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Abstract: As the wavelength € goes to zero, the slowly varying envelope
approximation from nonlinear optics allows one to replace the fields (solu-
tions to Maxwell equations) by profiles solutions to a nonlinear Schrédinger
equation (NLS). Depending on the model, this equation may be critical and
focusing, and then admits explosive solutions. In this case, the approxima-
tion breaks down, and, for ¢ fixed, the fields may be globally defined in time,
and smooth. This happens in the case of Maxwell-Bloch equations [6] and
of the anharmonic oscillator with saturated nonlinearity [9].

We analyse the question of self-focusing for a wave equation in space di-
mension 2 —the same techniques apply to usual models in greater dimension.
We give a new representation of the fields in terms of oscillating profiles,
ruled by focusing rays. For non-saturated nonlinearities, we prove that the
approximation by an explosive solution of NLS is valid up to a time of the
order of a negative power of In(1/e) before explosion —this exhibits an ampli-
fication of the fields by a positive power of In(1/¢), between ¢ = 0 and that
time.
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Introduction

A standard model for describing the propagation of an electromagnetic wave
is the coupling of Maxwell equations with an anharmonic oscillator (¢f. [3],

[2]):



o F = —curl B — 0,P
(1) 0;B = curl £
e?0}P + VpV(P) =4E.

Here, (E, B) is the electromagnetic field, and P is the polarization of the
medium. The physically relevant fields also satisfy div (E 4+ P) = div B = 0,
which is true for all times as soon as it is at one given time. The response of
matter is given by a nonlinear spring force, with the same frequency 1/¢ as
the wave.

The slowly varying envelope approximation (see [4], [11]) leads to a non-
linear Schrodinger equation (NLS). The potential V' is replaced by its Taylor
expansion at the origin,

V(P) = alP]* = B|P*,

.ys3+t

and the vectoru = (E, B, P,c0,P) is approximated by w,,, = eld(et, y1,y2)e" =,
U=(&,B,P,Q). The fields must be polarized,
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and the amplitudes K(T,y1,y2), L(T,y1,y2) are solution to:

) K K . K
(2) 107 (L) — ChAy, 4 <L> —C’Q(|Ix|2—|-|L|2) (L) =0.

This is a critical NLS equation in space dimension 2, possibly with focusing
nonlinearity (C1Cy > 0), depending on the details of the model.

This approximation can be rigorously justified (see [5]), for € small enough,
on any time interval [0,7}/e] such that the solution of (2) remains smooth
on [0,7y]. However, a time T, of explosion for a solution to (2) is usually
thought as an indication of self-focusing: a variation of the refractive index
of the medium induces curved light rays, which concentrate in the region of
maximal refractive index.



First, the slowly varying envelope assumption (from which (2) is derived)
is violated in this region, where fields become too large. Second, the elec-
tromagnetic field may be globally defined in time (and smooth), even if the
profile U explodes in finite time: in [6], Donnat and Rauch consider Maxwell-
Bloch systems. In [9], Joly, Métivier and Rauch deal with (1), when the po-
tential V' is saturated: if the second and third derivatives of V' are bounded,
H?*(R?) initial data generate global solutions to (1).

In this paper, we investigate further the mechanism of self-focusing, eval-
uating more precisely how long the Schrodinger approximation is valid. We
consider a simpler model, a scalar wave equation in space dimension 2:

(3) Ou + i F(dwu) = 0, with F(z) = |z[*z.
Theorem 0.1. Fiz t, > 0, and define

31/4
\/ch (2Y)

There are e9,C > 0 such that for all € €]0,&0|, the initial value problem
associated with (3), for initial data

uftzo = eqqg (0, yg/\/g) eiyl/s,

atui:o = éuftzo + O(e) in S(T. x R), with T. the torus R/(2m¢e),

(4)  ao(t,Y) = (t, — t)_l/QeiQ?t*:lt)R ( Y t> , with R(Y') =

*

admils a unique smooth solution u® € C'(S(T.xR)) fort € [0,t,—C(In1/2)~'/3].
Furthermore, as ¢ — 0, we have the approzimation:

|0 — iao (t.92/v7) € = o(flao(t)]|1).

Ly
The link with the physical context above will be clearer after a few re-

y1+t
€

marks:

i) The same kind of result is valid in higher dimension, and for the system
(1): see Remark 1.1.

i) From the profile ao(t,Y)e?, in which we substitute Y = yy/1/z,0 =
(y1 + t)/e, we recover the long-time setting leading to (2) after rescaling:
replace (¢,y) by v/2(t,y), and y/¢ by e. We have chosen these scales so as to
give an alternative description of u® in terms of curved phases and focusing
rays. See Section 3, and [7].



iii) Equation (3) preserves only |Vu|zz. This is not sufficient to guarantee

global existence of u. When the maximal existence time t* of a smooth solu-

tion u is finite, we have ||u(t)|L« — 0. The theorem doesn’t prove that u°
t—t*

(with ¢ fixed) explodes at ¢t = t,, but shows an amplification of ||u|[z~ by a

factor (In1/¢)~"/ between t = 0 and ¢ = ¢, — C'(In1/2)~"/3. This eliminates

standard proofs of global existence, like for small data (see [12]).

iv) Global existence is achieved in the other limit: ¢ fixed, ¢, — 0, which cor-

responds to small initial data. Saturation, replacing the nonlinearity F(z)
4

by Gy = L

1 +e28
the mechanism of catastrophic self-focusing seems to be: first, a concentra-

tion due to linear focusing of rays (“self-focusing”); second, activation of
nonlinear effects effects by this amplification. Blow-up (“catastrophic” self-

also ensures global existence of u°, as in [9]. Thus,

focusing) then depends on the strength of the nonlinearity: saturation stops
the development of the singularity, but without saturation, blow-up may oc-
cur. That’s why we try to measure how close the exact solution is to the
explosive approximate solution.

The paper is organized as follows:
Section 1: (formal) definition of the explosive profile aq via the conformal
invariance of NLS.
Section 2: Wentzel-Kramers-Brillouin asymptotics. A corrector a. is de-
fined to get a better approximation.
Section 3: thanks to non-uniqueness of the profile representation, we give
an alternative description of u® based on focusing non-planar phases.
Section 4: proof of Theorem 0.1. We first change scales (Paragraph 4.1)
and look at U(z) = u(t,y1/e, y2/\/€), 2m-periodic in y;. In Paragraph 4.2, we
write down energy estimates for the residual 0,V = 0,U — 0,U,,, (||0:V ]|
is then controlled by Sobolev’s inequality). This is the notable difference
between this work and [10], where the authors need global existence of the
(small) approximate solution, whereas we "follow” the explosive approxi-
mate solution up to some boundary layer before ¢,. This boundary layer ap-
pears when requiring the corrector a. to remain small compared to aq (Para-
graph 4.3) and in the bootstrap argument showing ||0;V ||re < ||0:Uappl| o0
(Paragraph 4.4).



1 From the wave equation to explosive solu-
tions of NLS

A classical technique for constructing explosive solutions to NLS comes from
the pseudo-conformal invariance of this equation (see [8]): if b(¢,Y) is a
solution to

(5) 210 — Ogu — |u|*u = 0,

then, for all ¢, € R, we define another solution by:

a(t,Y) = (t”%”””b)( - >=(t*—t)‘l/Qe”z/W*—f)b( LY )

t,—t't, —t t,—t't, —t

When seeking a solution u to (3) in the 3-scales form u®(z) = eld*(t, y2/ /2, (y1+
t)/e) with a profile U¢(¢,Y,0) € C*([0,t,[xR x T) (periodic w.r.t. the last

variable, 6), the chain rule leads to the following sufficient equation:
(6) (20,05 — 0% U + DU + 1|0gU + cOUT |} (OpU + cOUT) = 0.

In order to let these quantities vanish at first order (see the WKB expansions
in Paragraph2), it is then natural to look for a profile ug(¢, Y, 6) such that:

(7) [287589 - 8}2/]’&0 —|— i|89u0|489u0 = 0

There are explicit solutions to this equation. When ug = b(¢,Y)e”, it
is equivalent to require that b satisfies (5), and b(t,Y) = e */2R(Y) is a
solution, with R(Y) = 3'4(ch (2Y))~"/% (the unique positive solution of
R" — R+ R° =0, up to translation).

Now, use the pseudo-conformal invariance of (5) to get a solution ug(¢,Y, ) =

ao(t,Y)e to (7):

12 Y
(8) Go(t, V) = (1 — 1)~V 0702000 (t t) _
For all t € [0,t,[, ao(t) € S(R), and ap explodes at t = 1, (|lao(t)]|;~ =
31/4(t* _ t)—1/2)

Remark 1.1. The same construction is possible in higher dimension N: the
pseudo-conformal transform is u(t,z) — t_N/Qe_i|$|2/2tﬂ(1/t,x/t). Then,
—AR+ R — R™/N —= 0 also has a solution in S, and the same is valid
for the equation —AR + mR + g(R) = 0, m = cst, under suitable behavior
of g at the origin and at infinity (see [1]).



2 WKB expansions and initial data for u°

If we want to deduce from an approximate solution eld*(t,y2/\/z, (y1 +1)/¢)
the existence of an exact solution to (3), we must construct a solution to
(6) to higher order than eug(t,y2/v/e, (y1 + t)/e). That’s why we need a
corrector to the first profile ug. The general form for ¢, (from [5]) has two
such correctors: U° = e(ug++/cus +euz). Here, when u; vanishes at ¢ = 0,

app
we can let it vanish for all times. Thus, we set:

g, () = ey, (tya/VE, (i + 1) /e), Us,, = wo+ cue = (a0 + ea.)(t, Y )e”.
Proposition 2.1. We have the (formal) WKB expansion:

y1tt

+ 4|0l |0, = (S0 + &1 4+ RE)(t, ya)e =,

app app

(9) Ou

£
app

with go(t, Y) = 2‘5.875&0 — 8}2/610 — |CZO|46LO7
E(LY) = 20, — 8}2/% + afao + G(ao, a.),
G(ag,a.) = —|ao|*(sao + ia.) + 4iao|ao|® Re(ao(dsao + 1as)),
RE(t,Y) = *0%a, +1F((1 + c0;)(ao + ca.)) + F(ao) — G (ag, ay).
We can construct ag and a. such that & = & = 0: such an ay €
C=([0,t[xR) is given by (8), and & = 0 is a linear Schrodinger equation,
which has a unique solution for any a.,_, € L*(R).

Our goal is to show the existence of an exact solution u® to (3) close to

euo(t,y2/ve, (y1 +t)/e). Towards this end, we choose
(10) (lc|t=0 = 0,

which provides us with a (unique) corrector a. € C=([0,¢,[xR). Next, we
take the simplest initial data for v®, in view of evaluating u® — u

(11) {u =0 = Borp)

2 — 2t €
atu |t=0 = atuapp|t:0.

e .
app*

Remark 2.1.

i) We can compute Oyu

aPP|i=o

explicitly, and Oya. ts given by the equation & =0, so that:

in terms of the function R, since aqg is known

4

(12) atac|t=0 = 2

(020 — |ac|* a0 + 2iac|aol* (400 + Fdua] _, -



ii) Since the data are 2we-periodic in yy, the standard uniqueness arqgument
shows that so is u®(t) for each time.
3 Linear focusing

We can give an alternative profile description of the data in (11): u®|,_, also
has a representation via ) € S(R x T),

ys Y1+ y2/2t : Y
ut|,_, = ety <y—\/2_, M) , where @5(Y,0) = 1712 /*R <t_> e,
e & *

Similarly,

Y ? Y Y
i i () () o (1)

1 Y : :
+5t (=it R (t—ﬂ 6_2/%*6“9>

2 iy1 /e
+e atach:o,yzm/\/;e )

=y /vE0= (01 463 /260) /6

-y1+y§/2t* . .
and e~ ¢ also factors in the last term (see (12) in Remark 2.1).

Thus, we have a new profile representation of the initial data, with oscil-
lations involving the curved phase y; + y3/2t,. Now, defining v® such that

Oo® + i F(0°) = 0,
‘U6|t:0 = ’u6|t:07

at’U6|t:0 = Z 1 —I_ (yQ/t*)2’U6|t=07

we have two different ways of analyzing v®:
L- Plane phases: 9y, = i (/T4 e(V/L o, ) (02/V/E. 11/2)
=1 <u0|t=0 + OS(RXT)(g)) (yQ/\/a ’y1/5),

and from [5], for each t < t,, when ¢ is small enough,

Yo Y1+t ys Y1+t
u® = eld® <t, ﬂ’ Y1+ > ,'UE =) <t, y_27 Y1 + > : and HUE—VEHOHS _>0’
\/E ) \/E ) e—0




so that ||dsu® — O:v°||; v 0 uniformly on [0,¢].
E—r

2- Curved phases: since

‘U6|t=0 = 5'128 <y2/\/g7 950/5)
B,y = 1|8y doltg (y2/ Ve, do/e)

with ¢o = y1 + y3/2t,, on each time interval [0,¢], [7] ensures the represen-
y2 ¢

tation v° = eV° [ t, 2=, = |, where ¢ is characteristic for the d’Alembertian

Ve e
¢ = |0,¢], and ¢),_, = y1 + y3 /2.

This phase is implicitly determined by the “ray method”: &(t,y) = ¢o(2),
where z is the origin (at ¢ = 0) of the ray through (¢,y) (which here is a
straight line):

operator:

Vo(z
y—=z+ tﬂ =
[Vo(2)|
Direct computations show that the rays focus exactly at time ¢ = ¢, (gener-
ating a caustic, where ¢ is no more smooth).

t

t=0

Y2

Figure 1: The graph of ¢(t,y1,.) at t =0 and ¢ = ¢,.

Remark 3.1. Here, ¢ can be determined explicitly (before t = t,) by solving
analytically a fourth degree algebraic equation. However, the region where it
is of interest is the set of the “first” rays to focus, corresponding to y, = 0.
On these rays, one eastly computes that the gradient (w.r.t. t,y) of ¢ is the



same as the one of the linear phase yy+t. This indicates that planar and non-
planar phases representations correspond to similar oscillations, and give two
different ways of understanding the amplitude’s behavior.

4 Existence and approximation of u°

We prove a slightly stronger approximation than in Theorem 0.1:

Theorem 4.1. When C > 0 s sufficiently large, and for all a > 0, as
e —0,

H(?tus — @tuZWH = o(e*™) in L=((0,t, — C(In 1/5)_1/3) x R?).

4.1 Rescaling

So as to evaluate the lifespan of u®, we look for the times during which
||0:u®||; » is finite. With the idea of giving an approximation of u®, we define
v® = —ul,,, and try to verify [|0,v°|| . <[]0, || -

We make use of the wave equation satisfied by v®. It provides us with en-
ergy estimates for 0, ,v°, which bound ||9;v°||; -, thanks to Sobolev inequality.
However, these direct computations are too crude, because of Remark 2.1:):
u® and uj  are 2me-periodic in y;, and so is v®. Thus, estimating ||0;v°|| ;. by
||0¢v®|| 2, we loose a factor £*. That’s why we finally try to control ||0;V*||; .,

€

where

(13) VE(t,y) = v*(t, eyr, Veya).

In the same way, set (Uj,Ujpp,Rs)(x) i= (u®, ug,,p, %) (L, ey1, Veys) (where
ré(z) = R°(t, yg/\/g)eile from Proposition 2).

Notation 4.1. We write a < b when there is a constant C such that a < Cb.

4.2 Energy estimates for the error 9,V °

From the relation (13), subtracting equations (3) and (9), and using Taylor’s
formula for F(z) = |z|*z (as a differentiable function on R?), we get:

(14)
1

(02— 202 — <2V = — ( [ ar o
0

app

+ r@tvs) dr) 0 Ve — R°.



Consider / 2Re ((14) x 8;V*) dy. This gives:
(—mxm)xR

d . ) . . .
- (10:VN15e + 721103, VEIILe + 67 110, VoI

4
1

app

< (100,05 + 10718 ) N0V + 1Rl e 0V 2

1/2

so that, writing N(V*®) := (H@tV‘SHiQ +e72 HaylVEHiQ +et HayQV‘Ssz)

and [ := H@U,fpp ‘ioo + Hatvsleooi
d £ € &
(15) G V) LNV + || B e -

Differentiating (14), we get in the same way:
d € € € € &
(16) EN(ayV ) = [4N(ayv ) + [3 HatayUappHL2 ”atv HLOO + Hal/R HLOO 5

and for any second order derivative aj:

(17)
d
SN@2VE) 2L (00208, 10Vl e + (100,08, 190,12

+||02R"

L+ LN (92VE).

Adding (15)-(17), using Sobolev’s inequality and Gronwall’s lemma, since

Vi, = at‘/|f=0 = 0, we have:
t
(1) 0 e % N0V 0V = O [
0
1
where J(f) = / Lot 1 (00,02, o + 100205, + 12:0,05, ), )|

4.3 Defining the boundary layer for the corrector

2
We first define an interval [0,%(¢)] where U~ Uj := cuqg (t,‘y%yl + —>,
€

i.e. where U¢ := e*u, (t, Y2, Y1 + é) is a corrector to this quantity.

10



Proposition 4.1. When t, —t > C(In1/2)~'/3 for some C' (> 1),
10U lwree < N[O gpp e and [0 U] |12 < (|00, | 12

Proof :

We use the equation & = 0 from Proposition 2 to obtain energy es-
timates. Since 0 [ac(t,yg)ei(““/s)] = <8tac + éac> e +t/e) e have to

estimate HGCHH§ and ||atac|\H§, s=1,2:

d
gy laclm =10F aollm + [|aol* Orao]|

+ (laollze + llaollz 19y aoll ) llacla,

(19)

(20)
d
0l 2[107aclls + lllaol*|Owaol* |1 + Illaol O aoll s

+ (laollze l1eaollwr + llaoll e 1ol oo 110y aoll o) llacl |

+ (laollze + laollze 19y aoll o) 1O0ac ],

(1) —llacllz =110Faoll= + llaol*Qeaoll 2 + (laoll . + llaollzo 1Oy aoll

+llaoll 7 10y aollz + llaollze [|8F aol| ) llacllzse,

(22)
%H&:ac!\m =110 aoll = + [llaol*|Grac|*[| = + [[lao|*0; aol| 72
+ (llaollz 10eaollwr. + laoll oo 10eaol| oo 10y ao]
+ llaoll o | 9ecollwr.o 10y aoll 7 + llaollz l10eaollec |0 o ..
+ llaollze (|00 aol| o) llaclre
+ (llaollze + llaollz 19y aoll oo + llaoll 13y aoll7

+ llaollz (0% aof| o) |Oratcllre-

11



Remark that we can compute the exact value of the norm of ag from the
formula (4):

(23) Yo, [[(@hy) aoll e = Clte = )7 (@) aoll o = Ot — 1),

Thus, from (19)-(23), Gronwall’s lemma implies that there are C > 0, p € R
such that:

24 a, Oyl = (t, — t)heCE=07"
cy Utlec HY - *

Now, simply check that out of the boundary layer ¢, —t < C(In1/g)~'/?
(with C' big enough), we have:

10.UE N e = M 0raclim + ellacla < OV ~ (8 —1)7H2,
10:0,U¢ |l e = [ Oraclirz + ellacllmz < 10:0,Us || oo ~ (8 — )72,
10:0,Uz |22 = *|Osaacllzr + ellacllm <1010, Ugllze ~ (e — 1)~
4.4 Endgame: proof of Theorem 4.1
We now take advantage of (18): in view of Proposition 4.1, when ¢, — ¢ >
C(Inl/e)1/3,
i t
(25) 10,V < €SO / | B ot
0

where R*(z) = R°(t, yg)ei(yl"'t/s) is given by Proposition 2, and

13
It = [ [fi+ B (100,032 + 100,031,..)] .
0

[Nk = Hatszpp —I_ HatvsHioo *

k
1

Hence, (25) is a relation of the form ¢ < 'gbe@4 for p(t) := C|0:V*|| Lo (0,6 xR?)-
Even if ¢ is “small”, this does not imply that ¢ is: it could be very large,
on the contrary. But since here ¢),_, = 0, continuity w.r.t. ¢ forces that as
long as (25) is valid, ¢ has to be “small”. Thus, for each £ €]0, 1], we look
for the maximal time £(z) €]0,t, — C(In1/2)~'/* until which

(26) 10V oo < N0V oo ~ (B = )72,

12



and we replace I, by I, :=2 H@tUSHZW
Since (from (23)) I(t) ~ (t. — )%,

(27) 100Vl < &¥(t0 — )70,

and the r.h.S. is much smaller than (t*—t)_l/Q as soon as t,—t > C’'(In 1/5)_1/2,
with C’ sufficiently large. As e goes to zero, (In1/2)~"? <« (In1/2)~'/3, so
that the condition ¢, —t > C'(In1/g)~*/? is the relevant one.

Furthermore, for each a > 0, possibly increasing C, (27) shows that (26)

is improved to [0,V s ((0,t,—C(in1/)-1/2)xR2) = o(e*7%).
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