union of the diagonal and the antidiagonal. See also
[GroSch92, pp. 178-180] for another enlighting example.

3.3.3. Pluriharmonic mappings in the sense of Gromov-Schoen.

Definition 3.3.6. Assume (M∗, g) is Kähler and let h : M∗ → ∆(GLN (Kv)) be a
regular harmonic mapping.

We define h to be pluriharmonic if the following holds:
For x ∈ (M∗)reg, choose r > 0 and an apartment Ax ⊂ ∆(GLN (Kv)) such that

h(B(x, r)) ⊂ Ax. Write h|B(x,r) = iA ◦ hAx where iA is the isometric embedding of
Ax and hAx is a harmonic function defined on B(x, r) with values in A. Then hAx
is pluriharmonic.

Theorem 3.3.7. If (M, g) is Kähler, the harmonic mapping constructed in Theo-
rem 3.3.3 is pluriharmonic provided Kv is locally compact.

Proof: See [GroSch92]. The general non locally compact case is again likely to
be true but we cannot give a reference. �
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Proposition 3.3.8. A pluriharmonic map φ is harmonic for every Kähler metric.
Its singular locus is contained in a proper closed complex analytic subset. For every
holomorphic map f : X ′ →M∗, φ ◦ f is pluriharmonic for every Kähler metric on
X ′.

Proof: A detailled proof of these easy consequences of [GroSch92] is given in
[Eys04]. �

3.4. Spectral coverings and associated constructions. In this paragraph, we
fix ρv : π1(X,x)→ GLN (Kv) to be a reductive representation.

Denote by hv : X̃un → ∆BT (GLN (Kv)) the harmonic mapping given by theorem
3.3.3. Assume that the conclusion of theorem 3.3.7 holds (e.g. N = 2 or Kv locally
compact). There is a proper closed analytic subset S ⊂ X such that (X̃un)reg ⊃
X̃un − π−1(S) thanks to Proposition 3.3.8.

3.4.1. Construction of the spectral covering. As announced in the last paragraph
of [GroSch92], one can construct a finite Galois ramified covering Spρv (X) → X
such that the lift of the foliation defined by ker(∂hv) is given by a finite system of
holomorphic one forms. We now describe this object called the spectral covering of
X attached to ρv.

Fix once for all an apartment A of ∆BT (GLN (Kv)). This apartment split canon-
ically as A = A′ × R where A′ is an apartment of ∆BT (SLN (Kv)). We denote by
AC the complexification and by A∗ the real dual vector space of the underlying
vector space of the affine space A.

Fix x ∈ X − S and choose a lift Ux in X̃un of a small neighborhood Vx of x
such that the properties in definition 3.3.6 are satisfied. This gives an apartment
Ax and a pluriharmonic mapping Ux → Ax. The apartment Ax splits canonically
as A = A′x × R where A′x is an apartment of ∆BT (SLN (Kv)).

We denote by ix : A → Ax an isometry respecting the canonical splittings and
the simplicial structure of A′x, ix being chosen arbitrarily. This choice enables to
define a pluriharmonic mapping hx = i−1

x ◦ hAx .
Any other choice of lift and apartment gives another pluriharmonic mapping

h′x : Vx → A and we have:

h′x = wa.hx, wa ∈Waff

whereWaff is the Weyl group of ∆BT (GLN (Kv)). HereWaff = W ′aff×Z preserves

the canonical splitting, W ′aff is the Coxeter group of type ÃN−1 acting on A′

preserving the triangulation described above. We have an exact sequence

1→ Λ = ZN−1 →W ′aff
Lin→ W = SN → 1

and Λ × Z acts by translation on A. The map from W ′aff to W is denote by Lin
because it maps an affine isometry to its linear part.

In particular, ∂h′x = w.∂hx, w ∈ W . Hence, the union of the graphs of the
{w.∂hx}w∈W glue into a W invariant locally closed submanifold Z1,reg

x ⊂ Tot(AC⊗
Ω1
X |Vx). Here we denote by Tot(AC⊗Ω1

X) the total space of the holomorphic vector
bundle AC ⊗ Ω1

X . In fact, the {Z1,reg
x }x∈X glue into a W invariant locally closed

submanifold Z1,reg ⊂ Tot(AC⊗Ω1
X), where W acts on Tot(AC⊗Ω1

X) by w⊗ idΩ1
X

.
The canonical projection q : Tot(AC ⊗ Ω1

X) → X restricted to Z yields an étale
covering q : Z1,reg → X − S.
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Proposition 3.4.1. The closure Z1 of Z1,reg is a W -invariant complex analytic
subspace of Tot(A⊗Ω1

X) and the natural map q : Z1 → X identifies X with Z1/W .

Proof: Choose α ∈ A∗. Consider {< α,w.∂hx >}w∈W . This is a collection of
|W | one forms on Vx. Denote by Σk, for 1 ≤ k ≤ |W |, the symmetric function:

Σk(X1, . . . , X|W |) =
∑

1≤i1<...<ik≤|W |

Xi1 . . . Xik .

Then σxk = Σk({< α,w.∂hx >}w∈W ) is a well defined holomorphic k-th order
symmetric differential defined on Vx. In fact, the {σxk}x∈X glue into an element
σkreg ∈ H0(X − S, SkΩ1

X).

Lemma 3.4.2. σkreg extends to a global holomorphic symmetric differential σk ∈
H0(X,SkΩ1

X).

Proof: Assume L is a global Lipschitz constant for hv. Then, uniformly in
x ∈ X − S, we have |σkreg(x)| ≤ Ck.L

k where Ck is an universal constant. As is
well known, a bounded holomorphic section of a vector bundle defined on a Zariski
open subset of a complex manifold extends holomorphically to its closure. �

As usual denote by T ∗X = Tot(Ω1
X) the holomorphic tangent bundle of X and

by q : T ∗X → X the canonical projection. Denote by λ ∈ H0(T ∗X , q
∗Ω1

X) the
Liouville form (or tautological form). In local canonical coordinates (zi, ζi), we
have λ =

∑
i ζidz

i. Hence λ is holomorphic and so is:

χα = λ|W | +
|W |∑
k=1

(−1)k.λkσk ∈ H0(T ∗X , q
∗S|W |Ω1

X).

We have the obvious:

Lemma 3.4.3. Denote by α the map Tot(AC⊗Ω1
X)→ T ∗X defined by α⊗ id. Then,

Z1,reg = ∩α∈A∗α−1(χ−1
α ({0})) ∩ q−1(X − S).

In particular, Z1 is the union of the irreducible components of the analytic
subvariety ∩α∈A∗α−1(χ−1

α ({0})) meeting q−1(X − S).
To prove that Z1/W = X, consider Z1

ν → Z1 the normalization. It is a W -
equivariant holomorphic map. Denote by a : Z1

ν/W → Z1/W its quotient by W .
W permutes the irreducible components of Z1

ν since they agree with those of Z1.
Consider the natural map b : Z1/W → X. Then b◦a, the natural map Z1

ν/W → X,
is a dominant holomorphic map of normal complex spaces which is an isomorphism
over a dense Zariski open subset. Hence it is an isomorphism. It follows easily that
b is an isomorphism. �

Since the harmonic mapping hv is uniquely defined up to a geodesic translation, it
follows that the construction of the W -equivariant covering Z1 → X is independant
of the choice of hv.

Observe that the group morphism h : W → Aut(Z1
ν/X) need not be injective

hence this cover need not be a W -Galois covering in general 12.
One can slightly refine the construction using an idea due to Klingler[Kli03].
Assume that the harmonic map is non degenerate which means that the image

of the hx’s is not contained in a wall of the apartment A.

12It is a W/ ker(h)-Galois covering.
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Lemma 3.4.4. The data gxy = i−1
x ◦ iy is a 1-cocycle with values in Waff relative

to the covering V = {Vx}x∈X−S of X−S. Its cohomology class in H1(X−S,Waff )
is independant of the choices made above.

Proof: Left to the reader. �
The cocycle Lin(gxy) gives a cohomology class κ ∈ H1(X − S,W ) hence a W -

torsor T → X−S, i.e.: a finite etale covering T → X−S with W = Aut(T/X−S).

Lemma 3.4.5. One can construct a W -equivariant etale covering T → Z1,reg

which is unique up to the action of W .

Proof: Left to the reader. �

Definition 3.4.6. The Galois ramified covering sp : Z2 = Z1
ν → X is called the

spectral covering attached to ρv and will be denoted by sp : Spρv (X)→ X.

Example 3.4.7. Assume N = 2 and that the representation ρv has trivial determi-
nant. In this case ∆BT (SL2(Kv)) is a tree and W = {±1}. The spectral covering is
then completely determined by a quadratic differential η = (dz)2 ∈ H0(X,S2Ω1

X).
The notation is meant to emphasize a slighly subtle issue. Except if dim(X) = 1,

a non vanishing quadratic differential need not be locally a square but η is always of
rank ≤ 1 and sp∗η is the square of a holomorphic one form on the double covering
Spρv (X)→ X.

If η is already the square of a holomorphic one form on X then Spρv (X) is the
union of two copies of X.

Except in degenerate cases, the quadratic differential comes from a Riemann
surface S via a map X → S see [Sim93b].

Remark 3.4.8. The theory extends almost verbatim to more general groups than
GLN .

3.4.2. Holomorphic 1-forms on normal varieties. A compact Kähler normal com-
plex space is a compact normal complex space having a Kähler class in the sense
of definition 5.1.2. Such a space admits a Kähler resolution of singularities.

Definition 3.4.9. Let Z be a compact Kähler normal complex space. A holomor-
phic one form on Z is the data of a holomorphic one form αẐ ∈ Ω1

Ẑ
for every

resolution of singularities Ẑ → Z subject to the constraints:
(1) π∗αẐ = αẐ′ if π : Ẑ ′ → Ẑ is a holomorphic map of resolutions.
(2) If F is a fiber of Ẑ → Z then αẐ |F reg = 0.

The space of such one-forms will be denoted by Ω1(Z).

Lemma 3.4.10. Let Z be a normal compact Kähler space. The category of holo-
morphic map Z → A where A is a compact complex torus has an initial object
aZ : Z → Alb(Z). Furthermore a∗Z : H0(Alb(Z),Ω1)→ Ω1(Z) is an isomorphism.

Proof: Let Ẑ → Z be a resolution of singularities. Consider the largest subtorus
B of Alb(Ẑ) on which vanish the forms which vanish upon restriction to the fibers
of Ẑ → Z as considered in the second item of definition 3.4.9 and denote by Alb(Z)
the quotient torus Alb(Z) = Alb(Ẑ)/B. Consider a : Ẑ → Alb(Z) the composition
of the quotient map with an Albanese morphism Ẑ → Alb(Ẑ). Since Z is normal
every fiber F of Ẑ → Z is connected hence a(F ) is a point. In particular a descends
to a continuous map aZ : Z → Alb(Z) which is holomorphic on a dense Zariski open
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subset of Z. Hence aZ is holomorphic. Its further properties are easily established.
�

Remark 3.4.11. Note that Z need not be connected. The Albanese torus of Z,
Alb(Z), is the product of the Albanese tori of its components and the Albanese map
aZ maps every irreducible component to the corresponding factor.

3.4.3. Canonical system of holomorphic 1-forms on the spectral covering. For every
piecewise C1 path γ : [0, 1]→ X we denote by `ρv,X(γ) the length of the rectifiable
path hv◦γ̄ : [0, 1]→ ∆BT (GLN (Kv)), where γ̄ is a continuous path in X̃un lifting γ.
Similarily for γ : [0, 1]→ Spρv (X) piecewise C1 we define `rhov (γ) = `ρv,X(sp(γ)).

Proposition 3.4.12. The map Λ : A∗ → Ω1(Spρv (X)) defined by α ∈ A∗ 7→ α∗λ
where λ is the Liouville form and α is defined in lemma 3.4.3 is R-linear, W -
equivariant and satisfies:

∀γ : [0, 1]
pw.C1

−→ Spρv (X) `ρv (γ) =
∫
γ

ds.

Here ds =
√∑N

i=1Re(Λ(ei))2 where (ei) is an orthonormal basis of W ∗.

Proof: If γ lies in Spρv (X)− sp−1(S) this is true by construction. The general
case follows by approximation. �

Definition 3.4.13. The map Λ : A∗ → Ω1(Spρv (X)) in proposition 3.4.12 is called
the canonical system of one-forms attached to ρv.

3.4.4. Katzarkov-Zuo reduction. Denote by A ⊂ Ω1(Spρv (X)) the C-vector space
spanned by Im(A∗ → Ω1(Spρv (X)). Denote byB the largest subtorus ofAlb(Spρv (X))
with TB ⊂ A. Obviously B is preserved by the action of W .

Consider the following commutative square:

Spρv (X) //

��

Alb(Spρv (X))/B

��
X //(Alb(Spρv (X)/B)/W.

Definition 3.4.14. The Katzarkov-Zuo reduction of X attached to ρv is the Stein
factorization sρv : X → Sρv (X) of the above map X → (Alb(Spρv (X))/B)/W .

Proposition 3.4.15. The Katzarkov-Zuo reduction is characterized uniquely by
the following properties:

(1) Sρv (X) is a Kähler normal complex space, projective if X is.
(2) sρv is a fibration, i.e.: a surjective holomorphic map with connected fibers.
(3) Let Z ⊂ X a closed connected complex analytic subspace. Then sρv (Z) is

a point if and only if ρv(Im(π1(Z) → π1(X))) is a bounded subgroup of
GLN (Kv).

Proof: Easy consequence of propositions 3.2.9, 3.4.12. �

4. Reductive Shafarevich morphisms

4.1. The rigid case.
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4.1.1. Variants of Stein factorization. We recall two classical lemmas to be used
over and over (cf [Car]):

Lemma 4.1.1. Let X be a compact normal complex space. Let (fa : X → Sa)a∈A
a family of fibrations.

There is a normal complex space S∞, a fibration f∞ : X → S∞, and morphisms
ea = S∞ → Sa such that:

• fn = en ◦ f∞.
• For all s ∈ S f−1

∞ (s) = ∩n∈Nf
−1
n (en(s)).

We call f∞ the simultaneous Stein factorization of (fa)a∈A.

Lemma 4.1.2. Let X,S be complex spaces and f : X → S be a morphism. Suppose
a connected component F of a fibre of f is compact. Then, F has an open neigh-
borood V such that g(V ) is a locally closed analytic subvariety S and V → g(V ) is
proper.

Suppose furthermore that X is normal and that every connected component F
of a fibre of f is compact. The set of connected components of fibres of f can
be endowed with the structure of a normal complex space so that the natural map
e : X → S is a proper holomorphic fibration.

4.1.2. The Shafarevich morphism of a rigid representation. Let G/Q be a reductive
algebraic group and ρ : π1(X) → G(C) be a rigid reductive representation, i.e. :
such that [ρ] ∈ MB(X,G)(C) is an isolated point. Fix α : G → GLN a faithful
linear representation defined over Q.

Then the following holds:
(1) There is a number field Q ⊂ L ⊂ Q̄ such that ρ is conjugate to ρ′ : π1(X)→

G(L) [Rag72, Prop 6.6 p.90]. Consequently there is a finite set S of non-
archimedian places13 v of L such that ρ′π1(X) ⊂ GLN (Ov) iff v 6∈ S.

(2) For every archimedian place 14 w of L w◦ρ′ is the monodromy representation
of a C-VHS by Simpson’s ubiquity theorem.

Let OS be the localization of OL at S. We have α ◦ ρ′(π1(X)) ⊂ GLN (OS). It
is a well known theorem of Borel and Serre that GLN (OS) is a discrete subgroup
of

∏
w∈Ar(L)

GLN (Lw)×
∏
v∈S

GLN (Lv). We denote by P : G(L)→
∏

w∈Ar(L)

GLN (Lw)

the product P =
∏
w∈Ar(L) w ◦ α.

Lemma 4.1.3. Let F be a connected fiber of the Stein factorization of∏
v∈S

sρv : X −→
∏
v∈S

Sρv (X).

Then P : ρ′(π1(F ))→
∏

w∈Ar(L)

GLN (Lw) has finite kernel and its image is a discrete

subgroup.

Proof: Indeed for v ∈ S, Im(α ◦ ρ′ : π1(F ) → GLN (Lv)) is contained in a
compact subgroup. �

13A non-archimedian place of L is a prime ideal of the ring OL of algebraic integers in L. We
denote by Lv the corresponding locally compact local field and by v the corresponding valuation.

14An archimedian place of L is a real embedding of L or a complex embedding up to conjugacy.
We set Lw = R or C accordingly. The set of archimedian places will be denoted by Ar(L).
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Denote by πρ : X̃ρ = X̃un/ ker(ρ) → X the intermediate covering correponding
to ρ. For w ∈ Ar(L) denote by pw : X̃ρ → Dw the period mapping attached to the
C-VHS whose holonomy is w ◦ ρ′.

Corollary 4.1.4. The map
∏

w∈Ar(L)

pw : π−1
ρ (F )→

∏
w∈Ar(L)

Dw is proper.

Proof: Immediate consequence of Lemma 4.1.3. �
Define a holomorphic mapping

q =
∏

w∈Ar(L)

pw ×
∏
v∈S

sρv : X̃ρ →
∏

w∈Ar(L)

Dw ×
∏
v∈S

Sρv (X).

Corollary 4.1.5. Every connected component of a fiber of q is compact.

Proof: Indeed it is contained in π−1
ρ (F ) with F as in lemma 4.1.3. �

Proposition 4.1.6. There is a proper fibration s̃ρ : X̃ρ → S̃ρ which contracts every
compact connected analytic subspace of X̃ρ to a point.

Proof: This map is what one gets applying lemma 4.1.2 to q. �
Observe that ρ(π1(X)) = Gal(X̃ρ/X) acts properly on S̃ρ and that we can

construct the quotient space Shρ(X) = S̃ρ/ρ(π1(X)).

Proposition 4.1.7. The fibration shρ : X → Shρ(X) contracts Z ⊂ X to a point
if and only if ρ(π1(Z)) is finite.

Remark 4.1.8. Shρ(X) is a normal Kähler space, projective if X is.

4.2. The non-rigid case.

Theorem 4.2.1. Fix N ∈ N. Consider M ⊂ MB(X,GLN )(C) a set of conjugacy
classes of reductive linear representations.

Let X̃M = X̃un/HM be the covering space corresponding to the intersection HM

of kernels of all elements in M .
There is a proper holomorphic fibration X̃M → S̃M where S̃M is a normal com-

plex space with no positive dimensional compact complex analytic subspaces.
The quotient of S̃M by the proper action induced from that of Gal(X̃M/X) =

π1(X)/HM is a normal Kähler space shM (X), which is projective if X is.

The natural holomorphic map X → shM (X) is called the Shafarevich morphism
attached to M .

The general strategy of the proof will be described in the rest of this section. It
is analogous to the rigid case using representations with values in algebraic groups
over function field to deal with non rigid representations.

4.2.1. Factoring out the non-rigidity. We circumvent the unavailability of theorem
3.3.7 in the non locally compact case by reduction modulo p and get another version
of the Katzarkov-Zuo reduction.

Lemma 4.2.2. Let L be a number field. Consider the field L((t)) endowed with its
natural valuation. Let ρ : π1(X)→ GLN (L((t))) be a reductive representation.

Then there is a holomorphic fibration X → Sρ(X) such that:
(1) Sρ(X) is a Kähler normal complex space, projective if X is.
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(2) Let Z ⊂ X a closed connected complex analytic subspace. Then sρ(Z) is
a point if and only iff ρ(Im(π1(Z) → π1(X))) is a bounded subgroup of
GLN (L((t))).

Proof: Since π1(X) is finitely generated there exists a finite set S of non-
archimedian places of L such that ρ(π1(X)) ⊂ GLN (OS((t))). For v 6∈ S, one
has OS ⊂ Ov and we can construct by reduction modulo v a representation ρv :
π1(X)→ GLN (kv((t))) where kv is the residue field of Lv. Enlarging S if necessary
we can assume that ρv is reductive for v 6∈ S. Since kv((t)) is a locally compact
local field one can construct the Katzarkov Zuo reduction sρv : X → Sρv (X). The
simultaneous Stein factorization of the family {sρv}v 6∈S then satisfies the required
properties.

�

Lemma 4.2.3. Let T/Q̄ be an irreducible algebraic variety over Q̄ and consider
a rational map r : T → MB(X,GLN )/Q̄ and let ρT : π1(X) → GLN (Q̄(T )) be a
reductive representation in the function field of T whose conjugacy class is a generic
point of the image of r . Then there is a holomorphic fibration sT : X → ST (X)
with the following property

(1) ST (X) is a Kähler normal complex space, projective if X is.
(2) Let Z ⊂ X a closed connected complex analytic subspace. Then sT (Z) is a

point if and only iff the rational map T →MB(Z,GLN ) is locally constant.

Proof:
Assume first T/Q̄ be a complete connected algebraic curve. There is a finite

set S of Q̄-points P of T such that if P 6∈ S, ρT (π1(X)) ∈ GLN (OP ) and if
P ∈ S, the localization of ρT at P denoted by ρT,P : π1(X) → GLN (Frac(ÔP ))
is a reductive representation. For all P , Frac(ÔP ) is isomorphic to Q̄((t)) and we
can once again perform the simultaneous Stein factorisation of the sρT,P to get a
fibration sT : X → ST (X). Let Z be a fiber of ST . Since for all P ∈ S ρT,P (π1(Z))
is bounded, it follows that for all γ ∈ π1(Z) Tr(ρT,P (γ)) ∈ ÔP . This implies that
Tr(ρT (γ)) ∈ Q̄((T )) is a regular function at every point P ∈ T (Q̄). It follows that
Tr(ρT (γ)) is regular function on T , hence a constant since T is complete. By a
theorem of Procesi, {Tr(ρ(γ))}γ∈π1(Z) generate the coordinate ring of the affine
scheme MB(Z,GLN )/Q̄. Hence, indeed T 7→MB(Z,GLN ) is constant. Conversely
if this map is constant, performing a finite cover of T if necessary, we may assume
that ρT |π1(Z) is conjugate to a constant representation and certainly ρT,P will be
bounded at every point P ∈ T (Q̄). This forces sT (Z) to be a point.

The general case follows by simultaneous Stein factorization of the sC , C being
a curve over Q̄ mapping to T .

�

4.2.2. Case where M is a Q̄-point. We now prove theorem 4.2.1 when M = {[ρ]}
with ρ : π1(X)→ G(L) where L is a number field.

For every complex embedding w ∈ Ar(L), we can deform w ◦ ρ to a C-VHS
that will be denoted by ρV HSw and we may construct pw : X̃un → Dw its period
mapping. Then the holomorphic map

∏
w pw : X̃un →

∏
wDw descends to the

intermediate covering space with Galois group Γ+
ρ defined by:

X+
ρ = X̃un/ ker(ρ) ∩ ∩w∈Ar(L) ker(ρV HSw ).
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Consider the collection Z of compact Kähler manifold over X, f : Z → X such
that ρ(f∗π1(Z)) = {e} and let H be the normal subgroup of π1(X) generated
by the {f∗π1(Z)}Z∈Z . Let Q1 ⊂ R(π1(X), GLN ) be the preimage of the origin
by the natural morphism R(π1(X), GLN ) → R(H,GLN ) and Q = Q1//GLN ∈
MB(X,GLN ). Then, for every component T of Q, we have the fibration sT : X →
ST (X) constructed in lemma 4.2.3.

There is a finite set S of non-archimedian places v of L such that ρv(π1(X)) is
unbounded.

We consider the holomorphic map defined on X+
ρ by

q =
∏

w∈Ar(L)

pw ×
∏
T

sT ◦ π+
ρ ×

∏
v∈S

sρv ◦ π+
ρ .

The argument in section 4.1.2 can be done with q and we get a fibration X̃+
ρ →

S̃+
ρ where S̃+

ρ has no positive dimensional compact complex subspace (one should
observe that ρV HSw ∈ Q1, see [Eys04].).

Now we quotient by Γ+(ρ) and get a map s+
ρ : X → S+

ρ /Γ
+
ρ . One then uses once

again the same trick with the holomorphic map q defined on X̃ρ = X̃un/ ker(ρ)
by q = s+

ρ ◦ πρ. This produces a proper fibration s̃ρ : X̃ρ → S̃ρ where S̃ρ has no
positive dimensional compact complex subspace.

4.2.3. General case. The general case of theorem 4.2.1 is given in [Eys04] and relies
on [LasRam96]. The idea is to replace M with M ′ the Q̄-points of its Q̄-Zariski
closure and use the {s̃ρ}ρ∈M ′ as above.

5. Reductive Shafarevich conjecture

5.1. Psh functions attached to pluriharmonic mappings. In order to prove
that the normal Stein space S̃M constructed in theorem 4.2.1 is Stein under some
restrictions on M , we need to construct a strongly plurisubharmonic continuous
exhaustion function on this space.

On the other hand the theory of pluriharmonic mappings provides continuous
weakly plurisubharmonic functions thanks to the following principle: the pull-back
of a convex function by a (pluri)harmonic mapping is (pluri)subharmonic. It should
be noted that NPC spaces carry several convex functions. For instance, the distance
to a fixed point is convex.

Hence, one needs to systematically study the degeneracies of the complex hes-
sian of the plurisubharmonic functions constructed by the method of harmonic
mappings. It turns out that nice lower bounds for the complex hessian are satified
by plurisubharmonic functions arising from archimedian and non archimedian rep-
resentations of Kähler groups. Let us now give more details on these constructions.

5.1.1. The non archimedian case. Let ρv : π1(X) → GLN (Kv) be a reductive
representation in a local field and assume that Theorem 3.3.7 applies. Denote by
hv : X̃un → ∆BT (GLN (Kv)) the corresponding pluriharmonic mapping. Consider
Λ : A∗ → Ω1(Spρv (X)) the canonical system of one forms attached to ρv. Let (ei)
be an orthonormal basis of A∗. The expression:

ω0,ρv =
√
−1
2

N∑
i=1

Λ(ei) ∧ Λ(ei)
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defines a closed real semipositive (1, 1) form on the smooth locus of Spρv (X) and
is W -invariant. It therefore descends to a closed real semipositive (1, 1) form ω1,ρv

on X − S.
The Lipschitz property of hv implies that ω1,ρv is uniformly bounded hence

extends to a closed positive current on X using for instance the Skoda-El Mir
theorem. In fact, it is natural to expect that it descends to a closed positive
current on the Katzarkov-Zuo reduction of X. Since this Katzarkov-Zuo reduction
needs not be smooth, we first have to make sense of the notion of a closed positive
current on it! This is not so well known but very easy:

Definition 5.1.1. Let Z be an irreducible normal complex space.
A upper semi continuous function φ : Z → R ∪ {−∞} is plurisubharmonic if it

is not identically −∞ and every point z ∈ Z has a neighborhood U embeddable as
a closed subvariety of the unit ball B of some CM in such a way that φ|U extends
to a psh function on B.

A closed positive current with continuous potentials ω on Z is specified by a data
{Ui, φi}i of an open covering {Ui}i of Z, a continuous psh function φi defined on
Ui such that φi − φj is pluriharmonic on Ui ∩ Uj.

A closed positive current with continuous potentials Z is a Kähler form iff its
local potentials can be chosen smooth and strongly plurisubharmonic.

A psh function φ on Z is said to satisfy ddcφ ≥ ω iff φ − φi is psh on Ui for
every i.

In other words, a closed positive current with continuous potentials is a section
of the sheaf C0 ∩ PSHZ/Re(OZ).

Definition 5.1.2. Assume Z to be compact. The class of a closed positive current
with continuous potentials is its image in H1(Z,Re(OZ)).

A class in H1(Z,Re(OZ)) is said to be Kähler if it is the image of a Kähler
form.

To make contact with the usual terminology observe that if Z is a compact
Kähler manifold H1(Z,Re(OZ)) = H1,1(Z,R).

Lemma 5.1.3. There is a closed positive current with continuous potentials on
Sρv (X) which we denote by ωρv such that s∗ρvωρv |X−S = ω1,ρv .

Proof: Left as an easy exercise, see [Eys04]. �
The current ωρv will serve as a lower bound for the complex hessian of plurisub-

harmonic functions constructed by the method of harmonic mappings. Let us be
more precise. Let x0 ∈ ∆BT (GLN (Kv)) be an arbitrary point.

Proposition 5.1.4. The function φρv : X̃un → R≥0 defined by

φρv (x) = d2(hv(x), x0)

satisfies the following properties:

(1) φρv descends to a function φ∗ρv on X̃ρv = X̃un/ ker(ρv).
(2) Let π : X̃un → X̃ → X̃ρv be a covering space of X dominating X̃ρv . By

abuse of notation we denote by φρv the function φ∗ρv ◦ π .
(3) φρv is locally Lipschitz.
(4) φρv is psh.
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(5) Let T be a normal complex space and X̃ r→ T a proper holomorphic fibration

such that sρv ◦ π : X̃ → Sρv (X) factorizes via a morphism T
φT→ Sρ(X).

The function φρv ◦ π is of the form φρv = φTρv ◦ r, φ
T
ρ being a continuous

weakly psh function on T .
(6) Furthermore, φTρv satisfies ddcφTρv ≥ φ

∗
Tωρv .

Proof: For complete details on this plausible statement see [Eys04]. �

5.1.2. VHS case. Let ρw : π1(X) → GLN (C) be a reductive representation which
appears as the monodromy of a C-VHS. We may assume that ρw(π1(X)) ⊂ U(Pw, Qw)
with Pw + Qw = N . Then the pluriharmonic mapping hw : X̃un → Rw =
Riem(U(Pw, Qw)) factors as P ◦ pw where P : Dw = U(Pw, Qw)/U → Rw is
the natural projection.

Lemma 5.1.5. The plurisubharmonic function φρw : X̃un → R≥0 defined by

φρw(x) = d2(hw(x), x0)

descends to a smooth plurisubharmonic function on the space S̃ρw which appears
in the proper holomorphic fibration X̃ρw = X̃un/ ker(ρw) → S̃ρw constructed in
theorem 4.2.1.

There is a smooth holomorphic hermitian line bundle (L, h) on the Shafarevich
variety Shρw(X) = S̃ρw/Γw with a semi positive curvature current ωρw such that,
denoting by πρw : S̃ρw → Shρw(X) the natural quotient map, there exists C > 0
such that ddcφρw ≥ C.π∗ρwωρw .

Proof: See [Eys04]. However the relevant computation was already made in
[GriSch69], in fact (L, h) is a pull-back of a holomorphic hermitian line bundle on
Dw with positive curvature along the horizontal directions. . �

5.1.3. A sufficient condition for S̃M to be Stein. Consider M ⊂MB(X,GLN )(Q) a
set of conjugacy classes of reductive linear representations. Assume that M is con-
structible for the Q̄-Zariski topolology. Let X̃M the covering space corresponding
to the intersection HM of kernels of all elements in M . Theorem 4.2.1 constructs a
proper holomorphic fibration X̃M → S̃M .

Definition 5.1.6. A representation of type I attached to M is a reductive ρv :
π1(X) → GLN (Kv) where Kv is a local field obtained by one of the following
constructions:

• Localization at a non archimedian place of a number field L of a represen-
tative of an element of M .
• Reduction modulo p of the localization at a point of an affine connected

curve T/Q̄ of a representation ρT : π1(X) → GLN (Q̄(T )) such that the
rational map T →MB(X,GLN ) maps T into M .

A representation of type II attached to M is a reductive ρw : π1(X)→ GLN (C)
which occurs as the holonomy of a C-VHS obtained by deforming w ◦ ρ where w is
a real or complex embedding of a number field L and ρ : π1(X) → GLN (L) is a
reductive representation whose class lies in M .

Proposition 5.1.7. If the convex hull of the [ωρ] ∈ H1(ShM (X), Re(OShM (X)))
for ρ attached to M contains a Kähler class then S̃M is Stein.

Proof: Easy. See [Eys04]. �
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5.2. Absolute constructibility. Assume now that compact Kähler manifold X
is projective algebraic and defined over a subfield ` ⊂ C.

Let G be an algebraic reductive group defined over Q. The representation scheme
of π1(X,x) is an affine Q-algebraic scheme described by its functor of points:

R(π1(X,x), G)(Spec(A)) := Hom(π1(X,x), G(A))

for any Q algebra A. The character scheme of π1(X,x) with values in G is the
affine scheme

MB(X,G) = R(π1(X,x), G)//G.

Character schemes of fundamental groups of complex projective manifolds are
rather special. Simpson constructed two additional quasi-projective schemes over
`, MDR(X,G) and MDol(X,G). The C-points of MDR(X,G) are in bijection with
the equivalence classes of flat G-connections with reductive monodromy, and the
C-points of MDol(X,G) are in bijection with the isomorphism classes of polystable
G-Higgs G-bundles with vanishing first and second Chern class. Whereas the notion
of a polystable Higgs bundle depends on the choice of a polarization onX the moduli
space MDol(X,G) does not, i.e. - all moduli spaces one constructs for the different
polarizations are naturally isomorphic. MDol(X,G) is acted upon algebraically by
the multiplicative group. There is furthermore a complex analytic biholomorphic
map

RH : MB(X,G)(C)→MDR(X,G)(C)

and a real analytic homeomorphism

KH : MB(X,G)(C)→MDol(X,G)(C).

RH and KH are also indpendant of the choice of a Kähler metric. When l = Q,
one defines an absolute constructible subset of MB(X,G)(C) to be a subset M such
that:

• M is the set of complex points of a Q-constructible subset of MB(X,G),
• RH(M) is the set of complex points of a Q-constructible subset ofMDR(X,G),
• KH(M) is a C∗-invariant set of complex points of a Q-constructible subset

of MDol(X,G).

There is a rich theory describing the structure of absolutely constructible sub-
sets in MB(X,G). Here we briefly summarize only those properties of absolutely
constructible sets that we will need later. Full proofs and details can be found in
[Sim93a].

• The full moduli space MB(X,G) of representations of π1(X,x) in G defined
in [Sim94] is absolutely constructible and quasi compact (acqc).
• The closure (in the classical topology) of an acqc subset is also acqc.
• Whenever ρ is an isolated point in MB(X,G), {ρ} is acqc.
• Absolute constructibility is invariant under standard geometric construc-

tions. For instance, for any morphism f : Y → X of smooth connected
projective varieties, the property of a subset being absolutely constructible
is preserved when taking images and preimages via f∗ : MB(X,G) →
MB(Y,G). Similarly, for any homomorphism µ : G → G′ of reductive
groups, taking images and preimages under µ∗ : MB(X,G) → MB(X,G′)
preserves absolute constructibility.
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• Given a dominant morphism f : Y → X and i ∈ N the set M i
f (X,GLn) of

local systems V on Y such that Rif∗V is a local system is ac. Also, tak-
ing images and inverse images under Rif∗ : M i

f (X,GLn) → MB(Y,GLn′)
preserves acqc sets.
• The complex points of a closed acqc set M are stable under the natural C∗

action. As seen before, the fixed point set MVHS := MC∗ consists of repre-
sentations underlying polarizable complex Variations of Hodge structures.

The main theorem of [Eys04] is:

Theorem 5.2.1. Let X be a connected complex projective manifold and M ⊂
MB(X,GLN (Q̄)) an absolute constructible subset. Then X̃M is holomorphically
convex.

Theorem 5.2.1 follows via Proposition 5.1.7 from:

Proposition 5.2.2. The convex hull of the [ωρ] ∈ H1(ShM (X), Re(OShM (X))) for
ρ attached to M contains a Kähler class.

5.3. Rigid integral case. A representation of a group in G(Q̄) where G/Q̄ is a
linear algebraic group is integral if for every embedding of G in GLN its image is
conjugate to a subgroup of GLN (Z̄)

Assume M = {[ρ]} where ρ : π1(X)→ G(L) is rigid and integral. Hence the non
trivial associated representations are all of type II. Then the group Γρ = ρ(π1(X))
acts discretely on

∏
w∈Ar(L)Dw and shρ : X → Shρ(X) is the Stein factorization

of the holomorphic map pρ : X →
∏
w∈Ar(L)Dw/Γρ. This determines a finite

holomorphic map σρ : Shρ(X) →
∏
w∈Ar(L)Dw/Γρ such that pρ = σρ ◦ shρ. For

every Z ⊂ Shρ(X) a closed complex subvariety the map σρ|Z is finite onto its image
hence generically immersive and horizontal.

Since the line bundle L is a tensor product of line bundles on the Dw that have
positive horizontal curvature, it follows that (

∑
w ωρw)dim(Z).Z > 0.

In particular [
∑
w ωρw ] is a Kähler form by [DemPau04] -which holds true with

singularities.

5.4. Conclusion of the proof of theorem 5.2.1. As the preceding section sug-
gests, representations of type II attached to M are easily dealt with. The main
problem is to show that absolute constructibility entails enough representations of
type I.

Consider shIM : X → ShIM (X) the simultaneous Stein factorization of the rep-
resentations of type I attached to M . One has a factorization shIM = ψ ◦ shM and
for every representation of type I

H1(ShM (X), Re(OShM (X)) 3 [ωρv ] = ψ∗[ω′ρv ] [ω′ρv ] ∈ H1(ShIM (X), Re(OShIM (X))).

Theorem 5.2.1 follows then in the now familiar way of:

Proposition 5.4.1. Let M ⊂ MB(X,GLN )(Q̄) be absolute constructible. Then,
the convex hull of the [ω′ρv ] ∈ H1(ShIM (X), Re(OShIM (X)) contains a Kähler form.

Remark 5.4.2. This is true if N = 1. In that case, representations of type II
are unitary hence give trivial information for our purpose. In that case, we have
ShIM = ShM .

The proof is non trivial and relies on an idea of [Sim93b] pushed further in
[JosZuo96],[JosZuo00].
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6. Linear Shafarevich conjecture

6.1. Variations of Mixed Hodge Structure. To treat linear groups, one has to
take into account non reductive linear representations of the fundamental group.
These do not posses pluriharmonic mappings but a privileged subclass of local
systems does have holomorphic period mappings: the Variations of Mixed Hodge
structures introduced in [StZ85] [Usu83].

Definition 6.1.1. A C-VMHS on X is a 6-tuple (X,V,W•,F•,G
•
, (Sk)k∈Z) where:

(1) V is a local system of finite dimensional C-vector spaces,
(2) W• = (Wk)k∈Z is a decreasing filtration of V by local subsystems,
(3) F• = (Fp)p∈Z a biregular decreasing filtration of V ⊗C OX by locally free

coherent analytic sheaves such that d′Fp ⊂ Fp−1 ⊗ Ω1
X ,

(4) G• = (Gq)q∈Z a biregular decreasing filtration of V ⊗C OX̄ by locally free
coherent antianalytic sheaves such that d′′Gp ⊂ Gp−1 ⊗ Ω1

X̄
,

(5) ∀x ∈ X the stalk (Vx,W•,x,F•x ,G
•
x) is a C-MHS,

(6) Sk is flat sesquilinear non degenerate pairing on GrW
k V,

(7) (X,GrW
k V, GrW⊗COX

k F•, GrW⊗COX̄
k G•, Sk) is a C-VHS.

6.2. Goldmann-Millson’s theorem and Hodge Theory. In this paragraph,
we review the construction of [EysSim09] which develops some Hodge theoretic
aspects of Goldman-Millson’s theory of deformations for representations of Kähler
groups [GolMil88].

Fix N ∈ N and assume that G = GLN and M = MB(X,GLN ). Let ρ :
π1(X,x) → GLN (C) be the monodromy represention of a C-VHS. Let Ôρ be the
complete local ring of [ρ] ∈ R(π1(X,x), GLN )(C). Let

obs2 = [−;−] : S2H1(X,End(Vρ))→ H2(X,End(Vρ))
be the Goldman-Millson obstruction to deforming ρ. Define I2, (In)n≥2, (Πn)n≥0,
as follows:

Π0 = C
Π1 = H1(X,End(Vρ))∗

I2 = Im(tobs2) ⊂ S2H1(X,End(Vρ))∗

In = I2S
n−2H1(X,End(Vρ))∗ ⊂ SnH1(X,End(Vρ))∗

Πn = SnH1(X,End(Vρ))∗/In
Then the complete graded local C-algebra

(ÔT ,m) := ̂(⊕n≥0Πn,⊕n≥1Πn)

is the function algebra of a formal scheme T which is the germ at 0 of the
quadratic cone

obs−1
2 (0) ⊂ H1(X,End(Vρ)).

Here obs2 is the quadraticH2(X,End(Vρ))-valued function defined onH2(X,End(Vρ))
by obs2. In [GolMil88], the formal local scheme T is realized as a hull of the defor-
mation functor for ρ. They construct in effect a representation ρGMT : π1(X,x) →
GLN (ÔT ) such that:

(1) ρGMT
∼= ρ mod m,

(2) ρGMT mod m2 is the universal first order deformation of ρ,
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(3) For every local Artin ring (A,m) with A/m = C and every ρA : π1(X,x)→
GLN (A) such that ρA ∼= ρ mod m there is a ring morphism ψ : ÔT → A
such that ρA = ψ(ρGMT ).

This hull is well defined up to automorphism but not up to a unique isomorphism.
We can now summarize the results developped by [EysSim09] in the form we

shall need:

Definition 6.2.1. Let η1, . . . , ηb ∈ E•(X,End(Vρ)) form a basis of the subspace
H1(X,End(Vρ)) of harmonic twisted one forms, each ηi being of pure Hodge type
(Pi, Qi) for the Deligne-Zucker C-Mixed Hodge Complex E•(X,End(Vρ)). Then
{ηi} is a basis of H1(X,End(Vρ)) whose dual basis we denote by ({η1}∗, . . . , {ηb}∗).

The End(Vρ)⊗Π1-valued one-form α1 is defined by the formula:

α1 =
b∑
i=1

ηi ⊗ {ηi}∗.

Proposition 6.2.2. For k ≥ 2, we can construct a unique D′′-exact form αk ∈
E1(X,End(Vρ))⊗Πk such that the following relation holds:

D′αk + αk−1α1 + αk−2α2 + . . .+ α1αk−1 = 0.

Proposition 6.2.3. Let A =
∑
αk acting on the vector bundle underlying the

filtered local system (Vρ⊗ÔT ,Wk(Vρ⊗ÔT ) = Vρ⊗mk−wght(Vρ)), whose connection
will be denoted by D.

Then, D+Av respects this weight filtration, satisfies Griffiths’ transversality for
the Hodge filtration F• defined by

Fp =
0⊕

k=−∞

Fp(Vρ ⊗Π−k)

and we can construct an anti-Hodge filtration so that the resulting structure is a
graded polarizable C-VMHS. Its monodromy representation denoted by ρGM

′′

T is a
hull of the deformation functor of ρ.

A detailed proof of this proposition is given in [EysSim09].

Definition 6.2.4. The C-VMHS obtained from that of Proposition 6.2.3 by reduc-
tion mod mn+1 is of finite rank and will be called the n-th deformation of Vρ and
will be denoted by Dn(Vρ).

These universal VMHS being constructed, we need to explain how to use them.

Remark 6.2.5. The restriction G = GLN in the above considerations was intro-
duced only for convenience. It is not essential. In [EysSim09], similar statements
are proven for arbitrary reductive groups G.

6.3. Strictness.

6.3.1. Subgroups of π1(X,x) attached to an absolute closed subset. Let G be a re-
ductive algebraic group defined over Q. Suppose as before M ⊂ MB(X,G) is an
absolute closed subset.

Definition 6.3.1. Let MV HS be the subset of M(C) consisting of the conjugacy
classes of C-VHS that is MV HS := KH−1(MDol(X,G)C∗(C)) ∩M(C).
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With no risk of confusion we will identify this conjugacy classes with actual
representations.

Definition 6.3.2. The tannakian categories T V HSM and TM are defined as follows:
T V HSM : is the full Tannakian subcategory of the category of local systems on
X generated by the elements of MV HS.

TM : is the full Tannakian subcategory of the category of local systems on X
generated by the elements of M .

Every object in T V HSM is isomorphic to an object which is a subquotient of
α1(ρ1) ⊗ . . . ⊗ αs(ρs), where ρ1, . . . , ρs are elements of M . The objects of T V HSM

underly polarizable C-VHS.

Definition 6.3.3. Given X, G, and M ⊂ MB(X,G) as above, and k ∈ N we
define the following natural quotients of π1(X,x):

Γ∞M : is the quotient of π1(X,x) by the intersection H∞M of the kernels of the
monodromy representation of Dn(Vσ), σ ∈M , n ∈ N, and of the objects of
T V HSM .

ΓkM : is the quotient of π1(X,x) by the intersection Hk
M of the kernels of the

monodromy representation of Dk(Vσ), σ ∈ T V HSM , and of the objects of M .

Note that we have the inclusions:

Γ∞M =
⋂
k∈N

ΓkM ⊂ Γk+1
M ⊂ ΓkM ⊂ Γ0

M = ΓM .

It should be noted that since Hk
M is normal the various base point changing iso-

morphisms πX(X,x′) → π1(X,x) respect Hk
M . Hence, dropping the base point

dependance in the notation Hk
M is harmless.

6.3.2. Strictness. Let z ∈ Z be a base point in the connected projective variety Z.

Proposition 6.3.4. For every f : (Z, z) → (X,x) such that π1(Z, z) → ΓM is
trivial, the following are equivalent:

(1) For every V in T V HSM , H1(X,V)→ H1(Z,V) is trivial,
(2) π1(Z, z)→ Γ1

M is trivial,
(3) For every σ ∈ T V HSM and k ∈ N , for every Ẑi → Z a resolution of singu-

larities of an irreducible component, the VMHS Dk(Vσ) bZi is trivial.
(4) π1(Z, z)→ Γ∞M is trivial.

Proof: The proof of this generalization of the main point of [Kat97] uses the
explicit construction [EysSim09], see [EKPR09]. The only thing to prove is (1)⇒
(4). Since in degree 1 restrictions of harmonic forms stay harmonic, (1) implies that
the restriction to Z of the form αv1 is zero.

The forms αk for k ≥ 2 are obtained by recurrence as follows. Applying the
D′D′′ lemma, we see that the curvature of Dk = D +

∑k−1
i=1 αi is D′D′′-exact.

Then αk = ±D′′βk where βk is the unique (up to a parallel section) solution on X
of D′D′′βk = (Dk)2.

Now a solution of this equation βk on X restricts on each resolution of singular-
ities Ẑi of a component of Z to a solution of the same equation on Ẑi. From this
we infer that αk|Z = 0 for k ≥ 2.

�



38 PHILIPPE EYSSIDIEUX

6.4. Linear Shafarevich Conjecture. The main Theorem of [EKPR09] is:

Theorem 6.4.1. Let X be complex projective manifold. Let G be a reductive
algebraic group defined over Q. Let M = MB(X,G).

For every 0 ≤ k ≤ +∞, the covering space X̃un/Hk
M is holomorphically convex.

The case k = 0 is covered by the main result of [Eys04]. Proposition 6.3.4 reduces
the theorem to the case k = 1. In fact, the maximal compact connected subspaces
of X̃un/Hk

M , k ≥ 1, are lifts of those of X̃un/H1
M . Hence, the Shafarevich maps for

the Hk
M are the same for all k ≥ 1.

The theorem implies easily the Shafarevich conjecture for complex projective
manifolds whose fundamental group posseses a faithfull linear representation.

The idea of the proof is as follows.
Using [Eys04], we construct the Cartan-Remmert reduction s0

M : X̃M = X̃un/H0
M →

S̃0
M . Its composition with the natural projection gives a holomorphic map s1

M :
X̃un/H1

M → S̃0
M .

Fix Σ a finite subset of T V HSM . For σ ∈ Σ, the period mapping of D1(Vσ) is a
holomorphic map p1

σ : X̃un/H1
M → MD1

σ where MD1
σ is a mixed period domain

parametrizing MHS of weights −1, 0. This complex manifold is an affine bundle
over a Griffiths period domain.

Using this we have a holomorphic map

q(Σ) =
∏
σ∈Σ

p1
σ × s1

M :
∏
σ∈Σ

X̃un/H1
M →

∏
σ∈Σ

MD1
σ × S̃0

M .

If every connected component of a fiber of q(Σ) is compact we may argue as
in section 4. The restriction of q(Σ) to the lift of (a finite etale cover) of a fiber
Z of s0

M is essentially given by a finite set of abelian integrals of Z. We assume,
for simplification, Z is smooth and irreducible (the general case can be reduced to
this special case). Their differentials span a vector subspace P 1,0 of H0(Z,Ω1

Z) and
define a R- sub Hodge structure P = PΣ(Z/X) = P 1,0 ⊕ P 1,0 ⊂ H1(Z,C).

One sees easily that one can choose Σ0 in such a way that PΣ(Z/X) ⊂ PΣ0(Z/X)
for all Σ and Z as above.

If P 1,0 ⊂ H0(Z,Ω1
Z) is a vector subspace, the holomorphic map they define on

their integration covering Z̃P → (P 1,0)∗ is proper provided P is defined over Q.
This reduces the problem to proving that PΣ0(Z/X) is rational. Under this

condition, PZ = P ∪ H1(Z,Z) is a weight 1 polarized Z-Hodge structure whose
Albanese torus A is a quotient of the Albanese torus of Z and the above integration
covering is a base change of the holomorphic map Z → A. This is achieved by
a Mixed Hodge Theoretic argument in [EKPR09] using [EysSim09] crucially. A
simpler argument might actually exist but remains to be discovered.

7. Conclusion and Open Problems

The main theorems of [Eys04] [EKPR09] rely on a projectivity assumption which
comes from the use of [Sim93a] by [Eys04]. On the other hand, it is natural to expect
these theorems hold in the compact Kähler case.

7.1. Bogomolov-Katzarkov’s examples. Are the general type surfaces constructed
in [BoKa98] counter-examples to the Shafarevich conjecture? This seems to be a
hard problem in geometric group theory.
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7.2. Kähler Groups. The problem, originally posed by Serre, of determining
which groups can occur as the fundamental group of a complex projective man-
ifold is wide open. It is not known whether the class coincides with Kähler groups
(fundamental groups of compact Kähler manifolds). Non abelian Hodge Theory
is very powerful to find restrictions obeyed by Kähler groups. For a survey, see
[ABCKT96].

The class of fundamental groups of complex quasiprojective manifolds is studied
by [JosZuo96][JosZuo00], see also the important work of T. Mochizuki [Moc07].

7.3. Rigid representations of Kähler groups. A semisimple representation in
G(Q̄) where G is a semisimple group is called integral if the values of its character
are algebraic integers . No non integral rigid representation of a Kähler group is
known.

A conjecture of Simpson claims this is impossible. This conjecture is correct if
G = SL2. This conjecture seems to be rather difficult in general. Non archimedian
non abelian Hodge theory is obviously a tool.

7.4. Toledo conjecture. A real semisimple algebraic group is of hermitian sym-
metric type if its Riemannian symmetric space is a bounded symmetric domain. It
is conjectured that a uniform lattice in a real semisimple algebraic group is Kähler
iff the group is of hermitian symmetric type.

A related problem is the Toledo conjecture claiming that H2(π1(X),R) 6= 0
whenever X is a compact Kähler manifold such that π1(X) has an infinite complex
linear representation.

Klingler (unpublished), developping an idea of Reznikov, has given an argument
reducing this to the case where all linear representations underly a rigid C-VHS.
This case is still open despite several attempts.

7.5. Invariance of Γ-dimension and variation of the Shafarevich mor-
phism. It is expected, thanks to work of Campana [Cam94] and Claudon [Cla09],

that the Γ-dimension of (X,H) namely dim S̃H(X) as in Theorem 1.0.5 is a defor-
mation invariant.

The linear case of this problem is related to the following admittedly vague
question: can one formulate and prove a partial converse to the Kähler case of
the Gromov-Schoen theorem, namely reconstruct from an enriched version of the
spectral covering the original action of the fundamental group on an affine building?
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