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Chapter I

Complex Differential Calculus and Pseudoconvexity

This introductive chapter is mainly a review of the basic tools and concepts which will be employed
in the rest of the book: differential forms, currents, holomorphic and plurisubharmonic functions, holo-
morphic convexity and pseudoconvexity. Our study of holomorphic convexity is principally concentrated
here on the case of domains in C™. The more powerful machinery needed for the study of general com-
plex varieties (sheaves, positive currents, hermitian differential geometry) will be introduced in Chapters
IT to V. Although our exposition pretends to be almost self-contained, the reader is assumed to have
at least a vague familiarity with a few basic topics, such as differential calculus, measure theory and
distributions, holomorphic functions of one complex variable, .... Most of the necessary background can
be found in the books of [Rudin 1966] and [Warner 1971]; the basics of distribution theory can be found
in Chapter I of [Hormander 1963]. On the other hand, the reader who has already some knowledge of
complex analysis in several variables should probably bypass this chapter.

§ 1. Differential Calculus on Manifolds
§ 1.A. Differentiable Manifolds

The notion of manifold is a natural extension of the notion of submanifold defined
by a set of equations in R™. However, as already observed by Riemann during the
19th century, it is important to define the notion of a manifold in a flexible way, without
necessarily requiring that the underlying topological space is embedded in an affine space.
The precise formal definition was first introduced by H. Weyl in [Weyl 1913].

Let m € N and k € NU {co,w}. We denote by “6* the class of functions which are
k-times differentiable with continuous derivatives if & # w, and by C“ the class of real
analytic functions. A differentiable manifold M of real dimension m and of class 6€¥ is a
topological space (which we shall always assume Hausdorff and separable, i.e. possessing
a countable basis of the topology), equipped with an atlas of class ‘6¥ with values in R™.
An atlas of class “6F is a collection of homeomorphisms 7, : U, — Vi, a € I, called
differentiable charts, such that (Uy,)aecr is an open covering of M and V,, an open subset
of R™, and such that for all o, 8 € I the transition map

(1.1) Tag:TaOTB_I :178(Ua NUB) — 70(Us NUg)

is a ‘6" diffeomorphism from an open subset of V3 onto an open subset of V,, (see Fig. 1).
Then the components 7, (z) = (z¢, ..., x%,) are called the local coordinates on U, defined
by the chart 7, ; they are related by the transition relation 2% = 7,3 (xP).
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Tap
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Fig. I-1 Charts and transition maps

If Q € M is open and s € NU {oo,w}, 0 < s < k, we denote by C*(€2,R) the set of
functions f of class C* on (2, i.e. such that f o7, ! is of class C* on 7,(U, N ) for each

a5 if © is not open, C*(£2,R) is the set of functions which have a C'* extension to some
neighborhood of €.

A tangent vector £ at a point a € M is by definition a differential operator acting on
functions, of the type

of
COR)> frote-f= > &5(a)
1<GG<m O
in any local coordinate system (z1,...,z,,) on an open set 2 5 a. We then simply write

€ =>.§0/0x;. For every a € Q, the n-tuple (0/0z;)1<j<m is therefore a basis of the
tangent space to M at a, which we denote by Thr . The differential of a function f at a
is the linear form on T}y , defined by

dfa(§) =& - f=) &0f/0zj(a),  VEE Tasa

In particular dz;(§) = & and we may consequently write df = Y (0f/0x;)dz;. From
this, we see that (dx1,...,dx,,) is the dual basis of (0/0x1,...,0/0x,,) in the cotangent
space Ty . The disjoint unions T = U e s Tar,e and T3p = U, cps Thr.. ave called the
tangent and cotangent bundles of M.

If £ is a vector field of class C*® over 2, that is, a map x — &(x) € T, such that
£(z) =) & (x) 0/0x; has C° coefficients, and if 7 is another vector field of class C* with
s > 1, the Lie bracket [£,n)] is the vector field such that

(1.2) Enl-f=&(m-f)—n-(&f)

In coordinates, it is easy to check that

0 0 0
(1.3) =) (Ejazl; _njﬁil;> Oy

1<j,k<m
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§ 1.B. Differential Forms

A differential form u of degree p, or briefly a p-form over M, is a map u on M with
values u(x) € APTy; .. In a coordinate open set 2 C M, a differential p-form can be

written
u(zx) = Z uy(z) dey,
|I|=p
where I = (iy,...,1p,) is a multi-index with integer components, i; < ... < i, and dxj :=

dx;, A ... Adz;,. The notation |I| stands for the number of components of I, and is
read length of I. For all integers p =0,1,...,m and s € NU {oc}, s < k, we denote by
C*(M,APTy},) the space of differential p-forms of class C*, i.e. with C* coefficients u;.
Several natural operations on differential forms can be defined.

§ 1.B.1. Wedge Product. If v(z) = > vy(z)dz s is a g-form, the wedge product of u and
v is the form of degree (p + ¢) defined by

(1.4) uAov(zx) = Z ur(z)vy(z)der Ndxy.
=p,|J|=q

§ 1.B.2. Contraction by a tangent vector. A p-form u can be viewed as an antisymmetric
p-linear form on Thy. If £ = > &;0/0x; is a tangent vector, we define the contraction
¢ 1 u to be the differential form of degree p — 1 such that

(15) (éJ u)(n17'-'777p—1) :U(§,7717~-,77p—1)
for all tangent vectors ;. Then (£, u) — & I w is bilinear and we find easily
0 0 if j¢l1
— ldx; = _ e
0z o { (D" tdrp gy if j=q €l

A simple computation based on the above formula shows that contraction by a tangent
vector is a derivation, i.e.

(1.6) €1 (uAv)=(EJu)Av+ (1)U A (€ 1 v).

§ 1.B.3. Exterior derivative. This is the differential operator
d: O (M,APT};) — C5~H (M, APTITS))
defined in local coordinates by the formula
816[
(1.7) du = Z a—mkdxk/\d:vj
[I|=p, 1<k<m

Alternatively, one can define du by its action on arbitrary vector fields &y, ...,§, on M.
The formula is as follows

du(o,...,&) = D (—1Y& ul€o, ..., &, -, &)
0<ji<p

(1.7) + Y R s GG )

0<j<k<p
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The reader will easily check that (1.7) actually implies (1.7). The advantage of (1.7")
is that it does not depend on the choice of coordinates, thus du is intrinsically defined.
The two basic properties of the exterior derivative (again left to the reader) are:

(1.8) d(uAv) =duAv+ (—1)%%y A do, ( Leibnitz’ rule)
(1.9) d*> = 0.

A form w is said to be closed if du = 0 and ezact if v can be written v = dv for some
form wv.

§ 1.B.4. De Rham Cohomology Groups. Recall that a cohomological complex K*® =
EBpeZ is a collection of modules KP? over some ring, equipped with differentials, i.e., linear
maps dP : KP — KP*! such that dPt! odP = 0. The cocycle, coboundary and cohomology
modules ZP(K*®), BP(K*®) and HP(K*®) are defined respectively by

ZP(K*®) = KerdP : K — KP+1, ZP(K*®) C KP,
(1.10) BP(K*) =Imdr~': KP~' — KP,  BP(K*) C ZP(K*®) C KP,
HP(K*) = ZP(K*)/BP(K*).

Now, let M be a differentiable manifold, say of class 6°° for simplicity. The De Rham
complex of M is defined to be the complex K? = 6°° (M, APT},) of smooth differential
forms, together with the exterior derivative dP = d as differential, and K? = {0}, d? =0
for p < 0. We denote by ZP(M,R) the cocycles (closed p-forms) and by BP(M,R) the
coboundaries (exact p-forms). By convention B°(M,R) = {0}. The De Rham cohomol-
ogy group of M in degree p is

(1.11) HY (M, R) = Z°(M,R)/B?(M,R).

When no confusion with other types of cohomology groups may occur, we sometimes
denote these groups simply by HP(M,R). The symbol R is used here to stress that we are
considering real valued p-forms; of course one can introduce a similar group Hp g (M, C)
for complex valued forms, i.e. forms with values in C ® APT},. Then HJy(M,C) =
C ® HPr(M,R) is the complexification of the real De Rham cohomology group. It is
clear that H3, (M, R) can be identified with the space of locally constant functions on M,
thus
HYq (M, R) = R™(Y),

where 7(X) denotes the set of connected components of M.

Similarly, we introduce the De Rham cohomology groups with compact support
(1.12) HYp (M,R) = Z2(M,R)/B?(M,R),
associated with the De Rham complex KP = 62°(M, APT},) of smooth differential forms
with compact support.

§ 1.B.5. Pull-Back. If F : M — M’ is a differentiable map to another manifold M’,
dimg M' = m/, and if v(y) = > v (y) dy, is a differential p-form on M’, the pull-back
F*v is the differential p-form on M obtained after making the substitution y = F(z) in
v, l.e.

(1.13) Fro(z) =Y v (F(x)) dF;, A...AdF;,.
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If we have a second map G : M’ — M" and if w is a differential form on M”, then
F*(G*w) is obtained by means of the substitutions z = G(y), y = F(z), thus

(1.14) F*(G*w) = (G o F)*w.

Moreover, we always have d(F*v) = F*(dv). It follows that the pull-back F* is closed
if v is closed and exact if v is exact. Therefore F'* induces a morphism on the quotient
spaces

(1.15) F*: HY L (M',R) — HE . (M,R).

§ 1.C. Integration of Differential Forms

A manifold M is orientable if and only if there exists an atlas (7,) such that all transi-
tion maps 7,3 preserve the orientation, i.e. have positive jacobian determinants. Suppose
that M is oriented, that is, equipped with such an atlas. If u(x) = f(x1,...,2zm) dxy A
... Ndxy, is a continuous form of maximum degree m = dimg M, with compact support
in a coordinate open set {2, we set

(1.16) / u= flze,...,zm) dey .. dxy,.
M R™

By the change of variable formula, the result is independent of the choice of coordinates,
provided we consider only coordinates corresponding to the given orientation. When u
is an arbitrary form with compact support, the definition of [ 1 u is easily extended by
means of a partition of unity with respect to coordinate open sets covering Supp u. Let
F : M — M’ be a diffeomorphism between oriented manifolds and v a volume form on
M'. The change of variable formula yields

(1.17) /MF*v:i/ v

according whether F' preserves orientation or not.

We now state Stokes’ formula, which is basic in many contexts. Let K be a compact
subset of M with piecewise C'' boundary. By this, we mean that for each point a € 0K
there are coordinates (x1,...,Z,;,) on a neighborhood V of a, centered at a, such that

KﬂV:{xEV;xlgo,...,xlgO}

for some index [ > 1. Then 0K NV is a union of smooth hypersurfaces with piecewise
C' boundaries:

OKNV = U {xEV;xl<O,...,xj:O,...,xl<O}.

1<5<!

At points of 0K where z; = 0, then (z1,...,Zj,,..., %) define coordinates on 0K. We
take the orientation of K given by these coordinates or the opposite one, according to
the sign (—1)/71. For any differential form u of class C' and degree m — 1 on M, we
then have
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(1.18) Stokes’ formula. / u = / du.
oK K

The formula is easily checked by an explicit computation when u has compact support
in V@ indeed if u = Z1<j<n ujdri A...dx;...dz,, and 0;jK NV is the part of 0K NV
where x; = 0, a partial integration with respect to x; yields

—_— 6 .
/ ujdml/\...dxj...dxm:/ﬂd:vl/\...dxm,
0, KNV v 0z;

OKNV 8jKI'-]V v

1<j<m

The general case follows by a partition of unity. In particular, if v has compact support
in M, we find fM du = 0 by choosing K D Supp u.

§ 1.D. Homotopy Formula and Poincaré Lemma

Let u be a differential form on [0, 1] x M. For (¢,z) € [0,1] x M, we write
u(t,x) = Z ur(t,z)dxr + Z uy(t,z)dt Ndxy.
[I|=p |J|=p—1

We define an operator

K 2 C([0,1] % M, NPT 1y,000) — C*(M, A7)

(1.19) Ku(z)= Y (/OlﬁJ(t,x)dt)de

|J|=p—1

and say that Ku is the form obtained by integrating w along [0,1]. A computation of
the operator dK + K d shows that all terms involving partial derivatives 0u;/0xy, cancel,
hence

Kdu+ dKu = Z ( 1%(t,x)dt>d:m: Z (ur(1,2) —ur(0,2))day,

1% J0 |11=p
(1.20) Kdu+ dKu = iju—iju,

where iy : M — [0, 1] x M is the injection z — (¢, x).

(1.20) Corollary. Let F,G : M — M’ be “6°° maps. Suppose that F,G are smoothly
homotopic, i.e. that there exists a 6°° map H : [0,1] x M — M’ such that H(0,x) =
F(z) and H(1,2) = G(x). Then

F*=G*: HE (M',R) — HP (M, R).

Proof. If v is a p-form on M’, then

G*v—F*v=(Hoiy)v— (Hoiy) v =14 (H"v)—iy(H*v)
— d(KH*v) + K H*(dv)
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by (1.20) applied to u = H*v. If v is closed, then F*v and G*v differ by an exact form,
so they define the same class in Hf, (M, R). O

(1.21) Corollary. If the manifold M is contractible, i.e. if there is a smooth homotopy
H :[0,1]x M — M from a constant map F : M — {x¢} to G =1dx, then H3x (M,R) =
R and H{ g (M,R) =0 forp > 1.

Proof. F* is clearly zero in degree p > 1, while F* : H3 (M, R) =5 R is induced by the
evaluation map u — u(zo). The conclusion then follows from the equality F* = G* = Id
on cohomology groups. U

(1.22) Poincaré lemma. Let Q@ C R™ be a starshaped open set. If a form v =
S wrdrr € C5(, APTYE), p > 1, satisfies dv = 0, there exists a form u € C*(Q, AP~ITY)
such that du = v.

Proof. Let H(t,x) = tx be the homotopy between the identity map Q — € and the
constant map 2 — {0}. By the above formula

d(KH*v):G*U—F*v:{U_U(0> i p=0,
v if p>1

Vol

Hence u = KH*v is the (p — 1)-form we are looking for. An explicit computation based
on (1.19) easily gives

1

(1.23) u(z) = Z (/ P~y (tx) dt)(—l)k_lxikdxil A oodag, . Ndxg,.
[1j=p "
1<k<p

§ 2. Currents on Differentiable Manifolds

§ 2.A. Definition and Examples

Let M be a 6 differentiable manifold, m = dimg M. All the manifolds considered
in Sect. 2 will be assumed to be oriented. We first introduce a topology on the space of
differential forms C*(M, APT},). Let © C M be a coordinate open set and u a p-form on
M, written u(z) = > us(z)dzy on Q. To every compact subset L C 2 and every integer
s € N, we associate a seminorm

(2.1) pi(u) =sup max |[D%y(z)l,
zeL I|=p,|al<s

where a = (ay,...,a,) runs over N and D® = 9l®l /92" ... 9x%m is a derivation of
order |a] = a1 + -+ + . This type of multi-index, which will always be denoted
by Greek letters, should not be confused with multi-indices of the type I = (i1,...,1%p)
introduced in Sect. 1.

(2.2) Definition. We introduce as follows spaces of p-forms on manifolds.
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a) We denote by &°(M) (resp. *6F(M)) the space €°° (M, APTy,) (resp. the space C*(M, APTy,)) ]
equipped with the topology defined by all seminorms p; when s, L, Q vary (resp. when
L, Q vary).

b) If K C M is a compact subset, 9P (K) will denote the subspace of elements u € &P (M)
with support contained in K, together with the induced topology; 9P (M) will stand for
the set of all elements with compact support, i.e. DP (M) := |J DP(K).

c) The spaces of C*-forms PP (K) and PP (M) are defined similarly.

Since our manifolds are assumed to be separable, the topology of &P (M) can be defined
by means of a countable set of seminorms p$, hence &P(M) (and likewise *6P(M)) is a
Fréchet space. The topology of *PP(K) is induced by any finite set of seminorms p‘}(j
such that the compact sets K; cover K ; hence *9”(K) is a Banach space. It should be
observed however that 9P(M) is not a Fréchet space; in fact 9P (M) is dense in &P (M)
and thus non complete for the induced topology. According to [De Rham 1955] spaces
of currents are defined as the topological duals of the above spaces, in analogy with the
usual definition of distributions.

(2.3) Definition. The space of currents of dimension p (or degree m — p) on M is the
space D,(M) of linear forms T on 9P(M) such that the restriction of T to all subspaces
YPP(K), K CC M, is continuous. The degree is indicated by raising the index, hence we

set
QMP(M) =9D,,(M) := topological dual (pr(M))/.

The space *,(M) = *@'™"P(M) := (SQDP(M))/ is defined similarly and is called the

space of currents of order s on M.

In the sequel, we let (T, u) be the pairing between a current T and a test form
u € DP(M). It is clear that °%) (M) can be identified with the subspace of currents
T € 9,(M) which are continuous for the seminorm pj on 9?(K) for every compact set
K contained in a coordinate patch 2. The support of T', denoted Supp 7', is the smallest
closed subset A C M such that the restriction of T' to 9P (M \ A) is zero. The topological
dual &,(M) can be identified with the set of currents of 9,(M) with compact support:
indeed, let T' be a linear form on &P(M) such that

(T, u)| < Cmax{pi, (u)}

for some s € N, C' > 0 and a finite number of compact sets K ; it follows that SuppT' C
U K. Conversely let T' € @;(M ) with support in a compact set K. Let K; be compact
patches such that K is contained in the interior of | J K; and ¢ € 9(M) equal to 1 on K
with Suppvy C |JK;. For u € 8P(M), we define (T, u) = (T, u) ; this is independent
of 1 and the resulting 7" is clearly continuous on &P(M). The terminology used for the
dimension and degree of a current is justified by the following two examples.

(2.4) Example. Let Z C M be a closed oriented submanifold of M of dimension p and
class C! ; Z may have a boundary 0Z. The current of integration over Z, denoted [Z],
is defined by

<[Z],u):/2u, u € "GP (M).
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It is clear that [Z] is a current of order 0 on M and that Supp[Z] = Z. Its dimension is
p=dim Z.

(2.5) Example. If f is a differential form of degree ¢ on M with L] _ coefficients, we
can associate to f the current of dimension m — q :

(Tf,u) = /M fAu, uwe@mIUM).

T} is of degree ¢ and of order 0. The correspondence f —— T} is injective. In the same
way Li, . functions on R™ are identified to distributions, we will identify f with its image
Ty € %9 9(M) = O@%_q(M).

§ 2.B. Exterior Derivative and Wedge Product

§ 2.B.1. FEuxterior Derivative. Many of the operations available for differential forms can
be extended to currents by simple duality arguments. Let 7' € *%'9(M) = *%;,  (M).
The exterior derivative

dT € s+l T+ ()f) = s+1@;n_q_1
is defined by

(2.6) (dT,u) = (—1)7T, du), u e TIm=a=1(M).

The continuity of the linear form dT on $T9m~4=1( M) follows from the continuity of the

map d : STGm—1=YK) — s9pm~4(K). For all forms f € 184(M) and u € 9™ 971 (M),
Stokes’ formula implies

O:/Md(f/\u):/Mdf/\u—i-(—l)qf/\du,

thus in example (2.5) one actually has dTy = Ty as it should be. In example (2.4), an-
other application of Stokes’ formula yields [, du = [, u, therefore ([Z], du) = ([0Z], u)
and

(2.7) d[Z] = (-1)"P*9Z7)].

§ 2.B.2. Wedge Product. For T € *9'9(M) and g € *6"(M), the wedge product
T Ag eIt (M) is defined by

(2.8) (T'Ng,uy={T,gNu), uwe P T"(M).
This definition is licit because u — g A u is continuous in the C*-topology. The relation
AT Ag)=dT Ag+ (—1)%*eTT Adg

is easily verified from the definitions.
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(2.9) Proposition. Let (x1,...,%m) be a coordinate system on an open subset Q@ C M.
Every current T € *9'9(M) of degree q can be written in a unique way

T = ZT]dx] on (2,

[11=q
where T are distributions of order s on (), considered as currents of degree 0.
Proof. If the result is true, for all f € *%°(Q) we must have

(T, f dog;) = (Tr,dx; A fdwgy) = e(I,CI) (T, fdzi A ... Adzy,),

where £(I,CI) is the signature of the permutation (1,...,m) — (I,CI). Conversely, this
can be taken as a definition of the coefficient 17 :

(2.10) Ti(f) = (Tr, fdxy A ... Adxy,) == e(I,CI) (T, fdxg;), f€°D°(Q).

Then T7 is a distribution of order s and it is easy to check that T'= Y T dz;. ]

In particular, currents of order 0 on M can be considered as differential forms with
measure coefficients. In order to unify the notations concerning forms and currents, we

set
(T, u) :/ TAu
M

whenever T' € *9,(M) = *9'™~P(M) and u € *8P(M) are such that Supp T N Supp u
is compact. This convention is made so that the notation becomes compatible with the
identification of a form f to the current T%.

§ 2.C. Direct and Inverse Images

§ 2.C.1. Direct Images. Assume now that M;, My are oriented differentiable manifolds
of respective dimensions mq, ms, and that

(211) F M1 — M2

is a 6°° map. The pull-back morphism

(2.12) PP (Ms) — &P (M), ur— F*u

is continuous in the C*® topology and we have Supp F*u C F~!(Suppu), but in general
Supp F*u is not compact. If 7" € *%; (M) is such that the restriction of F' to Supp T
is proper, i.e. if SuppT N F~1(K) is compact for every compact subset K C My, then
the linear form u — (T, F*u) is well defined and continuous on *%”(Ms). There exists

therefore a unique current denoted F,T' € *%;,(Mz), called the direct image of T by F,
such that

(2.13) (F,T,u) = (T, F*u), Yu € *BP(My).

We leave the straightforward proof of the following properties to the reader.
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(2.14) Theorem. For every T € SQD;(Ml) such that Fisupp T @S proper, the direct image
F.T € *9,(Mz) is such that

) Supp F,T C F(SuppT) ;

b) d(F.T) = F.(dT) ;

c) FL(TNF*g)=(F.T)Ng, Vg¢€*61(M,R);

d) If G: My — M3 is a 6> map such that (G o F)supp1 @S proper, then

G.(F.T)=(Go F),T

(2.15) Special case. Assume that F is a submersion, i.e. that F' is surjective and that
for every x € M; the differential map do F' : Thr, o — T, pe) is surjective. Let g be

a differential form of degree ¢ on My, with L{. . coefficients, such that Fisupp 4 is proper.

We claim that F,g € %9/ (M>) is the form of degree ¢ — (m1 — mg) obtained from g

mi—q

by integration along the fibers of F', also denoted

Pow=[_ o)

Fig. I-2 Local description of a submersion as a projection.

In fact, this assertion is equivalent to the following generalized form of Fubini’s theorem:

/ g/\F*u:/ (/ 9(2)) Auly),  Vu € D™I0).
M, yeMa ~JzeF—1(y)

By using a partition of unity on M; and the constant rank theorem, the verification of
this formula is easily reduced to the case where My = A x My and F' = pr,, cf. Fig. 2.
The fibers F~!(y) ~ A have to be oriented in such a way that the orientation of M is
the product of the orientation of A and Ms. Let us write r = dim A = m; — ms and let
z = (x,y) € A X M3 be any point of M;. The above formula becomes

/A><M29(x7y)/\u(y) :/y€M2 (LeAg(w,y)) Auly),
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where the direct image of ¢ is computed from g = Y g7 s(z,y)dxr A dyy, |I| + |J]| = ¢,
by the formula

(2.16) Fig(y) = /GA 9(z,y)

-z (L

|J|=q—r

g(l,...,r),](*r? y) dxl ARERWA de)dyJ

In this situation, we see that F,g has L] _ coefficients on M if g is L] . on Mj, and that
the map g — Flg is continuous in the C'* topology.

(2.17) Remark. If F': M; — M, is a diffeomorphism, then we have F,g = +(F~1)*g
according whether F' preserves the orientation or not. In fact formula (1.17) gives

(F.g,u) :/Mlg/\F*u:i/MQ(F_l)*(g/\F*u) :i/ (F~H*g Aw.

Mo

§ 2.C.2. Inverse Images. Assume that F': My — M5 is a submersion. As a consequence
of the continuity statement after (2.16), one can always define the inverse image F*T €
50/ 9(My) of a current T' € *9'9(My) by

(F*T,u) = (T, Fyu), u € *PTT™"2(My).
Then dim F*T = dim T + m; — mo and Th. 2.14 yields the formulas:
(2.18) d(F*T) = F*(dT), F*(T'Ng)=F"TNF*g, Vg¢&*9*(Ms).

Take in particular T = [Z], where Z is an oriented C*-submanifold of M,. Then F~1(2)
is a submanifold of M; and has a natural orientation given by the isomorphism

Tty o/ Tr—1(2),0 — Tty F(a) /T2, 7 ()
induced by d,F' at every point x € Z. We claim that
(2.19) F*[Z) = [F~}(Z)).
Indeed, we have to check that [, Fou = fF,l(Z) u for every u € 9*(M;). By using a

partition of unity on M;, we may again assume M; = A X My and F = pr,. The above
equality can be written

/ Fou(y) = / u(z, y).
yeZ (z,y)€EAXZ

This follows precisely from (2.16) and Fubini’s theorem.
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§ 2.C.3. Weak Topology. The weak topology on QD;D(M) is the topology defined by the
collection of seminorms 7' +—— |(T), f)| for all f € @PP(M). With respect to the weak
topology, all the operations

(2.20) T—dl, T+~—~TANg, T+—FT, T+ F"T

defined above are continuous. A set B C %,,(M) is bounded for the weak topology (weakly
bounded for short) if and only if (7', f) is bounded when T runs over B, for every fixed
f €9P(M). The standard Banach-Alaoglu theorem implies that every weakly bounded
closed subset B C %;,(M) is weakly compact.

§ 2.D. Tensor Products, Homotopies and Poincaré Lemma

§ 2.D.1. Tensor Products. If S, T are currents on manifolds M, M’ there exists a
unique current on M x M’, denoted S ® T and defined in a way analogous to the tensor
product of distributions, such that for all u € 9*(M) and v € 9*(M’)

(2.21) (S ® T, priu A pryv) = (—1)%8 T8 (5 u) (T, v).

One verifies easily that d(S®T)=dS®T + (-1)%855 @ dT.

§ 2.D.2. Homotopy Formula. Assume that H : [0,1] x My — My is a “6°° homotopy
from F(z) = H(0,z) to G(x) = H(1,z) and that T € 9,(M;) is a current such that
Hyjo,1]xsupp T 18 proper. If [0,1] is considered as the current of degree 0 on R associated
to its characteristic function, we find d[0, 1] = d9 — 91, thus

d(H.([0,1]®T)) =H, (6 ®T — 61 @ T +[0,1] ® dT)
=FT -G, T+ H.(0,1]®dT).

Therefore we obtain the homotopy formula
(2.22) F,T -G, T =d(H,([0,1]®T)) — H.([0,1] ® dT).

When T is closed, i.e. dT" = 0, we see that F,T and G,T are cohomologous on M, i.e.
they differ by an exact current dS.

§ 2.D.3. Regularization of Currents. Let p € 6°°(R™) be a function with support in
B(0,1), such that p(z) depends only on |z| = (3 |z;]?)'/2, p > 0 and [g,, p(z)dz = 1.
We associate to p the family of functions (p.) such that

1

(2.23) pele) = = (2

), Supp p: C B(0,¢), / pe(x)dr = 1.

m

e
We shall refer to this construction by saying that (p.) is a family of smoothing kernels.
For every current 7' =Y Tj dz; on an open subset 2 C R, the family of smooth forms

T xpe = Z (Tr * pe) dzy,
1

defined on Q. = {x € R™ ; d(x,0Q) > ¢}, converges weakly to T as € tends to 0.
Indeed, (T x pe, f) = (T, pe x f) and p. * f converges to f in PP()) with respect to all

seminorms piy.
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§ 2.D.4. Poincaré Lemma for Currents. Let T € *9'1(Q) be a closed current on an
open set 2 C R™. We first show that 7" is cohomologous to a smooth form. In fact, let
Y € 6°°(R™) be a cut-off function such that Suppy C Q, 0 <9 < 1 and |dy| < 1 on €.
For any vector v € B(0,1) we set

Fy(z) =2+ 9¢(z)v.

Since z + 1(x)v is a contraction, F), is a diffeomorphism of R™ which leaves 0 invariant
pointwise, so F,(2) = Q. This diffeomorphism is homotopic to the identity through the
homotopy H,(t,x) = Fy,(z) : [0,1] x Q2 — Q which is proper for every v. Formula (2.22)
implies

(Fu )T =T = d((Hv>*([Oa 1® T))

After averaging with a smoothing kernel p.(v) we get © — T = dS where

O = /B(Oﬁ)(Fv)*TPs(U) dv, S= /13(0,5)(Hv>*([07 1@ T) p.(v) dv.

Then S is a current of the same order s as 7" and © is smooth. Indeed, for u € 9P (Q2)
we have
(O,u) = (T,ue) where u.(x)= / Fru(x) pe(v) dv ;
B(0,¢e)
we can make a change of variable z = F,(z) < v = ¢(x)"!(z — ) in the last integral
and perform derivatives on p. to see that each seminorm pk (u.) is controlled by the sup

norm of u. Thus © and all its derivatives are currents of order 0, so © is smooth. Now
we have d© = 0 and by the usual Poincaré lemma (1.22) applied to © we obtain

(2.24) Theorem. Let Q2 C R™ be a starshaped open subset and T' € P 1(Q) a current
of degree ¢ > 1 and order s such that dT = 0. There exists a current S € %' 1-1(Q) of
degree ¢ — 1 and order < s such that dS =T on Q. U

§ 3. Holomorphic Functions and Complex Manifolds
§ 3.A. Cauchy Formula in One Variable

We start by recalling a few elementary facts in one complex variable theory. Let
) C C be an open set and let z = x 4 iy be the complex variable, where z,y € R. If f is
a function of class C'' on €, we have

_ O g O, 0 O
df_@xdx+8ydy_ 8zd2+82dz

with the usual notations

0 o .0 0 o .0
(3.1) 5 =305 15y) ==ala tiay)

The function f is holomorphic on 2 if df is C-linear, that is, 0f/0z = 0.
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(3.2) Cauchy formula. Let K C C be a compact set with piecewise C' boundary 0K .
Then for every f € C1(K,C)

f(w):L (2) dz—/l(%gd)\(z), we K°

21 Jo 2 —w z—w) 0Z

where d\(z) = $dz A dz = dx A\ dy is the Lebesque measure on C.

Proof. Assume for simplicity w = 0. As the function z — 1/z is locally integrable at
z =0, we get

1 1 i
/ L9 nz) = Tim LOF L N as
K T2 0Z e=0 J g D(0,e) TZ OZ 2
1 d
= lim d[—, £(2) —Z}
e—0 K\D(O,E) 271-1 z

1 1 d
= — f(z)%—lim—,/ fz)—Z
21 Jox z =027 Jap(o,e) z

by Stokes’ formula. The last integral is equal to % fo% f(ce?) df and converges to f(0)
as € tends to 0. O

When f is holomorphic on €2, we get the usual Cauchy formula

1
(3.3) f =5z 2 EZZU dz, weK°,

from which many basic properties of holomorphic functions can be derived: power and
Laurent series expansions, Cauchy residue formula, ... Another interesting consequence
is:

(3.4) Corollary. The Li . function E(z) = 1/mz is a fundamental solution of the
operator 0/0z on C, i.e. OE/0Z = 6y (Dirac measure at 0). As a consequence, if v is a
distribution with compact support in C, then the convolution u = (1/mz)*v is a solution
of the equation Ou/0z = v.

Proof. Apply (3.2) with w = 0, f € 9(C) and K D Supp f, so that f = 0 on the
boundary 0K and f(0) = (1/7z, —0f/0Z). O

(3.5) Remark. It should be observed that this formula cannot be used to solve the
equation Ju/0Z = v when Suppwv is not compact; moreover, if Suppv is compact, a
solution u with compact support need not always exist. Indeed, we have a necessary
condition

(v,2") = —(u, 02" /0z) =0

for all integers n > 0. Conversely, when the necessary condition (v, z™) = 0 is satisfied,
the canonical solution u = (1/7z) x v has compact support: this is easily seen by means
of the power series expansion (w — 2)~! = > 2"w™""1, if we suppose that Suppuv is
contained in the disk |z| < R and that |w| > R.
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§ 3.B. Holomorphic Functions of Several Variables

Let Q C C™ be an open set. A function f : {2 — C is said to be holomorphic if f is con-
tinuous and separately holomorphic with respect to each variable, i.e. z; — f(...,2;,...)
is holomorphic when zi,...,2;-1, 2j41,..., 2, are fixed. The set of holomorphic func-
tions on (2 is a ring and will be denoted G(£2). We first extend the Cauchy formula to the
case of polydisks. The open polydisk D(zo, R) of center (29,1, ..., 20,»,) and (multi)radius
R = (Ry,,...,R,) is defined as the product of the disks of center zy ; and radius R; > 0
in each factor C :

(36) D(Zo, R) = D(Zo’l,Rl) X ... X D(Zo’n, Rn) c C".

The distinguished boundary of D(zy, R) is by definition the product of the boundary
circles

(37) F(Z(), R) = F(Zo’l, Rl) X ... X F(Zo’n, Rn>
It is important to observe that the distinguished boundary is smaller than the topological
boundary 0D(z0, R) = ;{2 € D(20, R); |25 — 20| = R;} when n > 2. By induction on

n, we easily get the

(3.8) Cauchy formula on polydisks. If D(z, R) is a closed polydisk contained in
and f € 6(Q), then for all w € D(zy, R) we have

1 f(z1, 0y 2n)
flw) = _ /F(ZO’R) ( dzy ...dzy,. O

(27i)™ 21— wy) ... (2n —wy)

The expansion (z; — w;)™' = Y (w; — 20,;) (2 — 20,;) %', a; € N, 1 < j < n,
shows that f can be expanded as a convergent power series f(w) = > cyn Ga(w — 20)”

over the polydisk D(zp, R), with the standard notations z* = 27" ... 20", al = a1!... !
and with
1 o 2Zn)dzy .. dzy, (@)
(3.9) Qg = —— / f (21, ,12 ) dzy 2 __ f (ZO).
(27T1)n F(Z(),R) (Zl _ 20’1)O¢1+ e (Zn — Zo’n)an‘F al

As a consequence, f is holomorphic over € if and only if f is C-analytic. Arguments
similar to the one variable case easily yield the

(3.10) Analytic continuation theorem. If Q is connected and if there exists a point
20 € Q such that f(%)(z) = 0 for all o« € N™, then f =0 on Q. O

Another consequence of (3.9) is the Cauchy inequality

al —
(3.11) [F G0l < 75 swp |l Dlzo,R) C 9,
F(Zo,R)

From this, it follows that every bounded holomorphic function on C™ is constant (Li-
ouville’s theorem), and more generally, every holomorphic function F' on C" such that
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|F(2)| < A(1 + |2|)® with suitable constants A, B > 0 is in fact a polynomial of total
degree < B.

We endow G(2) with the topology of uniform convergence on compact sets K CC €2,
that is, the topology induced by C°(£2,C). Then 6(1) is closed in C°(£2, C). The Cauchy
inequalities (3.11) show that all derivations D% are continuous operators on G(f2) and
that any sequence f; € 6(2) that is uniformly bounded on all compact sets K CC € is
locally equicontinuous. By Ascoli’s theorem, we obtain

(3.12) Montel’s theorem. Ewvery locally uniformly bounded sequence (f;) in O(Q2) has
a convergent subsequence (fj(,))-

In other words, bounded subsets of the Fréchet space G(£2) are relatively compact (a
Fréchet space possessing this property is called a Montel space).

§ 3.C. Differential Calculus on Complex Analytic Manifolds

A complex analytic manifold X of dimension dim¢ X = n is a differentiable manifold
equipped with a holomorphic atlas (7,) with values in C™ ; this means by definition that
the transition maps 7,3 are holomorphic. The tangent spaces T'x , then have a natural
complex vector space structure, given by the coordinate isomorphisms

dre(z) : Tx » — C", Uy 2z

the induced complex structure on Tx , is indeed independent of a since the differentials
dtop are C-linear isomorphisms. We denote by T% the underlying real tangent space
and by J € End(T%) the almost complex structure, i.e. the operator of multiplication
by i = /—1. If (z1,..., 2,) are complex analytic coordinates on an open subset Q C X
and z, = xy + iyg, then (x1,91,...,%n,yn) define real coordinates on 2, and Tg?m
admits (0/0z1, 0/0y1, ..., 0/0xy,, 0/0y,) as a basis; the almost complex structure
is given by J(0/0xy) = 0/0yk, J(0/0yr) = —0/0x. The complexified tangent space
CoTxy = Cer Ty = Tk ®iT% splits into conjugate complex subspaces which are the
eigenspaces of the complexified endomorphism Id ® J associated to the eigenvalues i and
—i. These subspaces have respective bases

o 1,0 ) o 1,0 9
1 — == —i— — =5la— tig— 1<k <
(3.13) 92 2(6$k layk>’ 9z 2<8xk+18yk)’ ksn

and are denoted T1°X (holomorphic vectors or vectors of type (1,0)) and T'X (an-
tiholomorphic vectors or vectors of type (0,1)). The subspaces T*YX and T%'X are
canonically isomorphic to the complex tangent space Tx (with complex structure J) and
its conjugate Tx (with conjugate complex structure —.J), via the C-linear embeddings

Tx— Ty’ CCoTx, Tx— Ty' CC®Tx
g 2(E—1JE), € — (e +iJe).

We thus have a canonical decomposition C® Ty = T)l(’0 EBT)O(’1 ~ Tx ®Tx, and by duality
a decomposition

Homg(Tx; C) ~ Home(C® Tx;C) ~ T% & Tk
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where T% is the space of C-linear forms and T the space of conjugate C-linear forms.
With these notations, (dr,dys) is a basis of Homg(Tk X, C), (dz;) a basis of T%, (dz;)
a basis of T, and the differential of a function f € C'(Q, C) can be written

of of
(3.14) df = Zaxkdk—i—— Z dk+a—2kdzk

The function f is holomorphic on €2 if and only if df is C-linear, i.e. if and only if f
satisfies the Cauchy-Riemann equations 0f/0zZr = 0 on Q, 1 < k < n. We still denote
here by G(X) the algebra of holomorphic functions on X.

Now, we study the basic rules of complex differential calculus. The complexified
exterior algebra C @g A%(T%)* = A%(C ® Tx)* is given by

A (CoTx) =AM (TxoTx) = @ ATk, 0<k<2n
p+q=k

where the exterior products are taken over C, and where the components AP9T% are

defined by
(3.15) APITY = APTY @ NIT%.

A complex differential form u on X is said to be of bidegree or type (p, q) if its value at
every point lies in the component AP9T% ; we shall denote by C*(92, AP9T% ) the space
of differential forms of bidegree (p, q) and class C*® on any open subset Q of X. If Qis a
coordinate open set, such a form can be written

U(Z) = Z ULJ(Z) dZ[/\d?J, Uy, J ECS(Q,C).
[ I|=p,|J|=q
This writing is usually much more convenient than the expression in terms of the real
basis (dzr Adys)|r|+|)=k Which is not compatible with the splitting of AFTEX inits (p, q)
components. Formula (3.14) shows that the exterior derivative d splits into d = d’ + d”,
where

d' s 6% (X, APITY) — 6°°(X, APTHaTy),
"G (X, AT ) — 6 (X, APITITY),

duy g —
o ;
(3.16") d'u= E E B2 dzi Ndzp Ndzy,
1,0 1<k<n
Ourj _
i 1/ o )
(3.16") d"u = E E = dzy Ndzp NdZ .
1,0 1<k<n.

The identity d? = (d’ + d”)? = 0 is equivalent to
(3.17) d?=0, dd"+d'd=0d?*=0,

since these three operators send (p, ¢)-forms in (p+2,¢q), (p+1,¢+1) and (p, ¢+2)-forms,
respectively. In particular, the operator d” defines for each p = 0,1,...,n a complex,
called the Dolbeault complex

€ (X, APOTE) 25 oo s (X, APITE) L 60X, APIITY)
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and corresponding Dolbeault cohomology groups

Ker d" P-4
Imd’pa—1’

(3.18) HP(X,C) =

with the convention that the image of d” is zero for ¢ = 0. The cohomology group
HPY(X,C) consists of (p,0)-forms u = Zm:p us(z) dzr such that duy/0z; = 0 for all
I, k,i.e. such that all coefficients u; are holomorphic. Such a form is called a holomorphic
p-form on X.

Let F' : X; — X5 be a holomorphic map between complex manifolds. The pull-
back F*u of a (p,q)-form u of bidegree (p,q) on Xo is again homogeneous of bidegree
(p, q), because the components Fj, of F' in any coordinate chart are holomorphic, hence
F*dz;, = dF}, is C-linear. In particular, the equality dF*u = F*du implies

(3.19) dF*u=Fdu, d'Fu=Fdu.

Note that these commutation relations are no longer true for a non holomorphic change
of variable. As in the case of the De Rham cohomology groups, we get a pull-back
morphism

F*: HP(X,,C) — HP9(X4,C).

The rules of complex differential calculus can be easily extended to currents. We use the
following notation.

(3.20) Definition. There are decompositions

P o (x,c), 9Xx.C=PH 9,

p+q=k p+q=Fk

The space 9, ,(X,C) is called the space of currents of bidimension (p,q) and bidegree
(n—p,n—q) on X, and is also denoted 9'"~P"~9(X,C).

§ 3.D. Newton and Bochner-Martinelli Kernels

The Newton kernel is the elementary solution of the usual Laplace operator A =
>-0%/0z7 in R™. We first recall a construction of the Newton kernel.

Let d\ = dx;...dx,, be the Lebesgue measure on R™. We denote by B(a,r) the
euclidean open ball of center a and radius r in R™ and by S(a,r) = 0B(a,r) the corre-
sponding sphere. Finally, we set «,,, = Vol (B(O, 1)) and 0,,_1 = ma,, so that

(3.21) Vol (B(a,r)) = apr™,  Area(S(a,r)) = O™ L

The second equality 2jfollovvs from the first by derivation. An explicit computation of
the integral [, e~1*I"d\(z) in polar coordinates shows that a,, = 7™/2/(m/2)! where
! =T'(x 4+ 1) is the Euler Gamma function. The Newton kernel is then given by:

1
N(z) = — log || it m=2,
(3.22) 2 ,
N(z)=————z|*™™ if 2.
(@) = ~ gy e it m
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The function N(z) is locally integrable on R™ and satisfies AN = ¢g. When m = 2,
this follows from Cor. 3.4 and the fact that A = 49?/020z. When m # 2, this can be
checked by computing the weak limit

lim A(|z]? + 52)1_m/2 = lim m(2 — m)e2(|jz|> + 82)—1—m/2
e—0 e—0

=m(2—m) L, oo

with I, = [ (|2|2+1)727™/2dX\(2). The last equality is easily seen by performing the
change of variable y = ez in the integral

[Py f@yan@) = [ (P + 1) e ),

m

where f is an arbitrary test function. Using polar coordinates, we find that I,,, = op,—1/m
and our formula follows.

The Bochner-Martinelli kernel is the (n,n — 1)-differential form on C™ with Lj
coefficients defined by

JZjdz A dz NdEUA L dE L N dZ,
|Z|2n

(323)  kpm(2)=cu Y (-1)

1<j<n

)

cn, = (— ”(n—l)/ZM
n=(-1) G

(3.24) Lemma. d"kgy = dp on C™.

Proof. Since the Lebesgue measure on C" is

i i\n n(n—1)
Az = N\ %dzj/\dzj:(%> (1) 2 der A...dzn AdZ1 A .. .dZy,

1<j<n
we find
n—1)! 0 [z
d//ijM = — s £<|Z|;n>d/\(2)
1<G<n Y
1 0? 1
= dA
n(n —1)as, 1<gz<n 02;0%; <|z|2”—2) (2)
= AN (z)d\(z) = dp. O

We let Kpy(z,(¢) be the pull-back of kgy; by the map 7 : C* x C* — C™, (2,() —
z — (. Then Formula (2.19) implies

(325) d//KBM = 7T*(50 = [A],

where [A] denotes the current of integration on the diagonal A C C™ x C".
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(3.26) Koppelman formula. Let Q C C* be a bounded open set with piecewise C*
boundary. Then for every (p,q)-form v of class Ct on Q we have

o) = [ K0 Av(©
! [ KO M0 + [ KGO Ad0(0)
Q

Q

on , where K&y (z, () denotes the component of Kgm(z, () of type (p,q) in z and (n —
p,n—q—1)in (.

Proof. Given w € 9"~ P"~1(2), we consider the integral

/ Kpm(z,¢) Av(Q) ANw(z).
o0 x)

It is well defined since Kpgy has no singularities on 9€2 x Supp v CC 992 x €. Since w(z)
vanishes on 9f) the integral can be extended as well to O(Q2xQ). As Kgnm(z, ()Av(¢)Aw(z)
is of total bidegree (2n,2n — 1), its differential d’ vanishes. Hence Stokes’ formula yields

[ Kol nv@ A = [ @ (K0 Av() A )
002 x Q2

QxQ
= /QXQ d//KBM(Z,C) Av(C) Nw(z) — Kgf/{(z,c) A d//U(C) Aw(z)
_ (—1)p—|—q K]g’l\g[_l(zac> /\U(g) /\d"w(z).
QxQ
By (3.25) we have
/Md“KBM@,g)M(ko(z) -/ Ao Az = JREIE

Denoting ( , ) the pairing between currents and test forms on €2, the above equality is
thus equivalent to

( KBM(Z,C)AU(C)aw(Z»:<U(Z)—LKSﬁ(Zaﬁ)Ad"U(C),w(Z)>

o0

~ (-1 [ KB .0 A ol0)d ()
Q
which is itself equivalent to the Koppelman formula by integrating d”v by parts. U

(3.27) Corollary. Let v € *9P1(C") be a form of class C* with compact support such
that d’v =0, ¢ > 1. Then the (p,q — 1)-form

q—1
u(z) = g Kgn (2,0 A o(Q)
is a C* solution of the equation d’'u = v. Moreover, if (p,q) = (0,1) andn > 2 then u has
compact support, thus the Dolbeault cohomology group with compact support HY1(C™, C)
vanishes for n > 2.



28 Chapter I. Complex Differential Calculus and Pseudoconvexity

Proof. Apply the Koppelman formula on a sufficiently large ball Q = B(0, R) containing
Suppv. Then the formula immediately gives d’u = v. Observe that the coefficients of
Kpum(z,¢) are O(]z — ¢~ V), hence |u(2)] = O(]z|~3"~V) at infinity. If ¢ = 1, then
u is holomorphic on C" \ B(0, R). Now, this complement is a union of complex lines
when n > 2, hence v = 0 on C"™ \. B(0, R) by Liouville’s theorem. O

(3.28) Hartogs extension theorem. Let 2 be an open set in C", n > 2, and let
K C Q be a compact subset such that Q . K is connected. Then every holomorphic
function f € 6(2\ K) extends into a function f € G(Q).

Proof. Let ¢ € 9(€2) be a cut-off function equal to 1 on a neighborhood of K. Set
fo= (0 —=v)f € 6°(Q), defined as 0 on K. Then v = d" fy = — fd"+) can be extended
by 0 outside 2, and can thus be seen as a smooth (0, 1)-form with compact support in C”,
such that d”v = 0. By Cor. 3.27, there is a smooth function u with compact support in
C™ such that d’u =v. Then f = fy —u € G(2). Now u is holomorphic outside Supp ¥,
so v vanishes on the unbounded component G of C" ~\ Supp. The boundary 0G is
contained in d Suppy C QN K, so f = (1 —1)f — u coincides with f on the non empty
open set QNG C 2~ K. Therefore f:: f on the connected open set 2 \ K. ]

A refined version of the Hartogs extension theorem due to Bochner will be given in
Exercise 8.13. It shows that f need only be given as a C! function on 01, satisfying the
tangential Cauchy-Riemann equations (a so-called CR-function). Then f extends as a

holomorphic function f € 6(Q) N C%(Q), provided that O is connected.
§ 3.E. The Dolbeault-Grothendieck Lemma

We are now in a position to prove the Dolbeault-Grothendieck lemma [Dolbeault
1953], which is the analogue for d” of the Poincaré lemma. The proof given below makes
use of the Bochner-Martinelli kernel. Many other proofs can be given, e.g. by using a
reduction to the one dimensional case in combination with the Cauchy formula (3.2), see
Exercise 8.5 or [Héormander 1966].

(3.29) Dolbeault-Grothendieck lemma. Let 2 be a neighborhood of 0 in C" and
v e &P, C), [resp. v € P PQ,C)|, such that d"v =0, where 1 < s < oo.

a) If ¢ = 0, then v(z) = > _,vi(2)dzr is a holomorphic p-form, i.e. a form whose
coefficients are holomorphic functions.

b) If ¢ > 1, there exists a neighborhood w C Q of 0 and a form u in *&P4~(w, C) [resp.
a current u € *9P'P 1w, C)] such that d"u = v on w.

Proof. We assume that € is a ball B(0,r) C C™ and take for simplicity » > 1 (possibly
after a dilation of coordinates). We then set w = B(0,1). Let ¢ € 9(Q2) be a cut-off
function equal to 1 on w. The Koppelman formula (3.26) applied to the form v on Q
gives

b((z) = d" / KI5 (2, Q) A (¢ / K& (5,0) A d"$(C) Av(C).
This formula is valid even when v is a current, because we may regularize v as v * p. and
take the limit. We introduce on C™ x C™ x C™ the kernel

K(zw,()=ca Y SdC ) A(dz —d) A N (dwy, — dC,).

=1 ((z=¢) - (w=Q)m k k#j
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By construction, Kpu(z,() is the result of the substitution w = z in K(z,w,(), i
Kpy = h*K where h(z,() = (2,%,(). We denote by KP? the component of K of
bidegree (p,0) in z, (¢,0) in w and (n —p,n —q — 1) in . Then K§ = h*KP? and we
find

v=d"ug+g*v; onw,

where g(z) = (z,%) and
9= [ KEE 60 A (O,
new) = [ K21 w0,0) A d"(0) A u(o)

By definition of KP%(z,w, (), v; is holomorphic on the open set
U={(z,w) Ewxw; V¥ ¢w, Re(z = ¢) - (w—¢) >0},

which contains the “conjugate-diagonal” points (z,%Z) as well as the points (z,0) and
(0,w) in w x w. Moreover U clearly has convex slices ({z} x C*")NU and (C" x {w})NU.
In particular U is starshaped with respect to w, i.e.

(z,w) e U = (z,tw) € U, Vte][0,1].

As uy is of type (p,0) in z and (g, 0) in w, we get d/(g*v1) = g*dywv1 = 0, hence d,,v7 = 0.
For ¢ = 0 we have KBy = = 0, thus ug = 0, and v; does not depend on w, thus v is
holomorphic on w. For q = 1, we can use the homotopy formula (1.23) with respect to w
(considering z as a parameter) to get a holomorphic form uq(z, w) of type (p,0) in z and
(¢ —1,0) in w, such that dy,uq(z,w) = v1(z,w). Then we get d’g*u; = g*d,u1 = g*vs,
hence

v=d"(uy+g*u1) onw.

Finally, the coefficients of ug are obtained as linear combinations of convolutions of the
coefficients of 1v with L{. _ functions of the form Cj|§|_2”. Hence uy is of class C*® (resp.
is a current of order s), if v is. O

(3.30) Corollary. The operator d"’ is hypoelliptic in bidegree (p,0), i.e. if a current
fed'PV(X,C) satisfies d’ f € &P1(X,C), then f € 8P°(X,C).

Proof. The result is local, so we may assume that X = ) is a neighborhood of 0 in C".
The (p, 1)-form v = d" f € &1(X, C) satisfies d"v = 0, hence there exists u € §7°(Q2, C)
such that d”’u = d”f. Then f — u is holomorphic and f = (f —u) +u € 79(Q,C). O

§ 4. Subharmonic Functions

A harmonic (resp. subharmonic) function on an open subset of R™ is essentially a
function (or distribution) w such that Au = 0 (resp. Au > 0). A fundamental example
of subharmonic function is given by the Newton kernel N, which is actually harmonic on
R™~{0}. Subharmonic functions are an essential tool of harmonic analysis and potential
theory. Before giving their precise definition and properties, we derive a basic integral
formula involving the Green kernel of the Laplace operator on the ball.
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§4.A. Construction of the Green Kernel
The Green kernel Gq(x,y) of a smoothly bounded domain 2 CC R™ is the solution
of the following Dirichlet boundary problem for the Laplace operator A on €):

(4.1) Definition. The Green kernel of a smoothly bounded domain Q@ CC R™ is a
function Gq(z,y) : Q@ x Q — [—o0, 0] with the following properties:

a) Go(r,y) is 6> on Q x O\ Diag, (Diagy = diagonal) ;

o

C

d

) Gal(z,y

) Ga(z,y) = Galy, z) ;

) Ga(z,y) <0 on Qx Q and Ga(z,y) =0 on 90 x Q;
) A

:Ga(z,y) =06, on Q for every fized y € Q.

It can be shown that G always exists and is unique. The uniqueness is an easy
consequence of the maximum principle (see Th. 4.14 below). In the case where Q2 =
B(0,r) is a ball (the only case we are going to deal with), the existence can be shown
through explicit calculations. In fact the Green kernel G,.(z,y) of B(0,r) is

B |yl r’ =
(4.2) Gr(m,y)—N(x—y)—N(T(x—Wy>>, x,y € B(0,r).

A substitution of the explicit value of N(x) yields:

Golz,y) = —1 v =yl if 2, otherwi
(z,y) = —1o if m =2, otherwise
P a0 o)+ L P
-1 2—-m 2 L o) 9\1-m/2
Gr(z,y) = m(\x —yP 7" = (1 = 2(z,y) + r—glw\ lyl?) )

(4.3) Theorem. The above defined function G, satisfies all four properties (4.1 a—d) on
Q= B(0,r), thus G, is the Green kernel of B(0,r).

Proof. The first three properties are immediately verified on the formulas, because
2 Loy 2 2 4 1 2
P = 2(a,y) + lal g2 = |~y + 5 (7~ [o?) (2~ of?).

For property d), observe that r2y/|y|? ¢ B(0,r) whenever y € B(0,7) \ {0}. The second
Newton kernel in the right hand side of (4.1) is thus harmonic in  on B(0, ), and

AGr(x,y) = AgN(x —y) =46, on B(0,r). O

§ 4.B. Green-Riesz Representation Formula and Dirichlet Problem

§ 4.B.1. Green-Riesz Formula. For all smooth functions u,v on a smoothly bounded
domain €2 CC R™, we have

ov ou
(4.4) L(uAv—vAu)dA-/é)ﬁ(ua—va)da
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where 0/0v is the derivative along the outward normal unit vector v of 92 and do the
euclidean area measure. Indeed

(=17 Moy A Ada A A do o0 = v; do,

for the wedge product of (v, dx) with the left hand side is v; dA\. Therefore

m

> (—1yi- 166; dzy A Ndz; A A dp,.
J

—da—z 6.T] dea—

Jj=1 Jj=1

Formula (4.4) is then an easy consequence of Stokes’ theorem. Observe that (4.4) is still
valid if v is a distribution with singular support relatively compact in §2. For 2 = B(0,r),
u € C?*(B(0,7),R) and v(y) = G,(z,y), we get the Green-Riesz representation formula:

(45  u(x) = /B o B o) D)+ / u(y) Pz, y) do(y)

S(0,r)

where P.(z,y) = 0G,(x,y)/0v(y), (z,y) € B(0,r) x S(0,r). The function P,(z,y) is
called the Poisson kernel. 1t is smooth and satisfies A, P.(x,y) = 0 on B(0,7) by (4.1 d).
A simple computation left to the reader yields:

1 r?—|z)?

(4.6) P.(z,y) =

Om—1T |',1j - y‘m .

Formula (4.5) for u = 1 shows that fS(O " P.(z,y)do(y) = 1. When z in B(0,7) tends
to xg € 5(0,7), we see that P,.(x,y) converges uniformly to 0 on every compact subset

of S(0,7) ~ {zo} ; it follows that the measure P,(z,y) do(y) converges weakly to d,, on
S(0,r).

§ 4.B.2. Solution of the Dirichlet Problem. For any bounded measurable function v on
S(a,r) we define

(4.7) P, [v](z) = /S( )v(y) P.(x —a,y—a)do(y), x¢€ B(a,r).

If u € C°(B(a,r),R)NC?(B(a,r),R) is harmonic, i.e. Au = 0 on B(a,r), then (4.5) gives
u = P, [u] on B(a,r), i.e. the Poisson kernel reproduces harmonic functions. Suppose
now that v € C°(S(a,r),R) is given. Then P,(z — a,y — a) do(y) converges weakly to
dz, When z tends to xg € S(a,r), so P, ,[v](x) converges to v(zg). It follows that the
function u defined by
u=P,,v] on B(a,r),
{ u="v on S(a,r)

is continuous on B(a,r) and harmonic on B(a,r) ; thus u is the solution of the Dirichlet
problem with boundary values v.

§ 4.C. Definition and Basic Properties of Subharmonic Functions
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§ 4.C.1. Definition. Mean Value Inequalities. If u is a Borel function on B(a,r) which
is bounded above or below, we consider the mean values of u over the ball or sphere:

1
(4.8) up(usa,r) = m/ u(x) dA(x),
amT B(a,r)
1
18 ar) = | do ().
(18) pstuiar) = oy [ e dota)

As d)\ = dr do these mean values are related by

1
Uy, 7™

(4.9) pp(usa,r) = / O 1t ps(usa,t)dt
0

1
= m/ t™ g (usa,rt) dt.
0

Now, apply formula (4.5) with z = 0. We get P.(0,y) = 1/0,,_1r™ ! and G,.(0,y) =

(ly~™ = 772 = m)om 1 = —(1/om 1) [ 1", thus

1

Om—1

/ Au(y) Gr(0,y) dA\(y) = — / ' trf: Au(y) dA(y)
B(0,r) 0 ly|<t

1 ™
:——/ wp(Au;0,t)tdt
m Jo

thanks to the Fubini formula. By translating S(0,7) to S(a,r), (4.5) implies the Gauss
formula

1 T
(4.10) ug(u;a,r):u(a)—l—a/ pp(Ausa,t)tdt.
0

Let  be an open subset of R™ and u € C?*(,R). If a € Q and Au(a) > 0 (resp.
Au(a) < 0), Formula (4.10) shows that pg(u;a,r) > u(a) (resp. ps(u;a,r) < u(a)) for
r small enough. In particular, u is harmonic (i.e. Au = 0) if and only if u satisfies the

mean value equality o
ps(u;a,r)=wu(a), VB(a,r)C Q.

Now, observe that if (p.) is a family of radially symmetric smoothing kernels associated
with p(x) = p(|z|) and if u is a Borel locally bounded function, an easy computation
yields

uxpe(a) = /B(O,l) u(a + ex) p(x) dA

1
(4.11) = am_1/ ps(usa,et)pt) t™ 1 dt.
0

Thus, if u is a Borel locally bounded function satisfying the mean value equality on (2,
(4.11) shows that u x p. = u on ), in particular v must be smooth. Similarly, if we
replace the mean value equality by an inequality, the relevant regularity property to be
required for u is just semicontinuity.
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(4.12) Theorem and definition. Let u : 2 — [—00, +00] be an upper semicontinuous
function. The following various forms of mean value inequalities are equivalent:

a) u(x) < P,[ul(z), VB(a,r)CQ, Vaxe Bla,r);
b) u(a) < ps (u;a,r), VB(a,r)CQ;
c) u(a) < pp(usa,r), VB(a,r)CQ;

d) for every a € Q, there exists a sequence (r,) decreasing to 0 such that

u(a) < pp(usa,ry) Vv

e) for every a € Q), there exists a sequence (r,) decreasing to 0 such that
u(a) < ps(uja,r,) V.

A function u satisfying one of the above properties is said to be subharmonic on 2. The
set of subharmonic functions will be denoted by Sh(€).

By (4.10) we see that a function u € C?(Q, R) is subharmonic if and only if Au > 0 :
in fact pg(u; a,r) < u(a) for r small if Au(a) < 0. It is also clear on the definitions that
every (locally) convex function on € is subharmonic.

Proof. We have obvious implications
a) = b) = c¢) = d) = e),

the second and last ones by (4.10) and the fact that pug(u;a,r,) < ps(u;a,t) for at
least one ¢ € |0,7,[. In order to prove e) = a), we first need a suitable version of the
maximum principle.

(4.13) Lemma. Letu : Q — [—o0, +00[ be an upper semicontinuous function satisfying
property 4.12 e). If u attains its supremum at a point xg € 2, then wu is constant on the
connected component of xg in €.

Proof. We may assume that () is connected. Let
W={zeQ; ulx) <u(zxy)}.

W is open by the upper semicontinuity, and distinct from € since z¢o ¢ W. We want to
show that W = (). Otherwise W has a non empty connected component Wy, and W
has a boundary point a € Q. We have a € Q ~\ W, thus u(a) = u(zp). By assumption
4.12¢), we get u(a) < ps(u;a,r,) for some sequence r, — 0. For r, small enough, W
intersects Q\ B(a,r,) and B(a,r,) ; as Wy is connected, we also have S(a,r,) Wy # 0.
Since u < u(xo) on the sphere S(a,r,) and u < u(xg) on its open subset S(a,r,) N Wy,
we get u(a) < ps(u;a,r) <u(zg), a contradiction. O
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(4.14) Maximum principle. If u is subharmonic in 2 (in the sense that u satisfies
the weakest property 4.12¢)), then

supu = limsup u(z),
Q 032—-00U{c}

and sup i u = supyy u(z) for every compact subset K C ).

Proof. We have of course imsup,_, g {o0} #(2) < supg u. If the inequality is strict, this
means that the supremum is achieved on some compact subset L C ). Thus, by the
upper semicontinuity, there is xg € L such that supg v = sup; v = u(zp). Lemma 4.13
shows that w is constant on the connected component €2y of x( in €2, hence

supu = u(zg) = limsup  wu(z) < limsup wu(z),
Q Qp32—0QU{c0} Q3z—900QU{oco0}

contradiction. The statement involving a compact subset K is obtained by applying the
first statement to Q' = K°. O

Proof of (4.12) e) = a). Let u be an upper semicontinuous function satisfying 4.12 e)
and B(a,r) C  an arbitrary closed ball. One can find a decreasing sequence of con-
tinuous functions v, € C° (S(a,r),R) such that limvy = u. Set hy = P, [vg] €
C°(B(a,r),R). As hy, is harmonic on B(a,r), the function u — hy, satisfies 4.12 e) on
B(a,r). Furthermore imsup,_,¢c g4, w(2) — hi(z) < u(§) — vk(§) < 0, s0 u —hy <0
on B(a,r) by Th. 4.14. By monotone convergence, we find u < P, ,[u] on B(a,r) when
k tends to +o0. O

§ 4.C.2. Basic Properties. Here is a short list of the most basic properties.

(4.15) Theorem. For any decreasing sequence (uy) of subharmonic functions, the limit
u = lim uy, s subharmonic.

Proof. A decreasing limit of upper semicontinuous functions is again upper semicontin-
uous, and the mean value inequalities 4.12 remain valid for u by Lebesgue’s monotone
convergence theorem. O

(4.16) Theorem. Let uy,...,u, € Sh(Q2) and x : RP — R be a convex function such
that x(t1,...,t,) is non decreasing in each t;. If x is extended by continuity into a
function [—oo, +oo[P— [—o0, +00[, then

x(u1,...,up) € Sh(Q).
In particular wy + - - + up, max{uy,...,upy}, log(e*t 4+ --- +e*r) € Sh().

Proof. Every convex function is continuous, hence x(u1, ..., u,) is upper semicontinuous.
One can write

Xx(t) = sup A;(t)
il
where A;(t) = a1t1+- - -+ apt, + b is the family of affine functions that define supporting
hyperplanes of the graph of x. As x(t1,...,t,) is non-decreasing in each t;, we have
aj = 0, thus

Z a;u;(x) +b< uB(Zajuj —|—b;x,r) < uB(X(ul,...,up);x,r)

1<y<p
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for every ball B(z,r) C €. If one takes the supremum of this inequality over all the
A;’s, it follows that x(ui,...,u,) satisfies the mean value inequality 4.12 c). In the last

example, the function x(t1,...,t,) = log(e’* + - - + e'?) is convex because
d%x o —x 2 t; —2x t;)2
Do map Gibk=e ) e —e (Y geh)
1<Gik<p 7R
and (Y &je )2 < (X £7 el ) €X by the Cauchy-Schwarz inequality. O

(4.17) Theorem. If) is connected and u € Sh(Q), then either u = —oco oru € Li ().

loc

Proof. Note that a subharmonic function is always locally bounded above. Let W be the
set of points = € () such that u is integrable in a neighborhood of x. Then W is open
by definition and u > —oo almost everywhere on W. If € W, one can choose a € W
such that |a — z| < r = 3d(z,CQ) and u(a) > —co. Then B(a,r) is a neighborhood of
z, B(a,r) C Q and pp(u;a,r) > u(a) > —oo. Therefore x € W, W is also closed. We
must have W = Q or W = () ; in the last case u = —oo by the mean value inequality. [

(4.18) Theorem. Let u € Sh(Q2) be such that u Z —oo on each connected component of
Q. Then

a) r — ps(usa,r), ¥ — pp(u;a,r) are non decreasing functions in the interval
]07d(a7 CQ)[z and uB(U;CL,T) < MS(U;CL,T).

b) For any family (ps) of smoothing kernels, ux p. € Sh(£2:) N 6°°(Q,R), the family
(u* p:) is mon decreasing in € and lim._,o u x p. = u.

Proof. We first verify statements a) and b) when v € C?(Q,R). Then Au > 0 and
ws(u;a,r)is non decreasing in virtue of (4.10). By (4.9), we find that ug(u;a,r) is also
non decreasing and that pup(u;a,r) < ps(u;a,r). Furthermore, Formula (4.11) shows
that € — u * p-(a) is non decreasing (provided that p. is radially symmetric).

In the general case, we first observe that property 4.12 c) is equivalent to the inequality
u<Luxp,. on Q. Vr>0,

where ., is the probability measure of uniform density on B(0, 7). This inequality implies
Uk pe S UK Pe* (i 0N (24)e = Qpy e, thus u* p. € 6°°(Q.,R) is subharmonic on Q.. It
follows that ux p. x p,, is non decreasing in 7 ; by symmetry, it is also non decreasing in ¢,
and so is uxp. = lim,_,o uxp:*xp,. We have uxp. > u by (4.19) and lim sup,_,, u*p: < u
by the upper semicontinuity. Hence lim._,gu x p. = u. Property a) for u follows now
from its validity for u x p. and from the monotone convergence theorem. O

(4.19) Corollary. If u € Sh(?) is such that u # —oo on each connected component of
Q, then Au computed in the sense of distribution theory is a positive measure.

Indeed A(u* p:) = 0 as a function, and A(u  pe) converges weakly to Au in 9’ ().
Corollary 4.19 has a converse, but the correct statement is slightly more involved than
for the direct property:
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(4.20) Theorem. If v € 9'(Q) is such that Av is a positive measure, there exists a
unique function u € Sh(§2) locally integrable such that v is the distribution associated to
u.

We must point out that v need not coincide everywhere with v, even when v is a
locally integrable upper semicontinuous function: for example, if v is the characteristic
function of a compact subset K C €2 of measure 0, the subharmonic representant of v is
u = 0.

Proof. Set v. = v *x p. € 6°(Q,R). Then Av. = (Av) x p. = 0, thus v. € Sh(£.).
Arguments similar to those in the proof of Th. 4.18 show that (v.) is non decreasing
in . Then v := lim. o v. € Sh(Q2) by Th. 4.15. Since v, converges weakly to v, the
monotone convergence theorem shows that

(v, f) = lim vgfd)\:/ufd)\, Vfeapa ), f=0,
e—0 Q Q

which concludes the existence part. The uniqueness of u is clear from the fact that u

must satisfy v = limu % p. = lim v * p.. O

The most natural topology on the space Sh(2) of subharmonic functions is the topo-
logy induced by the vector space topology of L () (Fréchet topology of convergence
in L' norm on every compact subset of Q).

(4.21) Proposition. The convex cone Sh(Q) N Li (Q) is closed in Li

1be(€2), and it has
the property that every bounded subset is relatively compact.

Proof. Let (u;) be a sequence in Sh(Q2) N L (Q). If u; — win L () then Au; — Au
in the weak topology of distributions, hence Au > 0 and u can be represented by a
subharmonic function thanks to Th. 4.20. Now, suppose that ||u;||z1(x) is uniformly
bounded for every compact subset K of Q. Let p; = Au; > 0. If ¢ € D(Q) is a test

function equal to 1 on a neighborhood w of K and such that 0 < ¢ <1 on 2, we find
() < [ 0w dr= [ Avusdn < Clus e
Q Q

where K’ = Supp ¢, hence the sequence of measures (y;) is uniformly bounded in mass
on every compact subset of (). By weak compactness, there is a subsequence (1, ) which
converges weakly to a positive measure p on Q. We claim that f x (1, ) converges to
f*(p) in LL (R™) for every function f € L{ (R™). In fact, this is clear if f € €>(R™),
and in general we use an approximation of f by a smooth function g together with the

estimate

ICf = 9) % W)l cay < I = Dllorarrnm, (K, VACCR™

to get the conclusion. We apply this when f = N is the Newton kernel. Then h; =
u; — N * (tp;) is harmonic on w and bounded in L'(w). As h; = h; % p. for any
smoothing kernel p., we see that all derivatives D*h; = h;x(D%p.) are in fact uniformly
locally bounded in w. Hence, after extracting a new subsequence, we may suppose that
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h;, converges uniformly to a limit A on w. Then u;, = h;, + N x (¥u1;,) converges to
u=nh+ Nx%(u)in L (w), as desired. O

loc
We conclude this subsection by stating a generalized version of the Green-Riesz for-
mula.

(4.22) Proposition. Let u € Sh(Q) N L}

loc

(Q) and B(0,7) C Q.

a) The Green-Riesz formula still holds true for such an w, namely, for every x € B(0,r)

u(z) = /B o DU G )+ [S o 1) Pl 9) do).

b) (Harnack inequality)
If u>0 on B(0,r), then for all x € B(0,r)

r™m=2(r + |z|) 0.1
0<u@) < [ ut) Pl y) doly) < T (s,

If u <0 on B(0,7), then for all x € B(0,r)

rm 2 (r — J2))

WMS(U;O,T) <0.

u() < [S o u) P 9) doly) <

Proof. We know that a) holds true if u is of class C2. In general, we replace u by u * p.
and take the limit. We only have to check that

/ 1k pey) Colasy) @) = Tim | jly) Gyl y) dA)
B(0,r) =0/ B(0,r)

for the positive measure y = Au. Let us denote by C:’w(y) the function such that

~ G,(z,y) ifx € B(0,r)
Gw(g/):{o Y ted BN,

Then

/B o R Gl ) X) = / () Galy) AN(9)

— /m 11(y) G * pe(y) dA(y).

However G, is continuous on R™ . {z} and subharmonic in a neighborhood of z, hence
éw * pe converges uniformly to C:’w on every compact subset of R”™ ~ {z}, and con-
verges pointwise monotonically in a neighborhood of z. The desired equality follows by
the monotone convergence theorem. Finally, b) is a consequence of a), for the integral
involving Awu is nonpositive and

1 72— al) L Gl 1),

< Pr(z,y) <
e et S @)

Om_1r™™ L (r — |x|)m1

by (4.6) combined with the obvious inequality (r — |z|)™ < |z — y|™ < (r+ |z|)™. O
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§ 4.C.3. Upper Envelopes and Choquet’s Lemma. Let Q@ C R™ and let (uq)acr be a
family of upper semicontinuous functions Q@ — [—00,+oo[. We assume that (u,) is
locally uniformly bounded above. Then the upper envelope

U = SUP Ug,

need not be upper semicontinuous, so we consider its upper semicontinuous regulariza-
tion:
u*(z) = lim sup u > u(z).
e—0 B(Z,E)

It is easy to check that u* is the smallest upper semicontinuous function which is > wu.
Our goal is to show that u* can be computed with a countable subfamily of (u,). Let
B(zj,¢j) be a countable basis of the topology of €. For each j, let (z;;) be a sequence
of points in B(z;,¢;) such that

supu(zjr) = sup u,
k B(Zj,fij)

and for each pair (4, k), let a(yj, k,1) be a sequence of indices a € I such that u(z;,) =
sup, Ua(j,k,l)(zjk)- Set
v = SUD Ua(jk,l)-
Jikl

Then v < uw and v* < ¢v*. On the other hand

sup v = sup v(2jx) = Sup Ua(j k1) (2jk) = supu(z;x) = sup u.
B(z,¢5) k kil k B(zj,¢5)

As every ball B(z,¢) is a union of balls B(z;,¢;), we easily conclude that v* > u*, hence
v* = u*. Therefore:

(4.23) Choquet’s lemma. Every family (uq) has a countable subfamily (vj) = (ua(j))
such that its upper envelope v satisfies v < u < u* = v*. U

(4.24) Proposition. If all u, are subharmonic, the upper regularization u* is subhar-
monic and equal almost everywhere to u.

Proof. By Choquet’s lemma we may assume that (u,) is countable. Then u = sup u, is a
Borel function. As each u,, satisfies the mean value inequality on every ball B(z,7) C €,
we get

u(z) = supun(z) < sup pup(ua; 2,7) < pup(u; z,7).

The right-hand side is a continuous function of z, so we infer

u'(z) < pplu; z,7) < pp(u”; z,r)
and u* is subharmonic. By the upper semicontinuity of u* and the above inequality we
find u*(z) = lim, 0 up(u; z,7), thus u* = u almost everywhere by Lebesgue’s lemma.

n
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§ 5. Plurisubharmonic Functions

§ 5.A. Definition and Basic Properties

Plurisubharmonic functions have been introduced independently by [Lelong 1942] and
[Oka 1942] for the study of holomorphic convexity. They are the complex counterparts
of subharmonic functions.

(5.1) Definition. A function u: Q — [—o00, +00| defined on an open subset Q C C" is
said to be plurisubharmonic if

a) u is upper semicontinuous ;
b) for every complex line L C C™, uyonr, is subharmonic on QN L.

The set of plurisubharmonic functions on ) is denoted by Psh(€2).

An equivalent way of stating property b) is: for all a € Q, & € C", |¢| < d(a,[),
then

1
(5.2) u(a) < 5

2m
/ u(a + € &) df.
0
An integration of (5.2) over £ € S(0,r) yields u(a) < ps(u;a,r), therefore
(5.3) Psh(€) C Sh(Q).

The following results have already been proved for subharmonic functions and are easy
to extend to the case of plurisubharmonic functions:

(5.4) Theorem. For any decreasing sequence of plurisubharmonic functions uy €
Psh(?), the limit w = limuy, is plurisubharmonic on Q.

(5.5) Theorem. Let u € Psh(Q) be such that u Z —oo on every connected component
of Q. If (pe) is a family of smoothing kernels, then u* pe is 6°° and plurisubharmonic
on Qc, the family (u* pe) is non decreasing in € and lim._,o u* pe = u.

(5.6) Theorem. Let uq,...,u, € Psh(Q2) and x : RP — R be a convex function such

that x(t1,...,t,) is non decreasing in each t;. Then x(u1,...,up) is plurisubharmonic on
Q. In particular ui+---+upy, max{u,...,uy}, log(e" +---+¢€") are plurisubharmonic
on €.

(5.7) Theorem. Let {u,} C Psh(Q) be locally uniformly bounded from above and
U = sup u,. Then the reqularized upper envelope u* is plurisubharmonic and is equal to
u almost everywhere.

Proof. By Choquet’s lemma, we may assume that (u,) is countable. Then u is a Borel
function which clearly satisfies (5.2), and thus u % p. also satisfies (5.2). Hence u *
pe is plurisubharmonic. By Proposition 4.24, u* = u almost everywhere and u* is
subharmonic, so

w* =limu* * p. = limu * p.
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is plurisubharmonic. ]

If u € C?(Q, R), the subharmonicity of restrictions of u to complex lines, C > w
u(a +wf), a € Q, £ € C", is equivalent to

0? 0%u
>

1<,k <n

Therefore, u is plurisubharmonic on Q if and only if >° 8%u/92,;0zk(a) &€, is a semiposi-
tive hermitian form at every point a € ). This equivalence is still true for arbitrary
plurisubharmonic functions, under the following form:

(5.8) Theorem. If u € Psh(Q), u # —oo on every connected component of 2, then for
all € € C"
Pu - ,
Hu(®):= ), =& €9 ()

02;0Z
1<j,h<n © A7k

is a positive measure. Conversely, if v € D' (Q) is such that Hv(§) is a positive measure
for every £ € C", there exists a unique function u € Psh(QQ) locally integrable on 2 such
that v 1s the distribution associated to u.

Proof. If u € Psh(Q), then Hu(§) = weak lim H(u p:)(§) = 0. Conversely, Hv > 0
implies H(v* p:) = (Hv) % pe = 0, thus v x p. € Psh(Q), and also Av > 0, hence (v * p¢)
is non decreasing in € and u = lim._,g v * p. € Psh(€Q) by Th. 5.4. O
(5.9) Proposition. The convex cone Psh(Q2) N L

loc
the property that every bounded subset is relatively compact.

() is closed in L

loc

(Q), and it has

§ 5.B. Relations with Holomorphic Functions

In order to get a better geometric insight, we assume more generally that u is a C?
function on a complex n-dimensional manifold X. The complex Hessian of u at a point
a € X is the hermitian form on T'x defined by

0%u
(510) H'LLa == W(a) de & dzk
1< hsn TFIOE

If F: X — Y is a holomorphic mapping and if v € C%(Y,R), we have d'd’(vo F) =
F*d'd"v. In equivalent notations, a direct calculation gives for all £ € T'x ,

0%v(F(a)) OF;(a W
H(voF),(&) = Z 8zgg;(m>) ng(J >§7 F@Z;E )fk:HUF(a)(F/(a).f).

Jk,lLm

In particular Hu, does not depend on the choice of coordinates (z1,...,2,) on X, and
Hv, > 0 on Y implies H(vo F), > 0 on X. Therefore, the notion of plurisubharmonic
function makes sense on any complex manifold.

(5.11) Theorem. If F: X — Y is a holomorphic map and v € Psh(Y), thenvo F €
Psh(X).
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Proof. 1t is enough to prove the result when X = Q; € C" and X = Qy C C? are
open subsets . The conclusion is already known when v is of class C?, and it can be
extended to an arbitrary upper semicontinuous function v by using Th. 5.4 and the fact
that v = limv * p.. O

(5.12) Example. By (3.22) we see that log|z| is subharmonic on C, thus log|f| €
Psh(X) for every holomorphic function f € 6(X). More generally

log (| fu]** + -+ +|fg|**) € Psh(X)
for every f; € 6(X) and a; > 0 (apply Th. 5.6 with u; = a; log|f;| ).

8§ 5.C. Convexity Properties

The close analogy of plurisubharmonicity with the concept of convexity strongly sug-
gests that there are deeper connections between these notions. We describe here a few
elementary facts illustrating this philosophy. Another interesting connection between
plurisubharmonicity and convexity will be seen in § 7.B (Kiselman’s minimum princi-

ple).

(5.13) Theorem. If Q = w + iw’ where w, w' are open subsets of R™, and if u(z) is a
plurisubharmonic function on  that depends only on © = Re z, then w 3 x — u(x) is
convet.

Proof. This is clear when u € C?(Q, R), for 0*u/0z;0z), = i 0?u/0x ;0. In the general
case, write u = limu * p. and observe that u * p-(z) depends only on x. O

(5.14) Corollary. If u is a plurisubharmonic function in the open polydisk D(a, R) =
[I[D(aj, R;) C C", then

1 27 . .
wws ry, . ry) = 5w / u(ay +ref L a, -I—rnele”)dﬁl ...db,,
2m)" Jo
m(u; r1,...,mn) = sup w(z1,...,2n), ;<R
z€D(a,r)
are convez functions of (logry,...,logr,) that are non decreasing in each variable.

Proof. That p is non decreasing follows from the subharmonicity of u along every coor-
dinate axis. Now, it is easy to verify that the functions

- 17 . ,
(21,0, 2n) = (2%)”/ u(ay + €% ... a, + e el dy ... db,,
0
ffz(zl,...,zn):‘Su‘glu(al—I—ezlwl,...,an-l—eZ”wn)
wj|<

are upper semicontinuous, satisfy the mean value inequality, and depend only on Re z; €
10,log R;[. Therefore 1 and M are convex. Cor. 5.14 follows from the equalities

w(us; ry,...,rn) = p(logry, ... logry,),
m(u; ri,...,r) =m(logry, ..., logry,). O
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§ 5.D. Pluriharmonic Functions
Pluriharmonic functions are the counterpart of harmonic functions in the case of

functions of complex variables:

(5.15) Definition. A function u is said to be pluriharmonic if u and —u are plurisub-
harmonic.

A pluriharmonic function is harmonic (in particular smooth) in any C-analytic coor-
dinate system, and is characterized by the condition Hu = 0, i.e. d'd”"u = 0 or

0*u/02;0Z, =0 for all j, k.
If f e 6(X), it follows that the functions Re f, Im f are pluriharmonic. Conversely:

(5.16) Theorem. If the De Rham cohomology group Hpg (X, R) is zero, every pluri-
harmonic function uw on X can be written uw = Re f where f is a holomorphic function
on X.

Proof. By hypothesis Hip (X,R) =0, u € 6>°(X) and d(d'u) = d’d'u = 0, hence there

exists g € €°°(X) such that dg = d’u. Then dg is of type (1,0), i.e. g € 6(X) and
d(u—2Reg) =d(u—g—7) = (d'u—dg)+ (d"u—dg) =0.

Therefore u = Re(2g + C'), where C' is a locally constant function. u

§ 5.E. Global Regularization of Plurisubharmonic Functions

We now study a very efficient regularization and patching procedure for continuous
plurisubharmonic functions, essentially due to [Richberg 1968]. The main idea is con-
tained in the following lemma:

(5.17) Lemma. Let u, € Psh(£,) where Q, CC X is a locally finite open covering
of X. Assume that for every index 8

limsup ug(¢) < max{uq(2)}

C—z Qa3z
at all points z € 0Qg. Then the function

u(z) = Inax Ua(2)
[e7

18 plurisubharmonic on X.

Proof. Fix zy € X. Then the indices 8 such that zy € 9Qg or zy ¢ ﬁg do not contribute
to the maximum in a neighborhood of z5. Hence there is a a finite set I of indices «
such that €, > zp and a neighborhood V' C (,c; Q6 on which u(z) = maxaer ua(2).
Therefore u is plurisubharmonic on V. U

The above patching procedure produces functions which are in general only continu-
ous. When smooth functions are needed, one has to use a regularized max function. Let
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0 € €>°(R,R) be a nonnegative function with support in [—1, 1] such that [, 6(h) dh =1
and [, h(h) dh = 0.

(5.18) Lemma. For arbitrary n = (m,...,np) € ]0,+00[P, the function
My(ty, ..., tp) = | max{ti+hy,....tp+hy} [[ 0(h;/n;)dhy...dh,
o 1<j<n
possesses the following properties:

a) My(t1,...,t,) is non decreasing in all variables, smooth and convexr on R™ ;
b) max{ti,...,tp} < My(t1,...,t,) <max{t; +m,...,tp +Mp} ;
C) Mn(th .. .,tp) =M

» - (771,...,7;;,...,7710)(
if tj +ny < maxpzi{ty — Nk} ;

~

tlyes by s tp)

d) M, (ti +a,...,tp+a)=M,(t1,...,tp) +a, Va e R ;

e) if ui,...,up are plurisubharmonic and satisfy H(u;).(§) = v.(§) where z — 7, is a
continuous hermitian form on Tx, then u = My(u1,...,up) s plurisubharmonic and
satisfies Hu, (&) = v, (€).

Proof. The change of variables h; — h; — t; shows that M, is smooth. All properties
are immediate consequences of the definition, except perhaps e). That M, (u1,...,up) is

plurisubharmonic follows from a) and Th. 5.6. Fix a point zy and ¢ > 0. All functions

w’(2) = u;(2) = 7z (2 — 20) + €|z — 20|? are plurisubharmonic near z. It follows that

Mn(ullv . 7“;;) =u-— 720(2 - ZO) + 6‘2 - ZO|2
is also plurisubharmonic near zy. Since € > 0 was arbitrary, e) follows. U

(5.19) Corollary. Let u, € 6°(Q,) NPsh(Q,) where Q, CC X is a locally finite open
covering of X. Assume that ug(z) < max{us(z)} at every point z € 0Qz, when o runs
over the indices such that Q. 3 z. Choose a family (n.,) of positive numbers so small that
ug(z) +ng < maxq, 5.{ua(2) —na} for all B and z € 0Ng. Then the function defined by

u(z) = M) (ua(2))  for a such that Q4 > 2
18 smooth and plurisubharmonic on X. O

(5.20) Definition. A function u € Psh(X) is said to be strictly plurisubharmonic if
u € Ll (X) and if for every point xo € X there exists a neighborhood Q2 of zo and ¢ > 0

such that u(z) — c|z|? is plurisubharmonic on €, i.e. > (0*u/02;0Zk)&;E, = cl€)? (as
distributions on Q) for all £ € C™.

(5.21) Theorem ([Richberg 1968]). Let u € Psh(X) be a continuous function which is
strictly plurisubharmonic on an open subset Q) C X, with Hu > v for some continuous
positive hermitian form v on Q. For any continuous function A € C°(), X > 0, there
exists a plurisubharmonic function u in CY(X) N 6°°(Q) such that u < U< u+ A on Q
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and u = u on X \Q, which is strictly plurisubharmonic on Q and satisfies Hu > (1—\)~.
In particular, w can be chosen strictly plurisubharmonic on X if u has the same property.

Proof. Let (2,) be a locally finite open covering of € by relatively compact open balls
contained in coordinate patches of X. Choose concentric balls Q) C Q C Q,, of respec-
tive radii 77/ < r!, < r, and center z = 0 in the given coordinates z = (z1,..., z,) near

Q,, such that Q7 still cover Q. We set
Ua(2) = u* pe, (2) + 0a(r? — 2)) on Q.

For £ < €4,0 and 4 < 4,0 small enough, we have u, < u + A/2 and Huy > (1 — A)y
on €),. Set

N = 5o¢ Inin{rla2 - T:JiQ? (Ti - Tf)/Q}

Choose first d, < dq,0 such that n, < minﬁa A/2, and then e, < €4,0 so small that

U< Uk pe, < U+ 1, on Qy. As 5,(r'"? — |2]?) is < —2n, on 98, and > 71, on Q. we

(o3
1!

[eR)

have u, < U — 1o on 08, and uy > u + 1, on Q
Corollary 5.19 is satisfied. We define

- Ju on X N\,
v= M,y (uq) on €

so that the condition required in

By construction, u is smooth on 2 and satisfies u < u < u+ A, Hu > (1 — A)7 thanks to
5.18 (b,e). In order to see that u is plurisubharmonic on X, observe that @ is the uniform
limit of u, with

Uy = Max {u, My, oy (ur .. ua)} on U Qs
1<B<La

and U, = u on the complement. O

§ 5.F. Polar and Pluripolar Sets.

Polar and pluripolar sets are sets of —oo poles of subharmonic and plurisubharmonic
functions. Although these functions possess a large amount of flexibility, pluripolar sets
have some properties which remind their loose relationship with holomorphic functions.

(5.22) Definition. A set A C Q C R™ (resp. A C X, dimcX = n) is said to be polar
(resp. pluripolar) if for every point x € Q) there exist a connected neighborhood W of = and
u € Sh(W) (resp. u € Psh(W)), u # —oo, such that ANW C {x e W ; u(x) = —o0}.

Theorem 4.17 implies that a polar or pluripolar set is of zero Lebesgue measure. Now,
we prove a simple extension theorem.

(5.23) Theorem. Let A C § be a closed polar set and v € Sh(2 . A) such that v is
bounded above in a neighborhood of every point of A. Then v has a unique extension
v € Sh(Q2).

Proof. The uniqueness is clear because A has zero Lebesgue measure. On the other hand,
every point of A has a neighborhood W such that

ANW Cc{x e W ; u(x) = —oc0}, ué€Sh(W), u# —oc.
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After shrinking W and subtracting a constant to u, we may assume u < 0. Then for
every € > 0 the function v. = v + eu € Sh(W ~ A) can be extended as an upper
semicontinuous on W by setting v. = —oo on A N W. Moreover, v. satisfies the mean
value inequality v-(a) < ps(ve;a,r)if a € W~ A, r < d(a, AUCW), and also clearly
if a € A, r < d(a,CW). Therefore v. € Sh(W) and ¥ = (supv.)* € Sh(W). Clearly v

coincides with v on W N A. A similar proof gives:

(5.24) Theorem. Let A be a closed pluripolar set in a complex analytic manifold X .
Then every function v € Psh(X N\ A) that is locally bounded above near A extends uniquely
into a function v € Psh(X). O

(5.25) Corollary. Let A C X be a closed pluripolar set. Every holomorphic function
f € 6(X N A) that is locally bounded near A extends to a holomorphic function f € G(X).

Proof. Apply Th. 5.24 to =Re f and +Im f. It follows that Re f and Im f have pluri-
harmonic extensions to X, in particular f extends to f € 6°°(X). By density of X \ A,

d'f=0on X. O

(5.26) Corollary. Let A C Q (resp. A C X) be a closed (pluri)polar set. If Q (resp. X)
is connected, then Q ~ A (resp. X \ A) is connected.

Proof. If @~ A (resp. X \ A) is a disjoint union ©; U5 of non empty open subsets, the
function defined by f = 0 on Q;, f = 1 on 5 would have a harmonic (resp. holomorphic)
extension through A, a contradiction. U

§ 6. Domains of Holomorphy and Stein Manifolds
8§ 6.A. Domains of Holomorphy in C™. Examples

Loosely speaking, a domain of holomorphy is an open subset 2 in C™ such that there
is no part of 92 across which all functions f € G(£2) can be extended. More precisely:

(6.1) Definition. Let Q2 C C™ be an open subset. 2 is said to be a domain of holomorphy
if for every connected open set U C C™ which meets 02 and every connected component
V of UNK there exists f € O(Q) such that f1v has no holomorphic extension to U.

Under the hypotheses made on U, we have () # 9V NU C 9. In order to show that
) is a domain of holomorphy, it is thus sufficient to find for every zy € 92 a function
f € 6(Q) which is unbounded near z.

(6.2) Examples. Every open subset {2 C C is a domain of holomorphy (for any zy € 012,
f(2) = (z—20) ! cannot be extended at zy ). In C", every conver open subset is a domain
of holomorphy: if Re(z — zg, &) = 0 is a supporting hyperplane of 92 at z, the function
f(2) = ({z — 20,&0)) ! is holomorphic on € but cannot be extended at 2.

(6.3) Hartogs figure. Assume that n > 2. Let w C C"~! be a connected open set and

w’ C w an open subset. Consider the open sets in C™ :

9 = ((D(R)~D(r)) xw) U (D(R) x ') (Hartogs figure),
Q=D(R) xw (filled Hartogs figure).
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where 0 < r < R and D(r) C C denotes the open disk of center 0 and radius r in C.

(Cn—l
_ ,,5 ,,,,,,,,,,,,,,,,
B 1 e
S .
\—./;"72/
w (€1, 2") |
|
w’{ Q0 |
i .
0 Z1 C
R T

Fig. I-3 Hartogs figure

Then every function f € 6() can be extended to € = w x D(R) by means of the Cauchy
formula:

~ 1 2 ~
f(zl,z’):%/“ %d{l, z €, max{|z]|,r} <p<R.
1l=p

In fact f € G(D(R) xw) and f = f on D(R) xw’, so we must have f = f on €2 since € is
connected. It follows that €2 is not a domain of holomorphy. Let us quote two interesting
consequences of this example.

(6.4) Corollary (Riemann’s extension theorem). Let X be a complex analytic manifold,
and S a closed submanifold of codimension > 2. Then every f € OG(X \ S) extends
holomorphically to X .

Proof. This is a local result. We may choose coordinates (z1,...,2,) and a polydisk
D(R)™ in the corresponding chart such that SN D(R)™ is given by equations z; = ... =
zp =0, p =codim S > 2. Then, denoting w = D(R)" ! and ' =w~ {20 =... =2, =

0}, the complement D(R)™ ~\. S can be written as the Hartogs figure
D(R)" S = ((D(R) ~ {0}) x w) U (D(R) x w').

It follows that f can be extended to Q = D(R)™. O

§ 6.B. Holomorphic Convexity and Pseudoconvexity

Let X be a complex manifold. We first introduce the notion of holomorphic hull of a
compact set K C X. This can be seen somehow as the complex analogue of the notion
of (affine) convex hull for a compact set in a real vector space. It is shown that domains
of holomorphy in C" are characterized a property of holomorphic convexity. Finally, we
prove that holomorphic convexity implies pseudoconvexity — a complex analogue of the
geometric notion of convexity.
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(6.5) Definition. Let X be a complex manifold and let K be a compact subset of X.
Then the holomorphic hull of K in X is defined to be

K =Ko = {2 € X [f(2)| <sup /], ¥ € 6(X)}.

(6.6) Elementary properties.

a)

K is a closed subset of X containing K. Moreover we have

sup |f| =sup[f], V[ e 6(X),
7 K

hence K = K.

If h: X — Y is a holomorphic map and K C X is a compact set, then h([?@(x)) -

h([?)@(y). In particular, if X C Y, then I?@(X) C IA(@(y) N X. This is immediate from
the definition.

K contains the union of K with all relatively compact connected components of X \ K

(thus K “fills the holes” of K). In fact, for every connected component U of X \ K
we have OU C 0K, hence if U is compact the maximum principle yields

sup|f| = sup [ f| <sup|f|, for all f € 6(X).
T ouU K

More generally, suppose that there is a holomorphic map A : U — X defined on a
relatively compact open set U in a complex manifold S, such that h extends as a
continuous map h : U — X and h(0U) C K. Then h(U) C K. Indeed, for f € 6(X),
the maximum principle again yields

sup |f o h| =sup|foh| <sup|f].
T oU K

This is especially useful when U is the unit disk in C.

Suppose that X = 2 C C" is an open set. By taking f(2) = exp(A(z)) where A is an
arbitrary affine function, we see that K 6(0) 1s contained in the intersection of all affine
half-spaces contalmng K. Hence K 6(0) 1s contained in the affine convex hull Kaff As
a consequence K 6(0) is always bounded and K 6(cn) 1s a compact set. However, when

Q) is arbitrary, Kg(q) is not always compact; for example, in case Q = C"~ {0}, n > 2,
then G(2) = G(C™) and the holomorphic hull of K = 5(0,1) is the non compact set
K=8B (0,1) ~ {0}.

(6.7) Definition. A complex manifold X is said to be holomorphically convex if the

holomorphic hull K¢ x) of every compact set K C X is compact.

(6.8) Remark. A complex manifold X is holomorphically convez if and only if there
1s an exhausting sequence of holomorphically compact subsets K, C X, i.e. compact sets
such that

X=|JK,, K, =K, K}D>K, ..
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Indeed, if X is holomorphically convex, we may define K, inductively by Ky = () and
K, = (K] ULy)g(X), where K/ is a neighborhood of K,, and L, a sequence of compact

sets of X such that X = |JL,. The converse is obvious: if such a sequence (K, ) exists,

then every compact subset K C X is contained in some K, hence K Cc K, = K, is
compact. U

We now concentrate on domains of holomorphy in C™. We denote by d and B(z,7)
the distance and the open balls associated to an arbitrary norm on C", and we set for
simplicity B = B(0,1).

(6.9) Proposition. If Q) is a domain of holomorphy and K C Q is a compact subset,
then d(K,0Q) = d(K,CQ) and K is compact.

Proof. Let f € 6(). Given r < d(K,CQ), we denote by M the supremum of |f| on the
compact subset K + rB C €. Then for every z € K and ¢ € B, the function

(6.10) Cot— f(z41t€) = Zlek

is analytic in the disk |t| < r and bounded by M. The Cauchy inequalities imply
IDFf(2)(6)F| < ME!r=, Vze K, VY¢eB.

As the left hand side is an analytic fuction of z in (2, the inequality must also hold for
z € K, £ € B. Every f € 6(Q) can thus be extended to any ball B(z,r), 2 € K, by
means of the power series (6.10). Hence B(z,7) must be contained in 2, and this shows
that d(K,CQ) > r. As r < d(K, Q) was arbitrary, we get d(K CQ) > d(K CQ) and the
converse inequality is clear, so d(K CQ) = d(K,(). As K is bounded and closed in €,
this shows that K is compact. 0

(6.11) Theorem. Let Q be an open subset of C™. The following properties are equiva-
lent:

a) Q is a domain of holomorphy;
b) Q is holomorphically convex;

c) For every countable subset {z;}jen C 2 without accumulation points in 2 and every
sequence of complex numbers (a;), there exists an interpolation function F € 0()
such that F(z;) = a;.

d) There exists a function F € OG() which is unbounded on any neighborhood of any
point of 0S).

Proof. d) = a) is obvious and a) = b) is a consequence of Prop. 6.9.

c) = d). If Q@ = C” there is nothing to prove. Otherwise, select a dense sequence ((;) in
09 and take z; € Q such that d(z;,(;) < 277. Then the interpolation function F € 6(f2)
such that F(z;) = j satisfies d).
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b) = ¢). Let K, C Q be an exhausting sequence of holomorphically convex compact
sets as in Remark 6.8. Let v(j) be the unique index v such that z; € K, ;)41 ~ Ky ().
By the definition of a holomorphic hull, we can find a function g; € 6(2) such that

sup |g;| < lgj(z;)|.

v(d)

After multiplying g; by a constant, we may assume that g;(z;) = 1. Let P; € Clzy,..., 2,
be a polynomial equal to 1 at z; and to 0 at 2, 2z1,...,2;—1. We set

+oo
F = Z)\jpjg;nj,
7=0

where \; € C and m; € N are chosen inductively such that

Nj=a;— > MePu(z)gr(z)™,
0<k<j

|Aijg;nj| <277 on K,y ;

once \; has been chosen, the second condition holds as soon as m; is large enough. Since
{#;} has no accumulation point in Q, the sequence v(j) tends to +oo, hence the series
converges uniformly on compact sets. U

We now show that a holomorphically convex manifold must satisfy some more geo-
metric convexity condition, known as pseudoconvexity, which is most easily described in
terms of the existence of plurisubharmonic exhaustion functions.

(6.12) Definition. A function ¢ : X — [—00,+00[ on a topological space X is said
to be an exhaustion if all sublevel sets X. := {z € X ; ¥(z) < ¢}, ¢ € R, are relatively
compact. Equivalently, 1 is an exhaustion if and only if 1 tends to +oo relatively to the
filter of complements X ~~ K of compact subsets of X.

A function ¢ on an open set 2 C R™ is thus an exhaustion if and only if ¢ (z) — +o0
as x — 0 or x — oo. It is easy to check, cf. Exercise 8.8, that a connected open
set 2 C R™ is convex if and only if 2 has a locally convex exhaustion function. Since
plurisubharmonic functions appear as the natural generalization of convex functions in
complex analysis, we are led to the following definition.

(6.13) Definition. Let X be a complex n-dimensional manifold. Then X is said to be

a) weakly pseudoconvex if there exists a smooth plurisubharmonic exhaustion function

W € Psh(X) N €=(X);

b) strongly pseudoconvex if there exists a smooth strictly plurisubharmonic exhaustion
function ¥ € Psh(X) N 6°°(X), i.e. H1 is positive definite at every point.

(6.14) Theorem. Every holomorphically convexr manifold X is weakly pseudoconver.

Proof. Let (K,) be an exhausting sequence of holomorphically convex compact sets as
in Remark 6.8. For every point a € L, := K, 12\ K, one can select g, 4 € 6G(2) such
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that supg |gu.a| < 1 and |g,4(a)] > 1. Then |g, 4(2)| > 1 in a neighborhood of a ; by
the Borel-Lebesgue lemma, one can find finitely many functions (g,,4)qcz, such that

v 1 f L,, y 1 f K,.
max {[g,.a(2)[} > 1 for z€ Ly, max{lg.a(2)]} <1 for z¢

For a sufficiently large exponent p(v) we get

Z |gy’a‘2p(u) > v oon Ll/7 Z ‘gu,a

a€l, acl,

W) =D lgva(2) P

veENael,

2p(¥) < 277 on K,.

It follows that the series

converges uniformly to a real analytic function ¥ € Psh(X) (see Exercise 8.11). By
construction ¥ (z) > v for z € L,,, hence 9 is an exhaustion. O

(6.15) Example. The converse to Theorem 6.14 does not hold. In fact let X =
C2/T be the quotient of C? by the free abelian group of rank 2 generated by the affine
automorphisms

g1(z,w) = (2 +1,e%w),  go(z,w) = (2 +1,€%2w), 61, 6, €R.

Since I' acts properly discontinuously on C2, the quotient has a structure of a complex
(non compact) 2-dimensional manifold. The function w + |w|? is -invariant, hence it
induces a function ¥ ((z,w)~) = |w|? on X which is in fact a plurisubharmonic exhaustion
function. Therefore X is weakly pseudoconvex. On the other hand, any holomorphic
function f € 6G(X) corresponds to a [-invariant holomorphic function f(z,w) on C2.

Then z — f(z,w) is bounded for w fixed, because f(z,w) lies in the image of the
compact set K x D(0,|w|), K = unit square in C. By Liouville’s theorem, f(z,w)
does not depend on z. Hence functions f € G(X) are in one-to-one correspondence with
holomorphic functions f(w) on C such that f(ewi w) = f(w) By looking at the Taylor
expansion at the origin, we conclude that f must be a constant if 6; ¢ Q or 6; ¢ Q (if
01,05 € Q and m is the least common denominator of 61, 6>, then fis a power series of
the form >~ apw™F). From this, it follows easily that X is holomorphically convex if and

only if 91, 0, € Q

§ 6.C. Stein Manifolds

The class of holomorphically convex manifolds contains two types of manifolds of a
rather different nature:

e domains of holomorphy X =Q Cc C";
e compact complex manifolds.

In the first case we have a lot of holomorphic functions, in fact the functions in G(£2)
separate any pair of points of 2. On the other hand, if X is compact and connected, the
sets Psh(X) and G(X) consist of constant functions merely (by the maximum principle).
It is therefore desirable to introduce a clear distinction between these two subclasses. For
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this purpose, [Stein 1951] introduced the class of manifolds which are now called Stein
manifolds.

(6.16) Definition. A complex manifold X is said to be a Stein manifold if

a) X is holomorphically convex;

b) 6(X) locally separates points in X, i.e. every point x € X has a neighborhood V' such
that for any y € V.~ {z} there exists f € 6(X) with f(y) # f(x).

The second condition is automatic if X = €2 is an open subset of C". Hence an open
set (2 C C™ is Stein if and only if ) is a domain of holomorphy.

(6.17) Lemma. If a complex manifold X satisfies the axiom (6.16 b) of local separation,
there exists a smooth nonnegative strictly plurisubharmonic function u € Psh(X).

Proof. Fix xy € X. We first show that there exists a smooth nonnegative function
ug € Psh(X) which is strictly plurisubharmonic on a neighborhood of xg. Let (z1,..., 2z,)
be local analytic coordinates centered at xo, and if necessary, replace z; by Az; so that
the closed unit ball B = {>" |2;|> < 1} is contained in the neighborhood V' 3 g on which
(6.16 b) holds. Then, for every point y € 9B, there exists a holomorphic function f €
0(X) such that f(y) # f(xo). Replacing f with A\(f — f(x0)), we can achieve f(z¢) =0
and |f(y)| > 1. By compactness of 9B, we find finitely many functions f1,..., fxy € 6(X)
such that vg = >~ | f;|? satisfies vo(zo) = 0, while vg > 1 on dB. Now, we set

" (Z)_{vo(z) on X \ B,
07 Mo{wo(2), (J2|2 +1)/3} on B.

where M, are the regularized max functions defined in 5.18. Then ug is smooth and
plurisubharmonic, coincides with vy near dB and with (]z|?> + 1)/3 on a neighbor-
hood of xzy. We can cover X by countably many neighborhoods (V}),>1, for which
we have a smooth plurisubharmonic functions w; € Psh(X) such that u; is strictly
plurisubharmonic on V;. Then select a sequence €; > 0 converging to 0 so fast that
u = Y eju; € 6°(X). The function v is nonnegative and strictly plurisubharmonic
everywhere on X. O

(6.18) Theorem. FEvery Stein manifold is strongly pseudoconvex.

Proof. By Th. 6.14, there is a smooth exhaustion function ¢ € Psh(X). If u >0 is
strictly plurisubharmonic, then ¢’ = 1 4w is a strictly plurisubharmonic exhaustion. [J

The converse problem to know whether every strongly pseudoconvex manifold is ac-
tually a Stein manifold is known as the Levi problem, and was raised by [Levi 1910] in
the case of domains €2 C C™. In that case, the problem has been solved in the affirma-
tive independently by [Oka 1953|, [Norguet 1954] and [Bremermann 1954]. The general
solution of the Levi problem has been obtained by [Grauert 1958]. Our proof will rely
on the theory of L? estimates for d”’, which will be available only in Chapter VIIL.
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Fig. I-4 Hartogs figure with excrescence

(6.19) Remark. It will be shown later that Stein manifolds always have enough holo-
morphic functions to separate finitely many points, and one can even interpolate given
values of a function and its derivatives of some fixed order at any discrete set of points.
In particular, we might have replaced condition (6.16 b) by the stronger requirement that
0O(X) separates any pair of points. On the other hand, there are examples of manifolds
satisfying the local separation condition (6.16 b), but not global separation. A simple
example is obtained by attaching an excrescence inside a Hartogs figure, in such a way
that the resulting map 7 : X — D = D(0,1)? is not one-to-one (see Figure I-4 above);
then G(X) coincides with 7*6(D).

§ 6.D. Heredity Properties

Holomorphic convexity and pseudoconvexity are preserved under quite a number of
natural constructions. The main heredity properties can be summarized in the following
Proposition.

(6.20) Proposition. Let 6 denote the class of holomorphically convex (resp. of Stein,
or weakly pseudoconvez, strongly pseudoconvex manifolds).

a) If X, Y € 6, then X xY € 6.
b) If X € 6 and S is a closed complex submanifold of X, then S € 6.

c) If (Sj)igj<n is a collection of (not necessarily closed) submanifolds of a complex
manifold X such that S = (\S; is a submanifold of X, and if S; € 6 for all j, then
S e 6.

d) If F: X =Y is a holomorphic map and S C X, S" CY are (not necessarily closed)
submanifolds in the class 6, then SN F~1(S") is in 6, as long as it is a submanifold
of X.

e) If X is a weakly (resp. strongly) pseudoconver manifold and u is a smooth plurisub-
harmonic function on X, then the open set Q = u~1(] — o0, c[ is weakly (resp. strongly)
pseudoconver. In particular the sublevel sets

Xe = ¢_1(] — 00, CD
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of a (strictly) plurisubharmonic exhaustion function are weakly (resp. strongly) pseu-
doconver.

Proof. All properties are more or less immediate to check, so we only give the main facts.

a) For K C X, L C Y compact, we have (K X L)%\(XxY) = I/(\’@(X) X k@(y), and if ¢,
¢ are plurisubharmonic exhaustions of X, Y, then ¢(x)+ ¢ (y) is a plurisubharmonic
exhaustion of X x Y.

b) For a compact set K C S, we have I?@(S) C l?@(x) NS, and if ¢ € Psh(X) is an
exhaustion, then ¢ [ S € Psh(.S) is an exhaustion (since S is closed).

c) (1S is a closed submanifold in []S; (equal to its intersection with the diagonal of
XM,
d) For a compact set K C SN F~1(S’), we have

Kosnr-i(sn) C Kogs) N FH(F(K) ggsn)),

and if o, 1 are plurisubharmonic exhaustions of S, S’, then p+oF' is a plurisubharmonic
exhaustion of SN F~1(9").

e) p(z) :=9(2)+1/(c—u(z)) is a (strictly) plurisubharmonic exhaustion function on €.
U

§ 7. Pseudoconvex Open Sets in C"

8§ 7.A. Geometric Characterizations of Pseudoconvex Open Sets

We first discuss some characterizations of pseudoconvex open sets in C". We will
need the following elementary criterion for plurisubharmonicity.

(7.1) Criterion. Let v : Q) — [~00,+00[ be an upper semicontinuous function. Then
v 18 plurisubharmonic if and only if for every closed disk A = zo+ D(1)n C Q and every
polynomial P € C[t] such that v(zo + tn) < Re P(t) for |t| =1, then v(zp) < Re P(0).

Proof. The condition is necessary because t — v(zg + tn) — Re P(t) is subharmonic in a
neighborhood of D(1), so it satisfies the maximum principle on D(1) by Th. 4.14. Let us
prove now the sufficiency. The upper semicontinuity of v implies v = lim,, _, | o, v, on 0A
where (v,) is a strictly decreasing sequence of continuous functions on 9A. As trigono-
metric polynomials are dense in C°(S!,R), we may assume v, (zo + €%n) = Re P, (el?),
P, € C[t]. Then v(zp + tn) < Re P, (t) for |[t| = 1, and the hypothesis implies

1 27 . 1 27 .
< P, - P, i6 - 5 i6 )
o(z0) < Re P (0) = - /O Re P(e)dd = 5 [ vueo + ')t

Taking the limit when v tends to +o0o shows that v satisfies the mean value inequality
(5.2). O

For any z € Q and £ € C™", we denote by

5a(z,8) =sup{r>0; 24+ D(r)¢{ C Q}
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the distance from z to 02 in the complex direction &.

(7.2) Theorem. Let Q C C™ be an open subset. The following properties are equivalent:

a) Q is strongly pseudoconvex (according to Def. 6.13 b);
b

Q is weakly pseudoconvex;

)
)
c) Q has a plurisubharmonic exhaustion function 1.
d) —logda(z,&) is plurisubharmonic on Q x C" ;

)

e) —logd(z,0Q) is plurisubharmonic on Q.

If one of these properties hold, ) is said to be a pseudoconvex open set.

Proof. The implications a) = b) == c) are obvious. For the implication c¢) = d), we
use Criterion 7.1. Consider a disk A = (z0,&p) + D(1) (7, @) in 2 x C™ and a polynomial
P € CJt] such that

—logda(z0 +tn,& +ta) < Re P(t) for |t] = 1.

We have to verify that the inequality also holds when |t| < 1. Consider the holomorphic
mapping h : C2 — C" defined by

h(t,w) = zo + tn + we PO (& + ta).
By hypothesis

h(D(1) x {0}) = pry(A) C Q,
h(0D(1) x D(1)) C Q (since [e" 7| < dg on OA),

and the desired conclusion is that h(D(1) x D(1)) C Q. Let J be the set of radii r > 0

such that 2(D(1) x D(r)) C Q. Then J is an open interval [0,R[, R > 0. If R < 1, we
get a contradiction as follows. Let 1) € Psh(Q2) be an exhaustion function and

K =h(0D(1) x D(R)) CC Q, c¢=supe.
K

As 1o h is plurisubharmonic on a neighborhood of D(1) x D(R), the maximum principle
applied with respect to ¢t implies

Yoh(t,w) <c on D(1)x D(R),

hence h(D(1) x D(R)) C Q. cC Q and h(D(1) x D(R+¢)) C Q for some € > 0, a

contradiction.

d) = e). The function —logd(z,() is continuous on ) and satisfies the mean value
inequality because

—logd(z,09) = sup (—logda(z,€)).
£eB
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e) = a). It is clear that
u(2) = |2)* + max{logd(z,CQ)~!, 0}

is a continuous strictly plurisubharmonic exhaustion function. Richberg’s theorem 5.21
implies that there exists ) € 6°°(Q2) strictly plurisubharmonic such that u < ¢ < u+ 1.
Then 1 is the required exhaustion function. U

(7.3) Proposition.

a) Let Q@ C C™ and Q' C CP be pseudoconvex. Then Q2 x Q' is pseudoconvex. For every
holomorphic map F : Q@ — CP the inverse image F~1(Q)) is pseudoconvez.

b) If (2a)acr is a family of pseudoconvexr open subsets of C™, the interior of the inter-

section Q@ = ((Nper Qa)o s pseudoconver.
c) If (©)jen is a non decreasing sequence of pseudoconvex open subsets of C", then
Q = U,en Yy is pseudoconver.

Proof. a) Let ¢, be smooth plurisubharmonic exhaustions of Q,€Q’. Then (z,w) —
©(2) + ¥ (w) is an exhaustion of Q x Q' and z — ¢(2) + ¥ (F(z)) is an exhaustion of
F=HQ).

b) We have —log d(z,CQ) = sup,; —logd(z, (£, ), so this function is plurisubharmonic.

¢) The limit —logd(z,00Q) = lim| ; ,, . —logd(z,[€;) is plurisubharmonic, hence €2 is
pseudoconvex. This result cannot be generalized to strongly pseudoconvex manifolds:
J.E. Fornaess in [Fornaess 1977] has constructed an increasing sequence of 2-dimensional
Stein (even affine algebraic) manifolds X, whose union is not Stein; see Exercise 8.16. [

(7.4) Examples.
a) An analytic polyhedron in C™ is an open subset of the form
P={zeC";|fi(2)| <1, 1<j< N}

where (f;)1<j<n is a family of analytic functions on C". By 7.3 a), every analytic
polyhedron is pseudoconvex.

b) Let w C C*~! be pseudoconvex and let u : w — [—00, +00[ be an upper semicontin-
uous function. Then the Hartogs domain

Q= {(21,2) € Cxw;log|z1| +u(z') <0}

is pseudoconvex if and and only if u is plurisubharmonic. To see that the plurisubhar-
monicity of u is necessary, observe that

u(z") = —log da ((0, 2), (1,0)).

Conversely, assume that v is plurisubharmonic and continuous. If ¢ is a plurisubharmonic

exhaustion of w, then
(') + log|z| + u(z))]
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is an exhaustion of 2. This is no longer true if u is not continuous, but in this case we
may apply Property 7.3 ¢) to conclude that

Q. = {(z1,7'); d(2',0w) > e, log|z1| + u*p.(2') <0}, Q= UQE
are pseudoconvex.

c) An open set Q2 C C" is called a tube of base w if 2 = w + iR™ for some open subset
w C R™. Then of course —logd(z,0Q2) = —log(x,Cw) depends only on the real part
x = Rez. By Th. 5.13, this function is plurisubharmonic if and only if it is locally
convex in x. Therefore (2 if pseudoconvex if and only if every connected component of w
Is convex.

d) An open set Q C C" is called a Reinhardt domain if (e!%12,... €% 2,) is in Q for
every z = (z1,...,2,) € Q and 64,...,6, € R™. For such a domain, we consider the
logarithmic indicatriz

w* =" NR" with Q* ={CeC"; (e*,...,e) € Q}.

It is clear that Q* is a tube of base w*. Therefore every connected component of w*
must be convex if 2 is pseudoconvex. The converse is not true: © = C™ ~\ {0} is not
pseudoconvex for n > 2 although w* = R"™ is convex. However, the Reinhardt open set

Q° = {(21,...,zn) € (C~{0})"; (log|z1], .- .,log|za|) € w*} cQ

is easily seen to be pseudoconvex if w* is convex: if y is a convex exhaustion of w*, then
Y(z) = x(log|z1],...,log|z,|) is a plurisubharmonic exhaustion of 2°®. Similarly, if w*
is convex and such that x € w* = y € w* for y; < z;, we can take x increasing in all
variables and tending to +00 on dw™, hence the set

Q={(z1,...,2,) €C"; || < €% for some z € w*}

is a pseudoconvex Reinhardt open set containing 0. U

§ 7.B. Kiselman’s Minimum Principle

We already know that a maximum of plurisubharmonic functions is plurisubharmonic.
However, if v is a plurisubharmonic function on X x C”, the partial minimum function
on X defined by u(¢) = inf,cq v(¢, 2) need not be plurisubharmonic. A simple coun-
terexample in C x C is given by

v(G,2) = |2 + 2Re(2C) = [e + C1* = [¢1%, u(¢) = —[¢f

It follows that the image F'(2) of a pseudoconvex open set {2 by a holomorphic map F'
need not be pseudoconvex. In fact, if

Q= {(t,¢,2) € C; log|t| + v(¢,2) < 0}

and if ' C C? is the image of Q by the projection map (¢,¢, z) — (¢,(), then Q' =
{(t,¢) € C?; log|t| + u(¢) < 0} is not pseudoconvex. However, the minimum property
holds true when v((, z) depends only on Rez :
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(7.5) Theorem ([Kiselman 1978]). Let 2 C CP x C" be a pseudoconvex open set such
that each slice
Q ={2€C"; ((,2) €}, (e,

is a convex tube we + iR™, we C R™. For every plurisubharmonic function v(¢, z) on €}
that does not depend on Im z, the function

u(¢) = inf wv((,2)

ZEQC
is plurisubharmonic or locally = —oo on Q' = prea ().

Proof. The hypothesis implies that v((,z) is convex in * = Rez. In addition, we
first assume that v is smooth, plurisubharmonic in (¢, z), strictly convex in z and
lim, ., {ooyuow, V(¢ x) = +oo for every ¢ € €. Then x — v(¢, ) has a unique min-
imum point * = ¢({), solution of the equations dv/0z;(x,() = 0. As the matrix
(0?v/0z;0xy) is positive definite, the implicit function theorem shows that g is smooth.
Now, if C 5 w +—— (o + wa, a € C", |w| < 1 is a complex disk A contained in €2, there
exists a holomorphic function f on the unit disk, smooth up to the boundary, whose real
part solves the Dirichlet problem

Re f(e) = g(Co + €a).

Since v({p + wa, f(w)) is subharmonic in w, we get the mean value inequality

M@Jm»<3iéﬂw@+é%J@%M0—i— o(C,9(0))do.

2 - 2 A

The last equality holds because Re f = g on 0A and v((, z) = v((, Re z) by hypothesis.
As u(Co) < v(Co, f(0)) and u(¢) = v((,9(C)), we see that u satisfies the mean value
inequality, thus u is plurisubharmonic.

Now, this result can be extended to arbitrary functions v as follows: let ¥((,2) > 0
be a continuous plurisubharmonic function on §2 which is independent of Im 2z and is an
exhaustion of 2N (C? x R™), e.g.

(¢, 2) = max{[¢]* + | Rez[*, ~ log a(¢, 2)}.

There is slowly increasing sequence C; — 400 such that each function ¢; = (C; — ¢ %

P1/j )~! is an “exhaustion” of a pseudoconvex open set 2; CC 2 whose slices are convex
tubes and such that d(£2;,0Q) > 2/;j. Then

lﬂadzvﬂwﬂad+?RWP+%K&)

is a decreasing sequence of plurisubharmonic functions on §2; satisfying our previous
conditions. As v = limv;, we see that u = limu; is plurisubharmonic. U

(7.6) Corollary. Let 2 C CP x C" be a pseudoconvex open set such that all slices Q¢,
¢ € CP, are convex tubes in C™. Then the projection Q' of Q on CP is pseudoconvex.

Proof. Take v € Psh(£2) equal to the function v defined in the proof of Th. 7.5. Then u
is a plurisubharmonic exhaustion of €. O
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§ 7.C. Levi Form of the Boundary

For an arbitrary domain in C™, we first show that pseudoconvexity is a local property
of the boundary.

(7.7) Theorem. Let Q C C™ be an open subset such that every point zo € 02 has a
neighborhood V' such that Q2 NV is pseudoconvex. Then ) is pseudoconvex.

Proof. As d(z,0Q) coincides with d(z,0(2NV)) in a neighborhood of z, we see that
there exists a neighborhood U of 9§ such that —logd(z,CQ) is plurisubharmonic on
QN U. Choose a convex increasing function y such that

x(r) > sup —logd(z,0Q), Vvr>0.
(Q~U)NB(0,r)

Then the function
¥ (z) = max {x(|z|), —log d(z, CQ)}

coincides with x(|z|) in a neighborhood of Q@ \U. Therefore ¢ € Psh(Q2), and ® is clearly
an exhaustion. O

Now, we give a geometric characterization of the pseudoconvexity property when 92
is of class C2. Let p € C?(Q) be a defining function of €, i.e. a function such that

(7.9) p<0on  p=0 and dp#0 on IN.

The holomorphic tangent space to OS2 is by definition the largest complex subspace which
is contained in the tangent space T to the boundary:

(7.9) "Toa = Toa N JThg.
It is easy to see that "Thq ., is the complex hyperplane of vectors £ € C™ such that
dp
d’ €= — & =0.
1<y<n
The Levi form on "Tyq is defined at every point z € 9§ by

1 ?p - b
7.10 Loq - (€) = — &€k € "Toq,--

The Levi form does not depend on the particular choice of p, as can be seen from the
following intrinsic computation of Lgq (we still denote by Lgq the associated sesquilinear
form).

(7.11) Lemma. Let &, be Ot vector fields on OS2 with values in "Tyq. Then

<[€777]7 JV> - 4ImLBQ(€7n>

where v is the outward normal unit vector to 92, [, | the Lie bracket of vector fields and
(, ) the hermitian inner product.
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Proof. Extend first £, n as vector fields in a neighborhood of 92 and set

é’-Zﬁga 5 (6 —i1J8), n—anG_ SO0+ i),
As &, J€&,n, Jn are tangent to 02, we get on OS2 :

0%p o, Op &5 dp
2 2 G g e Tk

0=2¢"(n".p)+n".(.p) =

1<5,k<n

Since [€, 7] is also tangent to OS2, we have Re([¢, n],v) = 0, hence (J[¢, n],v) is real and

1 2
0], Jv)y = —{(J[E, n],v) = — = ———Re (J[¢, 0.
(6110 =~ ) = =g (TIEs ) =~ o Re (T 0)
because J[¢',n'] =i[¢’,n'] and its conjugate J[¢", 1] are tangent to 9Q2. We find now
3% 85‘ 9
" o _5)
T =) G5 oz %oz, 07,
(‘m Op - 0§ Op _ Fp
Re (JIg',n"].p) = Im Zgﬂ 0z az Tz, 9 T 2 2 g, ST
(16, Tv) = 5 T Zaz 5z &k = 4Tm Loa (&), O

(7.12) Theorem. An open subset Q C C" with C? boundary is pseudoconvez if and
only if the Levi form Lyq is semipositive at every point of 0S).

Proof. Set §(z) = d(z,0Q), z € Q. Then p = —d is C? near 02 and satisfies (7.9). If Q
is pseudoconvex, the plurisubharmonicity of —log(—p) means that for all z €  near 02
and all £ € C™ one has

> (LT L e sy

02;0% 2 0z;
1<, k<n 4 jY%k

Hence Y (0%p/02;0%1)&;€, = 0if - (9p/02;)&; = 0, and an easy argument shows that
this is also true at the limit on 0f2.

Conversely, if €2 is not pseudoconvex, Th. 7.2 and 7.7 show that — log d is not plurisub-
harmonic in any neighborhood of 0€2. Hence there exists £ € C™ such that

2

(6(38_ log d(z —l—t§)> 7 0

CcC =

for some z in the neighborhood of 9 where § € C?. By Taylor’s formula, we have
log d(z + t€) = log §(2) + Re(at + bt?) + c[t|* + o(|t|?)
with a,b € C. Now, choose zg € 02 such that §(z) = |z — 20| and set

h(t) = z + t€ + e (29 — 2),  teC.
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Then we get h(0) = zp and

(z+t&) —d0(2) }eaHbtzl

(2) e+ | (11772 — 1) > 6(z) ¢|t]?/3

when || is sufficiently small. Since §(h(0)) = §(zp) = 0, we obtain at t =0 :
57 (1) = 2 5o 5 0) =0

0? %5
YO 6(h(t)) =

hence h/(0) € "Thq ., and Lag ., (h'(0)) < 0. O

(7.13) Definition. The boundary 0X2 is said to be weakly (resp. strongly) pseudoconvez
if Loq is semipositive (resp. positive definite) on 02. The boundary is said to be Levi
ﬂat Zf LaQ =0.

(7.14) Remark. Lemma 7.11 shows that 02 is Levi flat if and only if the subbundle
"Toa C Thq is integrable (i.e. stable under the Lie bracket). Assume that O is of
class 6F, k > 2. Then "Tyq is of class C*~1. By Frobenius’ theorem, the integrability
condition implies that "Tjsq is the tangent bundle to a “6* foliation of 92 whose leaves
have real dimension 2n — 2. But the leaves themselves must be complex analytic since
"Tha is a complex vector space (cf. Lemma 7.15 below). Therefore 99 is Levi flat if and
only if it is foliated by complex analytic hypersurfaces.

(7.15) Lemma. LetY be a C'-submanifold of a complex analytic manifold X . If the
tangent space Ty 5 is a complex subspace of T'x , at every point x € Y, then'Y is complex
analytic.

Proof. Let g € Y. Select holomorphic coordinates (z1, ..., z,) on X centered at x( such
that Ty, is spanned by 9/0z1, . ..,0/0%,. Then there exists a neighborhood U = U’ xU"
of zy such that Y NU is a graph

2 =n(z"), 2 =(2,...,2) €U, 2" =(2ps1,.--,2n)

with h € CY(U’) and dh(0) = 0. The differential of h at 2’ is the composite of the
projection of CP x {0} on Ty, (. p(.r)) along {0} x C"7P and of the second projection
C™ — C™P. Hence dh(z') is C-linear at every point and h is holomorphic. U

§ 8. Exercises

§ 8.1. Let Q C C" be an open set such that
z€Q, NeC, N<1= Xz

Show that  is a union of polydisks of center 0 (with arbitrary linear changes of coordinates) and infer
that the space of polynomials C[z1, ..., zpn] is dense in G(2) for the topology of uniform convergence on
compact subsets and in 6(Q) N C°(Q) for the to